Index

Abbott Laboratories 176
academia-industry relationships (AIRs) 289
academic
 goals 277, 280
 labor market 97–8
 leave of absence 72–3, 97
 opposition to spinoffs 277–80
 quality 84–6
 status 160
academic research 293–5
 issues with 300–310
accumulated knowledge 144
Acusphere 172, 203, 230
adaptability of technologies 268–9
adaptation
 to markets 270–73
 of technologies 269–70
Advanced Technology Program (ATP) 62, 226
Advent International Group 236
Alpert, Norman 15
American Research and Development
 Corporation (ARD) 46, 65, 84
Amgen 16
Andreessen, Marc 98
angel capital 62, 95, 201–2, 225, 236–7, 263
anti-entrepreneurial cultures 96
applied research 282
ARCH Development Corporation 52
architecture, changes in 199–201
Arizona State University 9, 67
Aspen Technologies 87
asset specificity 144
assets, cannibalizing of 105
 see also complementary assets
Association of University Technology
 Managers 13
Aviron 284
Aware Inc. 32, 269
Bank of England 94
Baumgartner, Werner 285
Bausch and Lomb 16
Bayh–Dole Act (1980), US 8, 50–52,
 59–60, 65–6, 295–6
Baylor College of Medicine 52
BBN Inc. 46
BCM Technologies 52
Belgium, job creation 22
Beranek, Leo 46
Bessemer Venture Partners 236
Biogen 16
biological sciences, research funding
 28–9
BioTek Instruments 15
Birndorf, Norman 152
Blech, David and Isaac 152
Bok, Derek 53, 280
Bolt, Richard 46
Bose Corporation 154
Boston Globe 286
Boston University 49, 98, 285, 288
Boyer, Herbert 50, 281
Brailsford Robertson, T. 42
broad scope patents 133, 135–6
bureaucracy 119
business angels 62, 95, 201–2, 225,
 236–7, 263
Byers, Brook 152
Cable, Dan 11–12
Calimetrics 120
Cambridge, England 20
Canada
 educational institutions 2, 100, 296
 intellectual property rights 5
 patent applications 171
 spinoff companies 16, 24, 27, 91, 92,
 303
capital
 access to 77, 79–81, 84–5, 93–5
 acquisition of 229–35, 254–5
and customer value 129
importance of 223–4
interest on 265
need for strategic focus 265
sources of 235–7
see also funding
capital markets, changes in 62–3
capital-intensive industries 146
Career goals 159–60
Carnegie Mellon University 9, 67
pre-seed stage funds 75–6
spinoff companies 35, 288
use of university resources 73–4
Case Western Reserve University 75
Castle Group 152
Center for Biotechnology Research 52
Center for Technology Development and Transfer, University of Texas 52
Cetus 16, 50
Chalmers Institute of Technology 21, 24, 31, 67, 140, 156
chemicals companies, product development 127
Chiron 16, 23
Chou, Joany 284
Cirrus Logic 1, 36, 295
Clark, Jim 33
clusters 23–4, 99
codified
knowledge 153
technology 111
Cohen, Richard J. 286
collapsed discovery process 140–41
Columbia University
funding 22–3
geographical location 99
licensing 175
spinoffs 22–3, 56, 83, 139
commercial
schedules 207
standards 197–8
training 29
commercialization of technologies 25–6, 32–4, 190–201
desire for 156–7
history of 40–57
and industry characteristics 146–9
inventor involvement in 26–7
time horizons 141
trends in 54–7
Community Technology Fund, Boston University 49
cy company formation 76–8
and the university model 277–86, 309–10
cy company strategies, effect of 263–73, 308–9
competency-destroying technology 105–8
competitive advantage 135, 217, 230, 258
competitors 202–3, 261
complementary
assets 144, 147–8
teams 241
technologies 142, 209, 272–3
components
development 189–90
usage 200–201
computer science spinoffs 140
development 120
leave of absence policies 73
conflict of interest 74, 284–6, 289
Connaught Laboratories 16
consultancy 72–3, 86, 285
contagion effect 61–2
copyright 168
core technology, changes in 107–8
Cornie, Jim 185
costs
of raising capital 265
of technologies 199
use of university resources 256–7
Cottrell, Frederick 42
Court of Appeals, US 60
culture, of universities 81–3, 96
customer
documentation 198
networks 99
preferences 142
service 215–17
value 30–31, 213–15
customer demands/needs 131–2, 179, 201–2, 205–7, 234, 246, 250
assessment and satisfying 252–4
changes to meet 183, 205–7, 270–71
identification of 203–5
Index

