Index

acceleration factor 358, 361
access time 136–7
accessibility
 measures 3
 study 6
activity
 equivalence 78–80
 matrix 79
Activity-Travel Framework (ATF) 10
actual travel time 337
actuated signal control 83, 110
additive random utility maximizing (ARUM) approach 71, 75
ADVANCE 179, 181, 208
advanced traffic management systems (ATMS) 84
advanced traveler information systems (ATIS) 84, 177, 179, 232–49, 262, 265, 275
advanced traveler management systems (ATMS) 177
AIMSUN 263, 268–9
Akcelik function 92–3
all-or-nothing assignment 264
augmented Lagrangian method 322
Average Trade Coefficient 375
backpropagation 179, 182, 189–94, 196–8, 201, 207
 through time (BPTT) 179, 190, 196, 200–201, 207
behavioral
 mechanism 11, 18–9
 predisposition 9
Bellman-Ford-Moore 286
Belo Horizonte metropolitan 377
bi-level model (bilevel model) 339, 356–8, 361
see also bilevel problem 339, 356–8, 361
bi-level programming (bilevel programming) 136, 143, 157, 234, 239–40, 248
bi-modal transportation network 134–6, 145, 153
binary logit model 37
 block Gauss-Seidel decomposition approach 26
BPR (Bureau of Public Roads) 39, 51, 95, 145, 242, 261, 264, 267, 274–5, 283
break-even condition 149
build-operate-transfer (BOT) 158
business-to-business (B2B) 289–90
bypass route 349–50
capacity
 expansion 16
 rate 215–7, 220
 reallocation 15–7
 reduction 16
capital product 382
car
 occupancy 19
 ownership 11, 19, 70
cascade correlation 179, 190, 198–201, 206–7
category analysis 2
C-economy 380–81, 388
central business district (CBD) 384
Chicago Area Transportation Study (CATS) 56, 58
Chicago Sketch Network 50
costal navigation 365
Cobb-Douglas assumption 381
cognitive capacity 380
combined models 25, 37, 39–40
 transport and land-use model 113–14
commercial property 383–84
complementary slackness theorem 75
congestion
 charge 154
 cost 135
 level 218
 pricing 113–6, 119–20, 125–32, 135, 143
toll 135, 139, 143–4, 147, 153
consumer
 surplus (CS) 139, 158, 162, 164–6, 168–73
 theory 19
 welfare 9
continuous network design problem (CNDP) 158–59, 161–4, 163, 166–72
CONTRAM 5
corridor 374

