<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceleration factor</td>
<td>358, 361</td>
</tr>
<tr>
<td>access time</td>
<td>136–7</td>
</tr>
<tr>
<td>accessibility</td>
<td></td>
</tr>
<tr>
<td>measures</td>
<td>3</td>
</tr>
<tr>
<td>study</td>
<td>6</td>
</tr>
<tr>
<td>activity</td>
<td></td>
</tr>
<tr>
<td>equivalence</td>
<td>78–80</td>
</tr>
<tr>
<td>matrix</td>
<td>79</td>
</tr>
<tr>
<td>Activity-Travel Framework (ATF)</td>
<td>10</td>
</tr>
<tr>
<td>actual travel time</td>
<td>337</td>
</tr>
<tr>
<td>actuated signal control</td>
<td>83, 110</td>
</tr>
<tr>
<td>additive random utility maximizing (ARUM)</td>
<td>71, 75</td>
</tr>
<tr>
<td>ADVANCE</td>
<td>179, 181, 208</td>
</tr>
<tr>
<td>advanced traffic management systems (ATMS)</td>
<td>84</td>
</tr>
<tr>
<td>advanced traveler information systems (ATIS)</td>
<td>84, 177, 179, 232–49, 262, 265, 275</td>
</tr>
<tr>
<td>advanced traveler management systems (ATMS)</td>
<td>177</td>
</tr>
<tr>
<td>AIMSUN</td>
<td>263, 268–9</td>
</tr>
<tr>
<td>Akcelik function</td>
<td>92–3</td>
</tr>
<tr>
<td>all-or-nothing assignment</td>
<td>264</td>
</tr>
<tr>
<td>augmented Lagrangian method</td>
<td>322</td>
</tr>
<tr>
<td>Average Trade Coefficient</td>
<td>375</td>
</tr>
<tr>
<td>backpropagation</td>
<td>179, 182, 189–94, 196–8, 201, 207</td>
</tr>
<tr>
<td>through time (BPTT)</td>
<td>179, 190, 196, 200–201, 207</td>
</tr>
<tr>
<td>behavioral</td>
<td></td>
</tr>
<tr>
<td>mechanism</td>
<td>11, 18–9</td>
</tr>
<tr>
<td>predisposition</td>
<td>9</td>
</tr>
<tr>
<td>Bellman-Ford-Moore</td>
<td>286</td>
</tr>
<tr>
<td>Belo Horizonte metropolitan</td>
<td>377</td>
</tr>
<tr>
<td>bi-level model (bilevel model)</td>
<td>339, 356–8, 361</td>
</tr>
<tr>
<td>bi-level programing (bilevel programming)</td>
<td>136, 143, 157, 234, 239–40, 248</td>
</tr>
<tr>
<td>bi-modal transportation network</td>
<td>134–6, 145, 153</td>
</tr>
<tr>
<td>binary logit model</td>
<td>37</td>
</tr>
<tr>
<td>block Gauss-Seidel decomposition approach</td>
<td>26</td>
</tr>
<tr>
<td>BPR (Bureau of Public Roads)</td>
<td>39, 51, 95, 145, 242, 261, 264, 267, 274–5, 283</td>
</tr>
<tr>
<td>break-even condition</td>
<td>149</td>
</tr>
<tr>
<td>build-operate-transfer (BOT)</td>
<td>158</td>
</tr>
<tr>
<td>business-to-business (B2B)</td>
<td>289–90</td>
</tr>
<tr>
<td>bypass route</td>
<td>349–50</td>
</tr>
<tr>
<td>capacity</td>
<td></td>
</tr>
<tr>
<td>expansion</td>
<td>16</td>
</tr>
<tr>
<td>rate</td>
<td>215–7, 220</td>
</tr>
<tr>
<td>reallocation</td>
<td>15–7</td>
</tr>
<tr>
<td>reduction</td>
<td>16</td>
</tr>
<tr>
<td>capital product</td>
<td>382</td>
</tr>
<tr>
<td>car</td>
<td></td>
</tr>
<tr>
<td>occupancy</td>
<td>19</td>
</tr>
<tr>
<td>ownership</td>
<td>11, 19, 70</td>
</tr>
<tr>
<td>cascade correlation</td>
<td>179, 190, 198–201, 206–7</td>
</tr>
<tr>
<td>category analysis</td>
<td>2</td>
</tr>
<tr>
<td>C-economy</td>
<td>380–81, 388</td>
</tr>
<tr>
<td>central business district (CBD)</td>
<td>384</td>
</tr>
<tr>
<td>Chicago Area Transportation Study (CATS)</td>
<td>56, 58</td>
</tr>
<tr>
<td>Chicago Sketch Network</td>
<td>50</td>
</tr>
<tr>
<td>coastal navigation</td>
<td>365</td>
</tr>
<tr>
<td>Cobb-Douglas assumption</td>
<td>381</td>
</tr>
<tr>
<td>cognitive capacity</td>