customer feedback 196, 207–9, 253–4
difficulty of obtaining 209–12
customer value technologies 128–32,
 213–15
customers
 access to 85–6
 and competitors 202–3
 future technology plans 209
 information-gathering from 196,
 266–7
 knowledge of 234, 246, 250
 location of 216–17
 and proof of principle 179–80
cutting edge technology 132–3, 206
Dallas Biomedical Corporation 52
Department of Agriculture, US 45
Department of Defense, US 48, 87, 167,
 272
Department of Health, Education and
 Welfare, US 48, 50
Department of Trade and Industry, UK, 226
Develcon 16
development gap 114–15
DeVoe-Holbein 289
Diamond Materials Corporation 283
Diamond v. Chakrabarty 60
Diamond v. Diehr 60
Digital Equipment Corporation 15, 46
DiGregorio, Dante 13
disbelief in radical technologies 108–10
disclosures 44, 68, 74, 81, 145, 166,
 168–70
diversification 265
doctoral students, role in spinoffs 283–4
documentation 198
Dupont 121
Dwyer, Jim 71, 80
eyearly stage inventions 113–23
eyearly stage investment 224–6, 237
economic development, encouragement
 of 20–21, 23–5
Edgerton, Harold 45
education of students 29, 283–4
electronics spinoffs 139
Emory University 67
entrepreneurial
 experience 161–2
infrastructure 98–100
networks 94
role models 61–2, 83–4
types 155
entrepreneurs
 adverse selection of 230
 psychological attributes of 156
 working time 249
entry costs 146, 308
equity
 effects on inventor involvement
 26–7
 ownership of 32–6, 70–71, 112
 sale of 288
 university policies on 63–4
established companies
 advanced technology 132–3
 competition from 258
 development of technologies 117–20
 early stage inventions 113–14
 focus on existing operations 115–17
 general purpose technologies 124–5,
 127, 261–2
 investment 105, 107, 109
 licensing 32–6, 103–4, 108, 111–12,
 173
 market segmentation 145
 multiple market applications 125–6,
 127
 radical technologies 110
 research funding 127–8
 technical knowledge in 144
 time horizons 121–3
 uncertain technology 114
 value chain problems 127–8
Europe, universities 1
European Union 95
Evans, Herbert 42
exclusive licenses 69–70, 173, 232,
 260–61, 281–2
exit costs 308
expenditure, research and development
 47–8
exploitation of graduate students 50, 59,
 283–4
external entrepreneur-led spinoffs
 153–4
external entrepreneurs/managers
 attraction of 129–30
 costs of 59–60