391

Der-Horng Lee - 9781845420536
Downloaded from Elgar Online at 02/18/2019 09:22:52AM via free access
corridor-to-corridor flow 375
CORSIM 263
cost minimizing behavior 70–81
counterpropagation 179, 189–90, 193–5, 201, 207
Cournot-Nash game 86
creative capacity 380
C-region 384–5, 388
C-resource 380
critical segments 366
cross-
elasticity 3, 11, 15
-flow (CFLOW) 183, 185–9, 196, 206
-occupancy (COCC) 183–4, 186
Croydon 6
cycle length 84, 91–2
Davidson function 267
decision pattern 73–4, 77
demand 366
elasticity 16, 17, 154
function 5, 12, 19, 307, 309
management 1, 4, 6, 10
--response transit service 154
Dennis Package 115
departure time 154
destination-based travel time 316
deterministic user equilibrium 88, 104, 157, 170, 172
DIADEM 20
Dijkstra algorithm 286
direct utility function 139, 149
disaggregate
 model 19
 simplicial decomposition (DSD) algorithm 341, 358, 361
discrete
 choice 4, 5, 7–9
 see also discrete choice model 70, 71–2, 75–7, 78, 80
 network design problem (DNDP) 158
 dispersion parameter 90, 97–8
distance-related cost 282, 284
distributor 289–304, 306–9, 310–11
Dortmund 58, 61, 66
double-stage algorithm 314
doubly
 constrained model 314
 constrained origin-destination/departure
time/route choice (DUE-DC-OD-D-R) 315–18, 326, 328–9
Downs-Thomson
effect 18
paradox 15
driver
 information 83, 84, 89, 104, 109
reactiveness 97–8, 100, 104–7, 109–110
response 93, 105
dual multiplier 350
dual-based algorithm 320
duality 74
dummy time-independent super-origin 319
dynamic
 equilibrium condition 328
 traffic assignment (DTA) 162, 262
 see also dynamic travel choice model 326
 user equilibrium 157, 172, 262, 327–8
 variable message signs 262
economic
 equilibrium condition 297
 impacts 366–7
 sector 374
 educated labor 381, 384–5
 educational
 capital 385
 density 384
egress time 136–7
elastic demand 5, 15–6, 341
electronic
 commerce (e-commerce) 289–90, 311
 road pricing 134
energy consumption 14
entropy maximization 8
 see also entropy-constrained methods 25
entry rate 215, 220
equilibrium 374
 assignment 5, 346
 conditions 297, 311, 324, 326–7, 340, 382
 decomposed optimization algorithm 240
 flow 340, 343
 link flow solution 341, 352, 355, 357
 model 1, 14, 18, 20
 network design (END) 86, 89
 rent structure 387
 solution 340, 346–7, 350, 353, 355–6, 382
 traffic signal setting (ETSS) 83–7, 89, 91–3, 97, 99, 105–110
equisaturation control policy 91–2, 94, 99, 101–104, 106–109
Evans-like algorithm 48–9, 50, 52, 55–6
Evans-mRAS 324–6
excess cost (travel time) 47, 270
exit rate 215, 217
extreme value distribution 71–2, 81
feasibility check problem 346–8, 355
Federal Highway Administration (FHWA) 283, 289
fee level 128–30
FIFO 210, 228, 230
financial disaster 365
first start solution 359–61
first-best pricing 139, 141–2, 145
five-stage model/approach 3, 6, 7
Fixed Matrix (FM) 11–12, 17, 19, 20
fixed-point model 266
flow
 constraint 358, 361, 363
 goal 348, 356, 358, 361, 363
 -carrying link 331
 -to-capacity ratio 93
forward star 285–6
four-stage model/approach 2–3, 7–8, 11, 13–14, 19–20
four-step transportation planning model 25, 36–7
Frank-Wolfe (FW) algorithm (method) 26, 59, 267, 314, 319, 330–31
linearization 59
free trade agreements 365–66
free-flow travel time (FFTT) 96, 146, 255–56, 264, 283, 322
frequency elasticity 11
game theory (game-theoretic approach) 86
Gaussian function 254
general
 equilibrium 382
 extreme value (GEV) 9
 household consumption 19
generalized
cost (travel time) 12, 28, 33, 35, 38–9, 70, 72–4, 76, 119, 121, 337, 339–40, 355
elasticity 13, 20
 extreme value (GEV) distribution 75
 link travel time 339
 reduced gradient (GRG) 159, 164, 167, 170, 172
 genetic algorithm 339, 358
geographic information systems (GIS) 6, 278, 287
global positioning system (GPS) 110, 278
goal constraints 341, 349
goal-constrained traffic equilibrium problem 340–41
gradient law 387
gradient projection (GP) method 319, 321
gravity model 29, 59, 72, 76–8, 80, 315
gravity-type distribution 28, 33, 40
green (time) split 84, 86, 91–2, 94, 97–101, 104, 109–110
Gumbel distribution 81
 see also probability distribution 137
handling cost 29, 307, 309
Heavy Vehicle Participation 375
hedonic price function 384
Hessian 167
high-occupancy vehicle 135
Highway Capacity Manual (HCM) 283
highway network 367
segment 367
traffic volumes 376
transportation network 365
Hitchcock’s transportation problem 314–15, 330–31
Hook and Jeeves 143, 240, 338, 356, 358, 361, 363
ILUMASS 61
incremental logit 19
 see also nested logit 6, 19
independence of irrelevant alternatives (IIA) 234
indirect utility function 154
individual link travel time adjustment 351
induced demand 15
 traffic 1, 11–6, 20
information flow 380
 theory 59
initial solution 363
inland waterway 365
intelligent transportation systems (ITS) 177–8, 278, 290
inter-modal transport 135
internal flows 377
intra-regional pricing 387
intra-trip 315, 326, 331, 335
in-vehicle route guidance 262
in-vehicle time 137
inverse nonlinear multicommodity network flow problem 341
ISGLUTI 4
iterative optimization and assignment (IOA) 85–9, 93–5, 97–103, 105–109
Jacobian matrix, 301
joint entropy distribution/assignment model (JEDA) 314–15, 319, 326
Kalman filtering theory 252
Karush-Kuhn-Tucker (KKT) constraints 32, 140, 329
see also Kuhn–Tucker conditions
kernel regression model 253–4, 258
knowledge
 capital 381–2, 388
 density 381
expansion model 383
 -oriented C-economy 388
 -oriented economy 388
 -oriented regional economy 383