<td>380</td>
</tr>
<tr>
<td>combined</td>
<td></td>
</tr>
<tr>
<td>models</td>
<td>25, 37, 39–40</td>
</tr>
<tr>
<td>transport and land-use model</td>
<td>113–14</td>
</tr>
<tr>
<td>commercial property</td>
<td>383–84</td>
</tr>
<tr>
<td>complementary slackness theorem</td>
<td>75</td>
</tr>
<tr>
<td>congestion</td>
<td></td>
</tr>
<tr>
<td>charge</td>
<td>154</td>
</tr>
<tr>
<td>cost</td>
<td>135</td>
</tr>
<tr>
<td>level</td>
<td>218</td>
</tr>
<tr>
<td>pricing</td>
<td>113–6, 119–20, 125–32, 135, 143</td>
</tr>
<tr>
<td>toll</td>
<td>135, 139, 143–4, 147, 153</td>
</tr>
<tr>
<td>consumer</td>
<td></td>
</tr>
<tr>
<td>surplus (CS)</td>
<td>139, 158, 162, 164–6, 168–73</td>
</tr>
<tr>
<td>theory</td>
<td>19</td>
</tr>
<tr>
<td>welfare</td>
<td>9</td>
</tr>
<tr>
<td>continuous network design problem (CNDP)</td>
<td>158–59, 161–4, 163, 166–72</td>
</tr>
<tr>
<td>CONTRAM</td>
<td>5</td>
</tr>
<tr>
<td>convex</td>
<td></td>
</tr>
<tr>
<td>combination</td>
<td>314</td>
</tr>
<tr>
<td>optimization problem</td>
<td>26, 33, 138</td>
</tr>
<tr>
<td>corridor pricing</td>
<td>6</td>
</tr>
<tr>
<td>cordon pricing</td>
<td>374</td>
</tr>
</tbody>
</table>
corridor-to-corridor flow 375
CORSIM 263
cost minimizing behavior 70–81
counterpropagation 179, 189–90, 193–5, 201, 207
Cournot-Nash game 86
creative capacity 380
C-region 384–5, 388
C-resource 380
critical segments 366
cross
-elasticity 3, 11, 15
-flow (CFLOW) 183, 185–9, 196, 206
-occupancy (COCC) 183–4, 186
Croydon 6
cycle length 84, 91–2
Davidson function 267
decision pattern 73–4, 77
demand 366
-elasticity 16, 17, 154
-function 5, 12, 19, 307, 309
-management 1, 4, 6, 10
--response transit service 154
Dennis Package 115
departure time 154
destination-based travel time 316
deterministic user equilibrium 88, 104, 157, 170, 172
DIADEM 20
Dijkstra algorithm 286
direct utility function 139, 149
disaggregate
-model 19
-simplicial decomposition (DSD) algorithm 341, 358, 361
discrete
-choice 4, 5, 7–9
-see also discrete choice model 70, 71–2, 75–7, 78, 80
-network design problem (DNDP) 158
dispersion parameter 90, 97–8
distance-related cost 282, 284
distributor 289–304, 306–9, 310–11
Dortmund 58, 61, 66
double-stage algorithm 314
doubly
-constrained model 314
-constrained origin-destination/departure
time/route choice (DUE-DC-OD-D-R) 315–18, 326, 328–9
Downs-Thomson
effect 18
-paradox 15
driver
-information 83, 84, 89, 104, 109
reactiveness 97–8, 100, 104–7, 109–110
response 93, 105
dual multiplier 350
dual-based algorithm 320
duality theory 74
dummy time-independent super-origin 319
dynamic equilibrium condition 328
dynamic
-traffic assignment (DTA) 162, 262
-see also dynamic travel choice model 326
-user equilibrium 157, 172, 262, 327–8
-variable message signs 262
economic
-equilibrium condition 297
-impacts 366–7
-sector 374
-educated labor 381, 384–5
educational
-capital 385
density 384
egress time 136–7
elastic demand 5, 15–6, 341
electronic
-commerce (e-commerce) 289–90, 311
-road pricing 134
-energy consumption 14
-entropy maximization 8
-see also entropy-constrained methods 25
-entry rate 215, 220
-equilibrium 374
-assignment 5, 346
-conditions 297, 311, 324, 326–7, 340, 382
-decomposed optimization algorithm 240
-flow 340, 343