Downloaded from Elgar Online at 08/17/2019 02:28:50AM via free access
Index

Technology, Texas A&M University 52
Institutional Patent Agreements 48, 50, 51, 59, 60
institutional quality 84–6
Integra Life Sciences 21, 286
Integrated Computing Engines 32
intellectual property rights 166–7
in inventor-led spinoffs 153
management of 33–4, 44, 45, 168
protection of 133–6, 183–4, 257–61
International Journal of Industrial Organization 13
Interneuron Pharmaceuticals 286
inventions
business opportunities in 174–5
creation process 165–70
disclosure of 44, 45, 68, 166, 168–70
early stage 113–23
productization of 182–90
screening of 97
spin-off-appropriate 103
inventor involvement, technology commercialization 26–7
inventor-entrepreneurs 152–5
inventor-led spinoffs 152–5
creation of 175–6
effectiveness of patents 148–9
inventors
commercial knowledge 148
importance of 151–2
involvement of 72–3, 151–2, 247–9
motivation of 130–32, 156–62
property rights 96–7
investments
attraction of 22–3
diversification of 265
investor
monitoring 94
preferences 265, 266
investor-led spinoffs 152–3
investors 152–5
Ionics 84
Iowa State University 2
Ireland 160
Japan 1, 98, 161
Jentek Sensors 227
job creation 21–2
Johns Hopkins University 36, 42, 53
Applied Physics Laboratory 87
Johnson and Johnson 176
Kaplan, Isaac 74
Katila, Riitta 13
Khurana, Rakesh 12
King, Jonathan 284
Klein, Lawrence 6
Kleiner Perkins 152, 259
knowledge
business 241–7
company-specific 87–8
dissemination 281–2
see also tacit knowledge
knowledge markets 153
knowledge-intensive jobs 22
Ku, Kathy 232
Lab Connections 71, 80
labor market rigidity 97–8
land grant universities 8, 41
later stage investment 224–5
Lawrence Livermore Laboratory 71, 73
leadership, lack of 243
leave of absence 72–3, 97
legal exposure, risk of loss from 288–9
legitimacy 71
licensees, identification of 170–71
licenses
income from 55–6, 74–5, 92
inventor/non-inventor 148–9
Southern US 68
termination of 248
licensing
early inventions 113–23
failure in 175–6
process 171–3
profitability of 32–6
time horizons 121–3
uncertain technologies 25–6
see also exclusive licenses; non exclusive licenses
Licensing Executive Society 113
life sciences
industrial support for 86
problematic behaviour in 289
value of 21
Lightspeed Semiconductors 32
Lincoln Laboratory 15, 24–5, 46, 186, 190
Downloaded from Elgar Online at 08/17/2019 02:28:50AM via free access

Downloaded from Elgar Online at 08/17/2019 02:28:50AM via free access
‘living dead’ firms 282
local economic development 23–5
local entrepreneurial networks 93–4
Louisiana 74
Lycos 15, 35, 73, 76, 288
MacDonald Dettwiler 16
Maddon, Paul 83
management
experience 233
knowledge 242–4
Management Science 12
manufacturing
complementary assets 144
speed of 200
manufacturing value-added 147–8
market
adaptation 270–73
delivery 215–17
evaluation 203
failure 175–6
segmentation 146–7
size 213
uncertainty 147, 201–3
market applications 123–8, 261–2
choice of 212–13
identification of 208–9, 251–2
market demand/need 131–2, 143, 246
solutions for 205–7
market development 201–20
marketing process 59–60, 166–7, 170–71
marketing, complementary assets 144
markets
identification of 110
knowledge of 246–7
large 231
shifting 271–3
mass appeal 206
Massachusetts Biotech Council 78
Massachusetts Technology Development Corporation 78
Massachusetts Eye and Ear Infirmary 285
Massachusetts Institute of Technology
50K Business Plan Competition 83, 99
Enterprise Forum 82
Lincoln Laboratory 15, 24–5, 46, 134–5, 186, 190
Media Lab 70, 130, 131, 261
research at 3, 11–12, 13
Sloan School of Management 155
Technology-Licensing Office 80, 161, 235, 260, 261, 293
Massachusetts Institute of Technology Development Foundation (MITDF) 49
McGill University 289
mechanisms, changes in 199–201
Media Lab 70, 130, 131, 261
medical faculty 279
Medical Science Partners 53
Medtronic 16
Metal Matrix Cast Composites 128, 183, 185
military technologies 46
‘minus two stage’ companies 173–4, 178–9
molecular biology 141
Morse, Richard 49
Mosaic 33, 98–9
motivation, of inventors 130–32
Motorola 259
multi products technology 124
multiple founders 241
multiple market applications 123–4, 261–2
problem of 125–7, 264
National Aeronautics and Space Administration (NASA) 167, 227, 272
National Institute of Standards and Technology, US 226
National Institutes of Health, US 58, 167, 226, 286
National Research Corporation 49
National Science Foundation, US 48, 226, 227
Nelsen, Lita 78, 104, 123–4, 135, 152, 160, 173, 242, 255, 256
Nerkar, Atul 12–13
Netherlands
job creation 22
spinoff companies 31
Netscape 34, 98
new companies
intellectual property protection 133
and market segmentation 146–7
patents 143
risk of creating 288–90
technology development in 26–7
new technologies
commercialization of 156–8
development of 118
disclosure of 168
investment in 104, 109–10
New York Times 53, 290
New York University 31, 99, 139, 175
spinoff policies 74, 77, 81
Newman, Robert 46
Nitres 237
non-exclusive licenses 69, 70, 173, 261
non-inventor licenses 148–9
North Carolina State University 16
Northeast Council 42
Northern Ireland, spinoff companies 22, 31, 226
Northwestern University 68
‘not-invented-here’ syndrome 133