Lagrange multiplier 140, 294, 320–22, 326–7, 340
Lagrangean 31, 320, 329
Lanark 5
land use, transportation and environment
 (LTE) 67
land-use 1, 3–4, 7, 13, 19
 pattern 158, 162, 172, 388
 structure 113
 -transport model 3–4, 7
lane changing 261, 269
least-cost routes 279
leftmost flow constraint 363
level of
 congestion 369
 service 1–2, 43, 134, 136, 367
LGORU (Local Government Operational
 Research Unit) 4
light rail transit (LRT) 6, 15
Lighthill-Whitham-Richards theory
 210
linear
 constraints 342, 350
 flow constraints 349
 optimization problem 340
link
 capacity 146
 delay function 85
 flow 335, 337–8, 340, 342, 346, 348–9, 351, 357
 capacity 342, 346, 357
 solution 347, 355–6
 travel time 341, 345, 347, 358
 adjustment 357
 weight 345, 351, 353, 355
 width 349, 351–2
link-based algorithm 315, 319, 326, 330
link-junction-based network model 7
Linköping network 338, 342, 348–50, 352, 361, 363
link-route incidence 90
Lipschitz continuous 305–306
local
 constant model 253
 linear model 253, 255–6, 258
 regression 253–4, 258
 minimum 357–8
location
 criteria 381
 pattern 116, 121, 125, 130–31, 380
location-based mobile services (LBMS)
 278–79
see also location-based services (LBS)
logit
 formula 136–7
 model 71, 75, 77, 90, 97, 139
logit-based
 modal split 141
 SUE 86, 90, 93, 99, 234
logit-type share model 15
loop detector 177, 181–3, 189–90
Lowry model 3, 9
Lowry-type mechanism 4
LTE 67
LUTR cluster 114, 132