-link flow solution 341, 352, 355, 357
-model 1, 14, 18, 20
-network design (END) 86, 89
-rent structure 387
-solution 340, 346–7, 350, 353, 355–6, 382
-traffic signal setting (ETSS) 83–7, 89, 91–3, 97, 99, 105–110
-Evans-like algorithm 48–9, 50, 52, 55–6
-Evans-mRAS 324–6
-excess cost (travel time) 47, 270
-exit rate 215, 217
-extreme value distribution 71–2, 81
-feasibility check problem 346–8, 355
-Federal Highway Administration (FHWA) 283, 289
fee level 128–30
FIFO 210, 228, 230
financial disaster 365
first start solution 359–61
first-best solution 139, 141–2, 145
five-stage model/approach 3, 6, 7
Fixed Matrix (FM) 11–12, 17, 19, 20
fixed-point model 266
flow
 - constraint 358, 361, 363
 - goal 348, 356, 358, 361, 363
 - to-capacity ratio 93
forward star 285–6
four-stage model/approach 2–3, 7–8, 11, 13–14, 19–20
four-step transportation planning model 25, 36–7
Frank-Wolfe (FW)
 - algorithm (method) 26, 59, 267, 314, 319, 330–31
 - linearization 59
free trade agreements 365–66
free-flow travel time (FFTT) 96, 146, 255–56, 264, 283, 322
frequency elasticity 11
game theory (game-theoretic approach) 86
Gaussian function 254
general
 - equilibrium 382
 - extreme value (GEV) 9
 - household consumption 19
generalized
 - cost (travel time) 12, 28, 33, 35, 38–9, 70, 72–4, 76, 119, 121, 337, 339–40, 355
 - elasticity 13, 20
 - extreme value (GEV) distribution 75
 - link travel time 339
 - reduced gradient (GRG) 159, 164, 167, 170, 172
geometric algorithm 339, 358
geographic information systems (GIS) 6, 278, 287
global positioning system (GPS) 110, 278
goal constraints 341, 349
goal-constrained traffic equilibrium problem 340–41
gradient law 387
gradient projection (GP) method 319, 321
gravity model 29, 59, 72, 76–8, 80, 315
gravity-type distribution 28, 33, 40
green (time) split 84, 86, 91–2, 94, 97–101, 104, 109–110
Gumbel distribution 81
 see also probability distribution 137
handling cost 29, 307, 309
Heavy Vehicle Participation 375
hedonic price function 384
Hessian 167
high-occupancy vehicle 135
Highway Capacity Manual (HCM) 283
highway
 - network 367
 - segment 367
 - traffic volumes 376
 - transportation network 365
Hitchcock’s transportation problem 314–15, 330–31
Hook and Jeeves 143, 240, 338, 356, 358, 361, 363
ILUMASS 61
incremental logit 19
 see also nested logit 6, 19
independence of irrelevant alternatives (IIA) 234
indirect utility function 154
individual link travel time adjustment 351
induced
 - demand 15
 - traffic 1, 11–6, 20
information
 - flow 380
 - theory 59
initial solution 363
inland waterway 365
intelligent transportation systems (ITS) 177–8, 278, 290
inter-modal transport 135
internal flows 377
intraregional pricing 387
intra-trip 315, 326, 331, 335
in-vehicle route guidance 262
in-vehicle time 137
inverse nonlinear multicommodity network flow problem 341
ISGLUTI 4
iterative optimization and assignment (IOA) 85–9, 93–5, 97–103, 105–109
Jacobian matrix, 301
joint entropy distribution/assignment model (JEDA) 314–15, 319, 326
Kalman filtering theory 252
Karush-Kuhn-Tucker (KKT) constraints 32, 140, 329
see also Kuhn–Tucker conditions
kernel regression model 253–4, 258
knowledge
capital 381–2, 388
density 381
expansion model 383
- oriented C-economy 388
- oriented economy 388