Oberg, Sherie 172, 203, 230
Olson, Kenneth 15, 46
on-the-job training 243
Open Market 182
opportunities 174–5
options to license 171–2
Organization Science 12
organizational attitudes 81–3
organizational competencies/skills 106, 118–19
replication of 147
organizational filters 109
Pangenix 27
part-time employment 72, 73
patent portfolios 48–9, 134–5, 258
patenting of doctoral student research 284

patents
applications 55
broad scope 133, 135–6
criteria for 169–70
effectiveness of 143–4, 148–9, 282–3
growth of 58

history of 42–3, 49
laws governing 60
system of 35, 281
US 51
Pennsylvania State University 52, 82, 134–5, 283
people, role in spinoffs 297–8
performance
of firms 30–32

improvements in 190–92, 214–15
milestones 256, 266, 282
technical push problem 249–54
performance effects of
capital 254–5
company strategies 263–73
human capital 240–49
technology 257–62
university support 256–7

pharmaceutical companies 139
licensing 113, 117
molecular biology 141
product development 119

physical sciences
equity 71
inventions 142

Pickel, Johann 41
‘pipelining’ 289–90
platform technologies see general-purpose technologies

Polymer Technology Corporation 16

pre-seed stage capital 75–6, 93–4
pricing 121, 202
private sector funding 62–3, 224–5, 229–30
problem solving 243
process
innovation 145
inventions 104
management 187–8

product development 184–6
commercialization 190–201
expertise in 117–19
knowledge of 244–6
necessity for 182–4
time horizons 186–8
uncertainty of 188–90
production
knowledge of 244
simplicity of 215–16