macroeconometric model 367
macro-region 374
macroscopic traffic theory 184, 210
Malmö 385
marginal cost 280, 292–3, 296–7, 300
see also external cost 139; social cost 143–4, 149
marginal-cost pricing 141–2, 146, 148–53
market equilibrium conditions 297
Markowitz’s model 386
maximal exhaust fume emission 337
mean squared error (MSE) 193
MERCOSUL 365
microeconometric
 approach 7, 10
 model 3–4, 6
microsimulation 5–7, 61, 63
 module 61, 63
mid-value theorem 305
minimal
 adjustment 347
 perceived travel time adjustment 355
 unconstrained travel time adjustment 354
minimum-cost flow problem 330
mixed network design problem (MNDP) 158
mobile position determination system 278
modal choice 2, 4
 modal split 2, 8, 15, 25–7, 29, 37, 39–40, 134–6, 139, 142–5, 149, 153–4, 341
 mode choice 43, 113, 118, 138, 141, 147
see also split 137, 151
model flow capacity 338
modified link travel time 346
projection method 307–311
Mohring effect 154
monetary
outlay 337
cost 117, 120
Monte Carlo simulation 248
movement
occupancy 216–8, 220
queue 216
mRAS 335
multi-class problems 26, 37, 40
multicollinearity 187, 207
multi-modal equilibrium 15
multinational Corporations (MNCs) 384
multinomial logit model 9, 71–2, 77
multi-objective optimization 158
multiple-equilibrium behavior 87
nested
diagonalization (ND) 315, 317–18, 334
diagonalization-augmented Lagrangian-GP (ND-AGP) 320
logit models 4, 7–9, 17, 19, 118
network
assignment (loading) 260, 265, 267, 269, 342
design problem (NDP) 157–8, 172, 240
equilibrium model 26, 28, 240
topology 158
neural
network model 252–3
networks 177–82, 189–207
Newton–Raphson method 164
none-home-based 38
non-FIFO 211, 214–5, 228, 230
nonlinear (non-linear)
eigen-value equation 382
non-convex problem 339
optimization 120
nonparametric method 252–3
occupancy 183–4, 186–91, 206
O–D
cost 45–6, 48–9
demand 317, 322, 324, 330, 333, 335
flow 44–9, 50, 52, 56, 314, 330, 332
generalized cost 51
matrix 153, 240
route travel time 316, 333
trip demand 318, 334–5
OECD 380–81
operational
capacities 366–7
costs 366
optimal
dual solution 349
location 380
network performance 234, 239, 248
optimality conditions 293–4, 296–8
origin-based
algorithm 48–9, 50, 52, 55–6
travel time 316
origin-destination (O–D)
demand 235–36, 238, 243
flow 159
matrix 374
Pallottino graph growth algorithm 286
PARAMICS 5, 263
parking
fee 117–18, 121
information system (PIS) 232–33, 243
passenger car-equivalent units 283
path flow 317, 330
path-based algorithm 315, 319, 322, 326
penalty
method 320
parameter 320–22, 326, 357
perceived utility 70–71, 75–6, 81
Perron theorem 382
phase sequencing 83
planning horizon 158–59, 162–4, 166, 169–70, 172
platoon dispersion 177, 214
political stability 381
positioning technology 278
prediction horizon 258
predictive data mining 252
pricing regime 15, 18
primary goal 339
probabilistic
 discrete choice 9
user equilibrium 157
probit-based
approach 235
SUE model 234, 241
production cost 291–2, 300–302, 307–308
PROSPECTS project 114, 132
public
transit 136
transport 3, 13, 15, 18, 114–15, 117–18, 122–8, 131–2, 134
transport assignment 5
quality of service 233
queuing delay 337
quick propagation 198
random
utility 8–9
function 136–7
theory 59
RAS algorithm 315, 334–5
real-time traffic data 282–3, 286
recurrent cascade correlation (RCC) 179, 190, 200–201, 206–207
Reduction of Coefficient 375
relative mean error (RME) 256, 258
rental bid-price 387
reserve capacity 158
response mechanism 6, 10, 12–14, 17, 20
resulting traffic equilibrium problem 355
revealed preference (RP) 5–7
reverse star 285–6
right-hand-side link 342
ring road 113, 115–16, 119–32
road
accessibility 384
investment 115, 130
pricing 10, 16, 113, 115–8, 120–28, 130–32, 134–5, 149, 153, 337
segment 349–50, 355
space allocation 13
sock 134
dispersion 104, 107, 109
cost 45
flow 47, 91, 317, 338
 guidance 84
information 233–7, 239–40, 242–9
proportion 49
selection 13