- oriented regional economy 383

Lagrange multiplier 140, 294, 320–22, 326–7, 340
Lagrangian 31, 320, 329
Lanark 5
land use, transportation and environment (LTE) 67
land-use 1, 3–4, 7, 13, 19
pattern 158, 162, 172, 388
structure 113
- transport model 3–4, 7
lane changing 261, 269
least-cost routes 279
leftmost flow constraint 363
level of
congestion 369
service 1–2, 43, 134, 136, 367
LGORU (Local Government Operational Research Unit) 4
light rail transit (LRT) 6, 15
Lighthill-Whitham-Richards theory 210
linear
constraints 342, 350
flow constraints 349
optimization problem 340
link
capacity 146
delay function 85
flow 335, 337–8, 340, 342, 346, 348–9, 351, 357
capacity 342, 346, 357
solution 347, 355–6
time 341, 345, 347, 358
adjustment 357
weight 345, 351, 353, 355
width 349, 351–2
link-based algorithm 315, 319, 326, 330
link-junction-based network model 7
Linköping network 338, 342, 348–50, 352, 361, 363
link-route incidence 90
Lipschitz continuous 305–306
local
constant model 253
linear model 253, 255–6, 258
regression 253–4, 258
minimum 357–8
location
criteria 381
pattern 116, 121, 125, 130–31, 380
location-based mobile services (LBMS) 278–79
see also location-based services (LBS)
logit
formula 136–7
model 71, 75, 77, 90, 97, 139
logit-based
modal split 141
SUE 86, 90, 93, 99, 234
logit-type share model 15
loop detector 177, 181–3, 189–90
Lowry model 3, 9
Lowry-type mechanism 4
LTE 67
LUTR cluster 114, 132
macroeconometric model 367
macro-region 374
macroscopic traffic theory 184, 210
Malmö 385
marginal cost 280, 292–3, 296–7, 300
see also external cost 139; social cost 143–4, 149
marginal-cost pricing 141–2, 146, 148–53
market equilibrium conditions 297
Markowitz’s model 386
maximal exhaust fume emission 337
mean squared error (MSE) 193
MERCOSUL 365
microeconomic
approach 7, 10
model 3–4, 6
microsimulation 5–7, 61, 63
module 61, 63
mid-value theorem 305
minimal
adjustment 347
perceived travel time adjustment 355
unconstrained travel time adjustment 354
minimum-cost flow problem 330
mixed network design problem (MNDP) 158
mobile position determination system 278
modal choice 2, 4
modal split 2, 8, 15, 25–7, 29, 37, 39–40, 134–6, 139, 142–5, 149, 153–4, 341
mode choice 43, 113, 118, 138, 141, 147
see also split 137, 151

model flow capacity 338
modified link travel time 346
projection method 307–311
Mohring effect 154
monetary
outlay 337
cost 117, 120
Monte Carlo simulation 248
movement
occupancy 216–8, 220
queue 216
mRAS 335
multi-class problems 26, 37, 40
multicollinearity 187, 207
multi-modal equilibrium 15
multinational Corporations (MNCs) 384
multinomial logit model 9, 71–2, 77
multi-objective optimization 158
multiple-equilibrium behavior 87
nested
diagonalization (ND) 315, 317–18, 334
diagonalization-augmented Lagrangian-GP (ND-AGP) 320
logit models 4, 7–9, 17, 19, 118
network
assignment (loading) 260, 265, 267, 269, 342
design problem (NDP) 157–8, 172, 240
equilibrium model 26, 28, 240
topology 158
neural
network model 252–3
networks 177–82, 189–207
Newton–Raphson method 164
none-home-based 38
non-FIFO 211, 214–5, 228, 230
nonlinear (non-linear)
eigen-value equation 382
non-convex problem 339
optimization 120
nonparametric method 252–3
occupancy 183–4, 186–91, 206
O–D
cost 45–6, 48–9