Index 329
production processes, investment in 106–7
productization 182–90
products
change in 270–71
composition 107
creation of 250–51
efficacy of 142
exclusivity of 217
innovation in 144–5
revision of 211–12
sale of 217–20
profitability, spinoffs 31–6
Progenics Pharmaceuticals 83
proof of principle 179–80
proofs of concept 75, 113, 226
property rights, locus of 95–7
proprietary technology 231–2
prototype development 180–82, 210–11
Psychemedics Corporation 285
psychological attributes of entrepreneurs 156
Ptashne, Mark 53
public sector funding 62, 86, 224–9, 307
private gain from 286
Purdue University 44
quality control 158
quality of universities 84–6
Queen’s University, Northern Ireland 22, 31, 226
quick-to-market iteration strategy 211
radical technology 104–10
raw technology 116, 170–71, 182
Regeneron 16
regional development funding 95
reliability, improvements to 194
Renovo 117
reputation of universities 289
research 27–9, 167–8
dissemination of results 281
funding for 23, 47–8, 86–8, 91–2, 127–8
on spinoffs 293–4, 300–310
subject matter 282–3
Research Corporation 42, 44, 48, 65
Research Policy 13
research process 165–70
research results, dissemination of 281
research-intensive companies 116
resource acquisition, importance of 223–4
Rheocast 49
risk
in company creation 288–90
diversification of 123
management of 229
robustness, enhancement of 192–5
Rockefeller Foundation 42
Roizman, Bernard 284
role models 61, 83–4
Rosenthal, Perry 16
Route 128 20
royalties 32–4, 35–6
agreements 78
division of 74–5
Royston, Ivor 152
Sala Magnetics 49
sales volumes 213, 219
San Francisco 23, 98
scaling up 196
Science Enterprise Challenge 94
science parks 52
sciences faculties 279
scientific instruments spinoffs 108
Scotland, job creation 22
Scottish Enterprise 22
Scottish Proof of Concept Funds 94
SED Systems 16
seed capital 93–4, 225
‘seed stage’ companies 173
selling, importance of 217–20
Seragen 285, 288
shifting markets 271–3
shopper-led spinoffs 152
single founders 241
single product
extensions 104
technology 124
single purpose technology 262, 266
skilled labor, access to 100
Sloan School of Management 1, 99, 155
Small Business Innovation Research Program (SBIR) 27, 62–3, 226, 227, 228, 229, 255
social networks 80, 99
social ties 234–5, 247
software spinoffs see computer software spin off
decision to 173–4
motivation to 156–62
spinoffs
academic opposition to 277–80
biotechnology spinoffs
clusters of 99
conflict of interest 284, 289
customer needs/value 130–31, 250
dissemination of knowledge 281
exploitation of graduate students 283
founding of 140, 155, 157–8, 160, 175, 176, 288
France 140
funding 225, 226, 229, 230, 235, 236, 255
general purpose technology 233
growth of 130–31, 202–3, 204, 215, 250
history of 50
identification of opportunities 175
licensing 110, 113, 116–17, 121, 122, 127
management knowledge 242–3, 244, 245, 246
patents 134, 135, 231–2, 258, 259
product development 111–12, 117, 119, 176, 262, 286
proof of principle 179
strategic focus 123, 265, 266, 267–8, 269–70
Sweden 139
technical development 179, 184, 185, 189, 195
computer hardware spinoffs
customer needs 253
licensing of 109, 114
management knowledge 245–6, 247
market applications 252
product sales 218
strategic focus 264, 270–71
technical development 186, 188, 190, 205–6
time constraints of founders 243–4
computer software spinoffs
academic research 293–5, 300–310
advanced technology 133
broad technology 124
commercialization 212–13
creation of 298
customer feedback 207–9, 210, 211
customer interest/needs 198, 202, 204, 205, 206, 234, 252, 253
customer value 129, 130, 131, 214–15
economic importance of 293
founding of 139, 140, 155, 157
funding 225, 227, 228–9, 235, 236, 263, 299, 307
hardening process 193, 194
importance of 17–36, 300–301
industry experience 233–4
inventor involvement 248
licensing 111, 116, 118, 125–7
management knowledge 245, 246, 247
market applications 251
market need 132
patents 136, 260–61
performance of 299, 301–2
problems of 299–300
product creation 250–51
product development 182–3, 184–6, 187, 189
role of people 151–64, 297–8, 305
strategic focus 264–5, 268, 271–2, 273
supporting technology 195–6
concentration of 67–9
costs and difficulty of developing 287–8
creation of 165–77, 298, 305–6
definitions of 4–7
development process 298–9, 306–7
dissemination of knowledge 281–2
distribution across industries 139–40, 304–5
examples 15–17
generation factors 69–88
geographic location of 24–5, 91–100, 153–4
history of 40–57
importance of 17–36
industry characteristics promoting 143–6
influence on faculty research 282–3
materials spinoffs
 commercialization 202, 208–9, 214, 216
 founding of 158, 174
 funding 229
 licenses 122, 232
 management knowledge 243
 patents 134–5
 product development 179, 180, 190, 192, 193
 strategic focus 264, 269
mechanical device spinoffs
 and advanced technology 132–3
 commercialization 200, 251
 customer needs 203–4, 209–10, 253, 254
 development of 180, 181
 funding 225, 226, 228
 licensing 114, 117–19, 125, 172
 patents 135, 259
 product development 119, 180, 181, 188, 192
 prototypes 211
 radical technology 104
 single purpose technology 262
 strategic focus 264, 265
medical device spinoffs
 commercialization 201, 215, 216
 distribution of 139
 funding 232, 235
 knowledge/motivation of founders 112, 130, 156
 marketing 218
 patents 260
 product development 181, 244–5
 start-up networks 80
 strategic focus 264, 265, 271, 272
 technical costs/standards 198, 199
optics spinoffs
 commercialization 130
 funding 237, 263
 licensing 128
market applications 251
product development 189, 204, 213, 214, 216
strategic focus 267
profitability 31–6
proximity to host universities 153
research on 11–14
robotics spinoffs
 commercialization 131, 200
 founding of 121
 marketing 218, 219
 patents 261
sale of 114, 115
semiconductor spinoffs
 consultancy in 285
 customer needs 253–4
 founding of 158, 176
 funding 109–10, 111, 227
 human resources 263–4
 industry-funded research 87–8
 investment in 109–10, 111
 management knowledge 247
 market applications 251
 patents 260
 product sales 220
 radical technology 104, 107–8
 strategic focus 268–9
 university support 257
survival rates 31
trends towards 57–64
types of 304
university attitudes towards 53–4
and university culture 82
university support for 256–7, 309
‘spinout’ companies 6
sponsored research agreements 74
Stanford University
 Center for Biotechnology Research 52
 culture 83, 84
 policies 44, 70, 73, 74, 173, 288
 spinoffs 16, 45
 study of 13
 technology licensing office 169, 170, 171, 231
star scientists 161
start-up networks, linkage to 78–81
Steenbok, Harry 43

