Subject index

abatement costs
distributional consequences 156–8
domestic implementation 161–2
efficient paths 153–6
endogenous technical change 151–2
measurement issues 185–6
new technologies 178
no regrets 162
timing of 150–51
trading of emission rights 158–61
abiotic carbon cycle 27
aerosols 51
and natural forcings 54
indirect aerosol effect 54
Anthropogenic emissions
of greenhouse gases 5, 30
sources of 50–51
benefit–cost analysis 17, 68, 187
benefits 14, 74–6
costs 16
discounting 77–9, 199–210
economic efficiency 72
equity considerations 73, 85
formulas for 13, 68–9
measuring benefits 76
net benefits 72
present value of 13, 69–70
regional differences 17, 107–9
uncertainty 80–81
biomass 35, 37, 166
biotic carbon cycle 29
cap and trade approach 214–16, 241–2
carbon capture or sequestration 168–73
value of 173–4
carbon cycle
biotic and anthropogenic processes 30
effects of deforestation 33
human perturbations of 32
carbon dioxide
emissions by 20 largest emitters 19
emissions vs. concentration 9
emphasis on 4–5
factors influencing emission rates 10
past variations in concentrations 31
sequestration 13
uptake by oceans 26, 29
carbon sinks 8, 33
inverse-modelling studies 34
N-derived sink 36
North America 34
Siberian forests 34
soil storage 35
tropics 33
carbon taxes 18, 19, 212–14
enforcement problems 214
catastrophic impacts 132
Central and Eastern European Policies
235–8
climate change
computer modelling of 47–9
natural variability of 47
numerical simulation of 47
over time 46
problems of modelling 49–50
regional differences in 63–4
Coase theorem 156
cost-effectiveness analysis 67, 71
developing countries
ecosystem impacts 125
effect on market benefits 107–8
participation in agreements 219–23,
226, 245
distributional effects
across countries 83
across generations 78
emission rights 158–61
emissions vs. concentrations 9, 142
energy consumption
and GDP 6
by mix of fuels 7
contribution to greenhouse gases 143
fossil fuel mix 12
enforcement 217
European Union policies 230–35
existence value 119
expert judgement 124
forcings 51
future climate response 60–63
future temperature change 62
framework convention on climate change 211–12
best-efforts approach 212
fuel cells 173
global feedback mechanism 49
water vapor feedback 50
greenhouse gases
lifetimes 141
sources 25, 140–41
water vapor 49
halocarbons 51
hedging strategies 200–202
hedonic price approach 118
Henry’s Law 29
Hotelling principle 149, 157, 177
human health 128–9
hybrid approach 217–19
intergenerational wealth transfers 141
Intergovernmental Panel on Climate Change
First Assessment Report 51
process of 50–51
Second Assessment Report 51
Summary of Third Assessment Report 51
integrated assessment models 110, 191
international agreements 18, 204–7
Kyoto Protocol 3, 23, 156, 204–6, 208–11, 230, 240, 246, 250–51
land-use 51, 166–8
market damages 15, 76, 92
cross sectional approach to 95, 108
global impacts of 104–8
geographic differences in 101–3, 110
new estimates of 100
previous estimates of 97
research on US economy of 95–104
simulation approach to 95, 107
uncertainty 92–3, 111
methane 25
Montreal Protocol 5, 207
mortality 116
natural forcings
solar variability 54
volcanic activity 54
Newton’s Second Law 47
nitrous oxide 25
non-market damages 16, 76, 114
amenity values 131
benefits transfer 121, 127
catastrophic impacts 132
ethical issues 118
existence value 119
expert judgement 124
extinction of species 117
hedonic price approach 118
human health 128–9
mortality 116
non-use value 119
recreation 129–30
revealed preferences 118
site-specific analyses 127
stated preferences 118, 120
tourism 130–31
value of natural ecosystems 122
vector borne diseases 116
vicarious use value 119
willingness-to-pay 118, 126
non-use value 119
nuclear power 7, 237–9
Pareto improvement 72
actual vs. potential 81–2
potential for 73
social welfare 82–3
prevailing wisdom 3–4
quantitative controls on emissions 212–13
relation to cap and trade 216
recreation value 129–30
revealed preference approach 118
Russia and Ukraine 211
sea level changes 56, 63
stratospheric ozone 51
Special Report on Emission Scenarios 56–60, 146
sulfate aerosols 8, 49, 51
sustainability 84
technology strategy 223–5, 255–60
to reduce abatement costs 166–74
tradeable emission permits 18, 20
policing compliance 20
safety valve 21

Uncertainty
and abatement costs 174–5, 177–8
and benefit–cost analysis 77–8
climate models 55
market damages 93–4
non-market damages 133–4
temperature change 65

vector borne diseases 116
vicarious use value 119
willingness-to-pay 74
World Trade Organization 208, 214