demand 317, 322, 324, 330, 333, 335
flow 44–9, 50, 52, 56, 314, 330, 332
generalized cost 51
matrix 153, 240
pair 44–5, 137–40, 144–8, 150–52, 159–62, 166, 168–71, 173, 235–36, 238, 242, 264,
267, 269–71, 274–6, 281, 286, 315, 319,
324, 326, 328, 330
route travel time 316, 333
trip demand 318, 334–5
OECD 380–81
operational
capacities 366–7
costs 366
optimal
dual solution 349
location 380
network performance 234, 239, 248
optimality conditions 293–4, 296–8
origin-based
algorithm 48–9, 50, 52, 55–6
travel time 316
origin-destination (O–D)
demand 235–36, 238, 243
flow 159
matrix 374
Pallottino graph growth algorithm 286
PARAMICS 5, 263
parking
fee 117–18, 121
information system (PIS) 232–33, 243
passenger car-equivalent units 283
path flow 317, 330
path-based algorithm 315, 319, 322, 326
penalty
method 320
parameter 320–22, 326, 357
perceived utility 70–71, 75–6, 81
Perron theorem 382
phase sequencing 83
planning horizon 158–59, 162–4, 166, 169–70, 172
platoon dispersion 177, 214
political stability 381
positioning technology 278
prediction horizon 258
predictive data mining 252
pricing regime 15, 18
primary goal 339
probabilistic
discrete choice 9
user equilibrium 157
probit-based
approach 235
SUE model 234, 241
production cost 291–2, 300–302, 307–308
PROSPECTS project 114, 132
public
transit 136
transport 3, 13, 15, 18, 114–15, 117–18,
122–8, 131–2, 134
transport assignment 5
quality of service 233
queuing delay 337
quick propagation 198
random
 utility 8–9
 function 136–7
 theory 59
RAS algorithm 315, 334–5
real-time traffic data 282–3, 286
recurrent cascade correlation (RCC) 179, 190, 200–201, 206–207
Reduction of Coefficient 375
relative mean error (RME) 256, 258
rental bid-price 387
reserve capacity 158
response mechanism 6, 10, 12–14, 17, 20
resulting traffic equilibrium problem 355
revealed preference (RP) 5–7
reverse star 285–6
right-hand-side link 342
ring road 113, 115–16, 119–32
road
 accessibility 384
 investment 115, 130
 pricing 10, 16, 113, 115–8, 120–28, 130–32, 134–5, 149, 153, 337
 segment 349–50, 355
 space allocation 13
toll 134
dispersion 104, 107, 109
cost 45
flow 47, 91, 317, 338
guidance 84
information 233–7, 239–40, 242–9
proportion 49
selection 13
split 8
state 317
switching 1, 12, 17, 20
travel time 161, 170, 232–3, 235–8, 243, 245
SACTRA 1, 4, 12–7, 20
São Paulo 377
SAS 183–4, 188
saturation flow (SAT) 91, 96
SATURN 5, 16
scenario flow 342
second start solution 359–60, 362
secondary goal 339
second-best price 136, 142
SELNEC study 2
sensitivity analysis 13, 143, 240–41, 358
service trip 118
shopping trip 118, 125
shortest-route algorithm 66
short-term
 forecasting algorithm 252
 traffic planning 276
SIAS 5
side constraints 347, 350–51
side-constrained
 problem 320
 traffic equilibrium problem 342, 347, 349, 351, 353
signal control 177, 240
 setting 83–9, 91–4, 104, 109–110
 timing 83, 90, 222, 230
signalized intersection 90, 95, 97, 210, 215–16
simplex algorithm 330
simulated annealing 339
simulation 252, 262, 267, 269, 273
single-level optimization model 240
singly constrained model 314
Sioux Falls network 338, 342, 357–8
Slater condition 340
slow mode 117, 125, 127, 131
smartcard 134
social
 marginal cost 120, 134, 140–42
 optimum 136, 143
 welfare 16, 136, 140, 147, 149, 153