Downloaded from Elgar Online at 08/17/2019 02:28:50AM
via free access
Index

strategic focus 263–8
strong patents 143–4
Stuart, Toby 12
students, education of 29, 283–4
supplier networks 99
support mechanisms 100
supporting technology, addition of 195–6
Surftech Corporation 49
survival rates, spinoffs 31
Swanson, Robert 50
Sweden
job creation 22
patents 21, 97
spinoff companies 96, 139–40, 160
Syrengen 284
tacit knowledge 110–12, 153
technical
advances 132–3
competence/skills 106
knowledge 144
standards 198
technical development 178–201
technical field, age of 144–5
technologies
adaptation of 268–70
business opportunities in 174–5
commercialization of 25–6
communication of information 120
customer value of 128–32
cutting edge 132–3, 206
eyearly stage 113–23
genereal purpose 123–8, 232–3, 261–2
history of 40–57
integration of 209
radical 104–10
scalability of 216
strong intellectual property protection 133–6
uncertain 114–15
technology base, age of 144–5
technology costs 199
technology creation, expertise in 141–2
technology licensing offices (TLOs) 76, 79,
aims of 280
costs of 287
evaluation of inventions 168–70

expertise in company formation 76–7
growth of 293
licensing 172–3
linkage to start-up networks 78–81
marketing of inventions 170–71
resources of 76
shoppers at 152–5
technology push problem 204–5, 249–54
technology transfer 154
management of 287–90
technology, commercialization of 146–9
technology, effect of 257–62
technology, investment in 22–3
Texas A&M University 52
Thinking Machines Corporation 254
Three Dimensional Printing Technology 106, 114, 115–16, 126, 214
time horizons 121–3, 141, 186–8
time to market 216
Tracor 15
training 29, 243
Triad Investors Corporation 53
Trump, John 46
TurboGenset 16

uncertain technologies 25–6, 114–15
uncertainty 232
and capital acquisition 229–35, 255
of markets 201–3
of new companies 234
of product development 188–90

United Kingdom
educational institutions 100
funding 31, 92, 117, 226–7
intellectual property rights 5, 96
inventor interest 152
job creation 22
licensing 35, 71, 77, 111, 154–5
pre-seed stage capital 75, 94
radical technologies 104–5