split 8
state 317
switching 1, 12, 17, 20
travel time 161, 170, 232–3, 235–8, 243, 245
SACTRA 1, 4, 12–7, 20
São Paulo 377
SAS 183–4, 188
saturation flow (SAT) 91, 96
SATURN 5, 16
scenario flow 342
second start solution 359–60, 362
secondary goal 339
second-best price 136, 142
SELNEC study 2
sensitivity analysis 13, 143, 240–41, 358
service trip 118
shopping trip 118, 125
shortest-route algorithm 66
short-term
forecasting algorithm 252
traffic planning 276
SIAS 5
side constraints 347, 350–51
side-constrained
problem 320
traffic equilibrium problem 342, 347, 349, 351, 353
signal control 177, 240
setting 83–9, 91–4, 104, 109–110
timing 83, 90, 222, 230
signalized intersection 90, 95, 97, 210, 215–16
simplex algorithm 330
simulated annealing 339
simulation 252, 262, 267, 269, 273
single-level optimization model 240
singly constrained model 314
Sioux Falls network 338, 342, 357–8
Slater condition 340
slow mode 117, 125, 127, 131
smartcard 134
social
marginal cost 120, 134, 140–42
optimum 136, 143
welfare 16, 136, 140, 147, 149, 153
spatial economic network 300
spatiotemporal pattern 252–3, 255–6, 258
speed limit 337
stability analysis 300
Stackelberg game 86, 339
starting solution 358, 361
stated preference (SP) 4–7, 10
steady state 212, 214
step size 47–9, 50, 51–2, 55
stimulus-response relationship 8
stochastic
network loading 107–108
route choice 84, 104
traffic equilibria 92
user equilibrium (SUE) 25, 84, 88–90, 92, 94, 97, 99, 109, 157, 172, 234–5, 239–40
Stockholm 113, 115–16, 385, 387–8
stopping criterion 94
strategic
planning 113
traffic management 337
Stuttgart Neural Network Simulator 208
sum squared error (SSE) 193
supernetwork 289–90, 299, 308
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>supply chain</td>
<td>289, 290, 296, 297–9, 306, 311</td>
</tr>
<tr>
<td>supply-demand equilibrium</td>
<td>233</td>
</tr>
<tr>
<td>sustainability</td>
<td>113</td>
</tr>
<tr>
<td>Swedish Agency for Innovation Systems</td>
<td>132</td>
</tr>
<tr>
<td>system optimization (system optimum)</td>
<td>139, 142, 144, 148–53</td>
</tr>
<tr>
<td>target flow equilibrium pricing problem</td>
<td>341, 345–8, 350–51, 353, 355</td>
</tr>
<tr>
<td>tentative travel time adjustment</td>
<td>338</td>
</tr>
<tr>
<td>time series model</td>
<td>252</td>
</tr>
<tr>
<td>time-dependent destination</td>
<td>319</td>
</tr>
<tr>
<td>O–D demand</td>
<td>315–16</td>
</tr>
<tr>
<td>origin</td>
<td>319</td>
</tr>
<tr>
<td>shortest path</td>
<td>315</td>
</tr>
<tr>
<td>travel time</td>
<td>324, 327</td>
</tr>
<tr>
<td>user equilibrium problem</td>
<td>319</td>
</tr>
<tr>
<td>trip arrival</td>
<td>317</td>
</tr>
<tr>
<td>trip departure</td>
<td>317</td>
</tr>
<tr>
<td>time-space</td>
<td>320</td>
</tr>
<tr>
<td>network</td>
<td>318, 321</td>
</tr>
<tr>
<td>time-variant prediction</td>
<td>252</td>
</tr>
<tr>
<td>toll charge (toll fee)</td>
<td>129–30, 138, 141</td>
</tr>
<tr>
<td>ring</td>
<td>115–16, 120–21, 127–31,</td>
</tr>
<tr>
<td>topmost flow constraint</td>
<td>350</td>
</tr>
<tr>
<td>total</td>
<td></td>
</tr>
<tr>
<td>marginal cost</td>
<td>120</td>
</tr>
<tr>
<td>social cost</td>
<td>149</td>
</tr>
<tr>
<td>travel time</td>
<td>85</td>
</tr>
<tr>
<td>trade coefficients</td>
<td>374–5</td>
</tr>
<tr>
<td>traffic</td>
<td></td>
</tr>
<tr>
<td>contour map</td>
<td>252</td>
</tr>
<tr>
<td>control system</td>
<td>178, 240</td>
</tr>
<tr>
<td>equilibrium</td>
<td>260</td>
</tr>
<tr>
<td>model (problem)</td>
<td>337, 341–2, 348, 358, 361</td>
</tr>
<tr>
<td>flow</td>
<td>177, 190, 207, 210, 217, 337, 349, 355, 363</td>
</tr>
<tr>
<td>induction</td>
<td>20</td>
</tr>
<tr>
<td>information</td>
<td>232, 238</td>
</tr>
<tr>
<td>loading</td>
<td>260, 265, 267</td>
</tr>
<tr>
<td>management</td>
<td>4–5, 134, 339, 356</td>
</tr>
<tr>
<td>mix</td>
<td>367</td>
</tr>
<tr>
<td>network</td>
<td>338–9</td>
</tr>
<tr>
<td>pattern</td>
<td>214</td>
