Figures

1.1 Energy use and GDP for selected countries 6
1.2 Energy input per dollar of GDP versus real price of energy 11
2.1 Abiotic processes contributing to the global carbon cycle of present-day Earth 28
2.2 Biotic and anthropogenic processes contributing to the global carbon cycle of present-day Earth 30
2.3 CO₂ emissions projected from fossil-fuel combustion, showing high, low and business-as-usual scenarios 32
2.4 Atmospheric CO₂ concentrations resulting from emissions scenarios outlined in Figure 2.3 33
3.1 Forcings in Wm⁻² for various agents thought to have induced climate change since 1750 51
3.2 (a) Instrumental record of global average surface temperatures over the last 140 years; (b) Estimate of the global average temperature for the last 1000 years 53
3.3 Different emission scenarios from the SRES, including CO₂, CH₄, N₂O and SO₂ 58
3.4 Modeled concentration of CO₂ based upon the SRES emission scenarios 59
3.5 Forcings in Wm⁻² for the emissions scenarios and modeled concentrations depicted in Figures 3.3 and 3.4 60
3.6 Modeled responses in the global average temperature by the Hadley Centre Model and an envelope of other models for a representative group of emission scenarios 62
3.7 Sea-level rise based upon a simplified model of ocean volume and estimates of land ice volume and extent from AOGCMs 63
3.8 Regional surface temperature differences from the present to the 2071–2100 average 64
4.1 Benefits, costs and greenhouse gas reductions 71
4.2 Potential versus actual Pareto improvements 73
4.3 Changes in utility versus changes in income-equivalents 83
4.4 Effects of tax and ‘jawboning’ policies 87
6.1 A taxonomy of economic values for ecological systems 119
7.1 Global carbon emissions and historical development in different scenarios 146
7.2 Annual global carbon emissions from fossil fuels for six illustrative SRES scenarios 147
7.3 CO₂ concentrations implied by six illustrative SRES scenarios 148
7.4 Fossil-fuel carbon emissions consistent with alternative CO₂ concentration ceilings 149
7.5 CO₂ concentrations corresponding to carbon emissions paths from Figure 7.4 150
7.6 Costs of stabilizing concentrations at 550 ppmv 154
7.7 Costs of stabilizing CO₂ concentrations at 450–750 ppmv 155
7.8 Marginal value of carbon 159
7.9 The future with and without technological change 163
7.10 Analyses of carbon emissions mitigation opportunities from bottom-up studies 165
7.11 Cost of stabilizing CO₂ concentrations with and without carbon capture and sequestration technologies 169
8.1 Carbon emissions 195
8.2 Percent GDP reductions from BAU 196
8.3 Carbon taxes 197
8.4 Carbon concentrations 197
8.5 Marginal productivity of capital 200
8.6 Carbon emissions LTA versus ATL 202
9.1 Trends in CO₂ emissions from combustion of fossil fuels 210
9.2 Carbon intensity for (a) Brazil, (b) China and (c) India 222
9.3 Geographical distribution of spending on R&D 224
9.4 Official development assistance and foreign direct investment in developing countries 225
10.1 Total public funding of energy research and development in selected nations in 1985 and 1995 256