United States
economic impact of spinoffs 20, 23, 24–5
history/trends of spinoff activity 41–66
initial public offerings (IPOs) 30–31
intellectual property rights 5, 35–6, 71, 96

Sweden
job creation 22
patents 21, 97
spinoff companies 96, 139–40, 160
Syrengen 284
tacit knowledge 110–12, 153
technical
advances 132–3
competence/skills 106
knowledge 144
standards 198
technical development 178–201
technical field, age of 144–5
technologies
adaptation of 268–70
business opportunities in 174–5
commercialization of 25–6
communication of information 120
customer value of 128–32
cutting edge 132–3, 206
eyearly stage 113–23
genereal purpose 123–8, 232–3, 261–2
history of 40–57
integration of 209
radical 104–10
scalability of 216
strong intellectual property protection 133–6
uncertain 114–15
technology base, age of 144–5
technology costs 199
technology creation, expertise in 141–2
technology licensing offices (TLOs) 76, 79,
aims of 280
costs of 287
evaluation of inventions 168–70

expertise in company formation 76–7
growth of 293
licensing 172–3
linkage to start-up networks 78–81
marketing of inventions 170–71
resources of 76
shoppers at 152–5
technology push problem 204–5, 249–54
technology transfer 154
management of 287–90
technology, commercialization of 146–9
technology, effect of 257–62
technology, investment in 22–3
Texas A&M University 52
Thinking Machines Corporation 254
Three Dimensional Printing Technology 106, 114, 115–16, 126, 214
time horizons 121–3, 141, 186–8
time to market 216
Tracor 15
training 29, 243
Triad Investors Corporation 53
Trump, John 46
TurboGenset 16

uncertain technologies 25–6, 114–15
uncertainty 232
and capital acquisition 229–35, 255
of markets 201–3
of new companies 234
of product development 188–90

United Kingdom
educational institutions 100
funding 31, 92, 117, 226–7
intellectual property rights 5, 96
inventor interest 152
job creation 22
licensing 35, 71, 77, 111, 154–5
pre-seed stage capital 75, 94
radical technologies 104–5

United States
economic impact of spinoffs 20, 23, 24–5
history/trends of spinoff activity 41–66
initial public offerings (IPOs) 30–31
intellectual property rights 5, 35–6, 71, 96

Sweden
job creation 22
patents 21, 97
spinoff companies 96, 139–40, 160
Syrengen 284
tacit knowledge 110–12, 153
technical
advances 132–3
competence/skills 106
knowledge 144
standards 198
technical development 178–201
technical field, age of 144–5
technologies
adaptation of 268–70
business opportunities in 174–5
commercialization of 25–6
communication of information 120
customer value of 128–32
cutting edge 132–3, 206
eyearly stage 113–23
genereal purpose 123–8, 232–3, 261–2
history of 40–57
integration of 209
radical 104–10
scalability of 216
strong intellectual property protection 133–6
uncertain 114–15
technology base, age of 144–5
technology costs 199
technology creation, expertise in 141–2
technology licensing offices (TLOs) 76, 79,
aims of 280
costs of 287
evaluation of inventions 168–70

expertise in company formation 76–7
growth of 293
licensing 172–3
linkage to start-up networks 78–81
marketing of inventions 170–71
resources of 76
shoppers at 152–5
technology push problem 204–5, 249–54
technology transfer 154
management of 287–90
technology, commercialization of 146–9
technology, effect of 257–62
technology, investment in 22–3
Texas A&M University 52
Thinking Machines Corporation 254
Three Dimensional Printing Technology 106, 114, 115–16, 126, 214
time horizons 121–3, 141, 186–8
time to market 216
Tracor 15
training 29, 243
Triad Investors Corporation 53
Trump, John 46
TurboGenset 16

uncertain technologies 25–6, 114–15
uncertainty 232
and capital acquisition 229–35, 255
of markets 201–3
of new companies 234
of product development 188–90