spatial economic network 300
spatiotemporal pattern 252–3, 255–6, 258
speed limit 337
stability analysis 300
Stackelberg game 86, 339
starting solution 358, 361
stated preference (SP) 4–7, 10
steady state 212, 214
step size 47–9, 50, 51–2, 55
stimulus-response relationship 8
stochastic
 network loading 107–108
 route choice 84, 104
 traffic equilibria 92
 user equilibrium (SUE) 25, 84, 88–90, 92, 94, 97, 99, 109, 157, 172, 234–5, 239–40
Stockholm 113, 115–16, 385, 387–8
stopping criterion 94
strategic
 planning 113
 traffic management 337
Stuttgart Neural Network Simulator 208
sum squared error (SSE) 193
supernetwork 289–90, 299, 308
supply chain 289, 290, 296, 297–9, 306, 311
supply-demand equilibrium 233
sustainability 113
Swedish Agency for Innovation Systems 132
system optimization (system optimum) 139, 142, 144, 148–53
target flow equilibrium pricing problem 341, 345–8, 350–51, 353, 355
tentative travel time adjustment 338
time series model 252
time-dependent destination 319
O–D demand 315–16
origin 319
shortest path 315
travel time 324, 327
user equilibrium problem 319
trip arrival 317
trip departure 317
time-space
link 320
network 318, 321
time-variant prediction 252
toll charge (toll fee) 129–30, 138, 141
ring 115–16, 120–21, 127–31, 132
topmost flow constraint 350
total
marginal cost 120
social cost 149
total travel time 85
trade coefficients 374–5
traffic
contour map 252
control system 178, 240
equilibrium 260
model (problem) 337, 341–2, 348, 358, 361
flow 177, 190, 207, 210, 217, 337, 349, 355, 363
induction 20
information 232, 238
loading 260, 265, 267
management 4–5, 134, 339, 356
mix 367
network 338–9
pattern 214
signal 214, 218, 222, 230, 240
simulation model 177
system 178
volume 115, 131, 366–7, 374
-responsive signal control 83–4, 97, 109–110
transaction cost 291–302, 308
transfer cost 365
TRANSIMS 5, 18, 60
transit
fare 134, 138–9, 141–3, 146–7, 149, 153
frequency 137, 154
subsidy 134, 142–4, 153
total travel time 146
trans-modal transport pricing 135, 149
transponder 134
transport
demand 116
pattern 116, 118, 126
planning 1–3, 7, 10, 14, 19
pricing 134, 136, 142, 145, 153
Transport Research Board (TRB) 14
transportation
capacity 380
facilities 366
links 366
networks 380
system 380
adjustment 340–41, 345–6, 350–52, 354–5, 357–8, 361–2
function 51, 341–2, 345, 347–8
perception 84
trip
attraction 314, 319, 321–2, 324, 327, 329–30, 333–4
dispersion (distribution) 3, 25–6, 37, 39–40, 43, 72, 76–80, 113, 157–58, 314
distribution and traffic assignment (TDTA) 314
trip end 2, 8
generation 2, 25, 37, 40, 43, 113
matrix 6, 11
production 314, 319, 324, 327, 329–30, 333, 335
rate 3, 90, 95–6
TRIPS 19
two-stage decision process
management procedure
urban economics model
simulation model
urbanization economy
user equilibrium (user optimal, user-equilibrium, user-equilibrium route choice model)
user-optimizing network production model
utility
V/C
value of time (VoT)
variable trip matrix (VM)

variance inflation factor (VIF)
variance-covariance matrix
variational inequality (VI)
VISSIM
volume
-waiting time
-Wardrop principle (Wardrop's condition)
-weighted adjustment
-Weighted Average of Coefficient
-weighted least square (WLS)
-zero-elasticity method
-zigzagging phenomenon
-zonal-based regression