</tr>
<tr>
<td>signal</td>
<td>214, 218, 222, 230, 240</td>
</tr>
<tr>
<td>simulation model</td>
<td>177</td>
</tr>
<tr>
<td>system</td>
<td>178</td>
</tr>
<tr>
<td>volume</td>
<td>115, 131, 366–7, 374</td>
</tr>
<tr>
<td>-responsive signal control</td>
<td>83–4, 97, 109–110</td>
</tr>
<tr>
<td>transaction cost</td>
<td>291–302, 308</td>
</tr>
<tr>
<td>transfer cost</td>
<td>365</td>
</tr>
<tr>
<td>TRANSIMS</td>
<td>5, 18, 60</td>
</tr>
<tr>
<td>transit</td>
<td></td>
</tr>
<tr>
<td>fare</td>
<td>134, 138–9, 141–3, 146–7, 149, 153</td>
</tr>
<tr>
<td>frequency</td>
<td>137, 154</td>
</tr>
<tr>
<td>subsidy</td>
<td>134, 142–4, 153</td>
</tr>
<tr>
<td>travel time</td>
<td>146</td>
</tr>
<tr>
<td>trans-modal transport pricing</td>
<td>135, 149</td>
</tr>
<tr>
<td>transponder</td>
<td>134</td>
</tr>
<tr>
<td>transport</td>
<td></td>
</tr>
<tr>
<td>demand</td>
<td>116</td>
</tr>
<tr>
<td>pattern</td>
<td>116, 118, 126</td>
</tr>
<tr>
<td>planning</td>
<td>1–3, 7, 10, 14, 19</td>
</tr>
<tr>
<td>pricing</td>
<td>134, 136, 142, 145, 153</td>
</tr>
<tr>
<td>Transport Research Board (TRB)</td>
<td>14</td>
</tr>
<tr>
<td>transportation</td>
<td></td>
</tr>
<tr>
<td>capacity</td>
<td>380</td>
</tr>
<tr>
<td>facilities</td>
<td>366</td>
</tr>
<tr>
<td>links</td>
<td>366</td>
</tr>
<tr>
<td>networks</td>
<td>380</td>
</tr>
<tr>
<td>system</td>
<td>380</td>
</tr>
<tr>
<td>travel</td>
<td></td>
</tr>
<tr>
<td>behavior</td>
<td>1, 10, 17, 19, 139</td>
</tr>
<tr>
<td>choice</td>
<td>232, 235, 238–9</td>
</tr>
<tr>
<td>cost</td>
<td>12, 19, 119, 235</td>
</tr>
<tr>
<td>demand</td>
<td>70, 84, 118–19, 134, 142, 146–7, 149, 153, 158, 160, 162, 166–70, 172, 238, 338, 340–42, 349</td>
</tr>
<tr>
<td>distance</td>
<td>115, 117–18, 126–30</td>
</tr>
<tr>
<td>forecasting</td>
<td>1–2, 5, 17, 43</td>
</tr>
<tr>
<td>mode</td>
<td>117, 136</td>
</tr>
<tr>
<td>pattern</td>
<td>43, 130</td>
</tr>
<tr>
<td>adjustment</td>
<td>340–41, 345–6, 350–52, 354–5, 357–8, 361–2</td>
</tr>
<tr>
<td>function</td>
<td>51, 341–2, 345, 347–8</td>
</tr>
<tr>
<td>perception</td>
<td>84</td>
</tr>
<tr>
<td>trip</td>
<td></td>
</tr>
<tr>
<td>attraction</td>
<td>314, 319, 321–2, 324, 327, 329–30, 333–4</td>
</tr>
<tr>
<td>dispersion (distribution)</td>
<td>3, 25–6, 37, 39–40, 43, 72, 76–80, 113, 157–58, 314</td>
</tr>
<tr>
<td>distribution and traffic assignment (TDTA)</td>
<td>314</td>
</tr>
<tr>
<td>trip end</td>
<td>2, 8</td>
</tr>
<tr>
<td>generation</td>
<td>2, 25, 37, 40, 43, 113</td>
</tr>
<tr>
<td>matrix</td>
<td>6, 11</td>
</tr>
<tr>
<td>production</td>
<td>314, 319, 324, 327, 329–30, 333, 335</td>
</tr>
<tr>
<td>rate</td>
<td>3, 90, 95–6</td>
</tr>
<tr>
<td>TRIPS</td>
<td>19</td>
</tr>
</tbody>
</table>
two-stage decision process procedure 537-8, 347-8, 381
management procedure 337-8, 342-4, 347-8,
356, 358, 361, 363

Urban and regional transportation modeling

Urban economics model 114, 116, 121, 132
simulation model 114, 116, 121, 132

urban economics model 114

user-equilibrium route choice model 16, 32, 37, 40, 43, 46, 59, 60, 65, 66
user-equilibrium (user optimal, user-equilibrium, user-equilibrium route choice model) 16, 32, 37, 40, 43, 46, 59, 60, 65, 66
user-optimizing network production model 369

utility function 9
maximization 19, 70
theory 9

V/C 367
value of time (VoT) 2, 5, 10-21
variable trip matrix (VTM) 12-13

Wardrop 16, 59, 161, 260, 274
Wardrop principle (Wardrop's condition) 45
weighted adjustment 246
weighted average of coefficient 375
weighted least square (WLS) 187
weighted regression model 23
zonal-based regression 2
zoning phenomenon 326
zigzagging phenomenon 326
zero-elasticity method 11

VISSIM 263
volume delay 26, 263, 264, 267, 269, 275
volume-to-capacity ratio 367

variance inflation factor (VIF) 187
variance-covariance matrix 9

Der-Horng Lee - 9781845420536
Downloaded from Elgar Online at 02/18/2019 09:22:52AM via free access