United Kingdom
educational institutions 100
funding 31, 92, 117, 226–7
intellectual property rights 5, 96
inventor interest 152
job creation 22
licensing 35, 71, 77, 111, 154–5
pre-seed stage capital 75, 94
radical technologies 104–5

United States
economic impact of spinoffs 20, 23, 24–5
history/trends of spinoff activity 41–66
initial public offerings (IPOs) 30–31
intellectual property rights 5, 35–6, 71, 96
investment capital 22–3, 93, 95, 224, 226, 227
job creation 21
legislation 8
location of spinoffs 67–9, 91–2, 139–40
marketing of technology 171
research funding 167, 287
research into spinoffs 3, 11–14
spinoff companies 1–2, 15–19, 191
university characteristics/policies 72–4, 83, 98
universities
attitudes to spinoffs 53–4
culture 81–3, 96
equity policies 63–4
expertise of 141
faculty, retention of 29
governance 277–8
industrial composition of area surrounding 98–100
industry-funded research 86–8
land grant system 41
leaves of absence 72–3, 97
missions 27, 277
policies 69–76, 168
property rights 96–7
quality of 84–6
reputation 289
research in 27–9, 167–8
support from 256–7, 309
use of resources 73–4, 168, 169, 256
see also Technology Licensing Offices (TLOs)
University Challenge Funds 94, 226
university model and firm foundation 277–86
University of Calgary 279
University of California 72
Center for Biotechnology Research 52
early stage technologies 26, 32, 120, 225
equity 27
funding 226, 237
policies 44, 48, 256
spinoffs 31, 56, 139, 248
University of California at Berkeley 288
culture 42, 83
policies 73, 74
spinoffs 16, 50, 84, 288
University of California at San Francisco 16
University of California, Los Angeles 74, 134, 135
University of California, San Diego 152
University of Chicago 52, 284
University of Cincinnati 44
University of Colorado 284
University of Florida 48
University of Illinois 34
University of Illinois at Chicago 134
University of Liège 22
University of Linköping 22
University of Manchester 117
University of Maryland 68
University of Minnesota 16
University of New Mexico 13, 256
University of North Carolina 11–12
University of Pennsylvania 6
Medical School 285
University of Rochester 52
University of Texas at Austin 15, 52
Southwestern Medical Center 52
University of Twente 22, 31
University of Vermont 15
University of Virginia 68, 75
University of Washington 35
University of Wisconsin 43, 44, 139
University Seed Corn Funds 226–7
US Air Force 226
US Patent and Trademark Office 145
user friendliness 197–8
value
capture 32, 120–21, 128–32
to customers 130–31, 213–15
products and services 219, 252–3
radical technologies 108–10
spinoffs 230–31
value chain problems 127–8
value-added 31, 147–8
Van de Graaff, Robert 46
venture capital organizations, history of 46
ventures, value of 230–31
volume sales 213, 219
Von Liebig, Justus 51
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang, An</td>
<td>15</td>
</tr>
<tr>
<td>weak patents</td>
<td>258–9, 260</td>
</tr>
<tr>
<td>wealth, desire for</td>
<td>158</td>
</tr>
<tr>
<td>Wharton Economic Forecasting Association</td>
<td>6</td>
</tr>
<tr>
<td>winnowing process</td>
<td>166–7</td>
</tr>
<tr>
<td>Wisconsin Alumni Research Foundation</td>
<td>43</td>
</tr>
<tr>
<td>(WARF)</td>
<td></td>
</tr>
<tr>
<td>workforce skills</td>
<td>106, 118–19, 147</td>
</tr>
<tr>
<td>World Com</td>
<td>270</td>
</tr>
<tr>
<td>Wurtman, Richard</td>
<td>286</td>
</tr>
<tr>
<td>Xenometrix</td>
<td>152</td>
</tr>
<tr>
<td>Yahoo!</td>
<td>169</td>
</tr>
<tr>
<td>Zero Stage Capital</td>
<td>52</td>
</tr>
</tbody>
</table>