Index

Abbott Laboratories 176
academia-industry relationships (AIRs) 289
academic goals 277, 280
labor market 97–8
leave of absence 72–3, 97
opposition to spinoffs 277–80
quality 84–6
status 160
academic research 293–5
issues with 300–310
accumulated knowledge 144
Acusphere 172, 203, 230
adaptability of technologies 268–9
adaptation
to markets 270–73
of technologies 269–70
Advanced Technology Program (ATP) 62, 226
Advent International Group 236
Alpert, Norman 15
American Research and Development Corporation (ARD) 46, 65, 84
Amgen 16
Andreessen, Marc 98
angel capital 62, 95, 201–2, 225, 236–7, 263
anti-entrepreneurial cultures 96
applied research 282
ARCH Development Corporation 52
architecture, changes in 199–201
Arizona State University 9, 67
Aspen Technologies 87
asset specificity 144
assets, cannibalizing of 105
see also complementary assets
Association of University Technology Managers 13
Aviron 284
Aware Inc. 32, 269
Bank of England 94
Baumgartner, Werner 285
Bausch and Lomb 16
Baylor College of Medicine 52
BBN Inc. 46
BCM Technologies 52
Belgium, job creation 22
Beranek, Leo 46
Bessemer Venture Partners 236
Biogen 16
biological sciences, research funding 28–9
BioTek Instruments 15
Birndorf, Norman 152
Blech, David and Isaac 152
Bok, Derek 53, 280
Bolt, Richard 46
Bose Corporation 154
Boston Globe 286
Boston University 49, 98, 285, 288
Boyer, Herbert 50, 281
Brailsford Robertson, T. 42
broad scope patents 133, 135–6
bureaucracy 119
business angels 62, 95, 201–2, 225, 236–7, 263
Byers, Brook 152
Cable, Dan 11–12
Calimetrics 120
Cambridge, England 20
Canada
educational institutions 2, 100, 296
intellectual property rights 5
patent applications 171
spinoff companies 16, 24, 27, 91, 92, 303
capital
access to 77, 79–81, 84–5, 93–5
acquisition of 229–35, 251–5
and customer value 129
importance of 223–4
interest on 265
need for strategic focus 265
sources of 235–7
see also funding
capital markets, changes in 62–3
capital-intensive industries 146
Career goals 159–60
Carnegie Mellon University 9, 67
pre-seed stage funds 75–6
spinoff companies 35, 288
use of university resources 73–4
Case Western Reserve University 75
Castle Group 152
Center for Biotechnology Research 52
Center for Technology Development and
Transfer, University of Texas 52
Cetus 16, 50
Chalmers Institute of Technology 21,
24, 31, 67, 140, 156
chemicals companies, product
development 127
Chiron 16, 23
Chou, Joany 284
Cirrus Logic 1, 36, 295
Clark, Jim 33
clusters 23–4, 99
codified
knowledge 153
technology 111
Cohen, Richard J. 286
collapsed discovery process 140–41
Columbia University
funding 22–3
geographical location 99
licensing 175
spinoffs 22–3, 56, 83, 139
commercial
schedules 207
standards 197–8
training 29
commercial orientation, adverse effects
of 280
commercialization of technologies
25–6, 32–4, 190–201
desire for 156–7
history of 40–57
and industry characteristics 146–9
inventor involvement in 26–7
time horizons 141
trends in 54–7
Community Technology Fund, Boston
University 49
company formation 76–8
and the university model 277–86,
309–10
company strategies, effect of 263–73,
308–9
company-specific knowledge 87–8
competence-destroying technology
105–8
competitive advantage 135, 217, 230,
258
competitors 202–3, 261
complementary
assets 144, 147–8
teams 241
technologies 142, 209, 272–3
components
development 189–90
usage 200–201
computer science spinoffs 140
development 120
leave of absence policies 73
conflict of interest 74, 284–6, 289
Connaught Laboratories 16
consultancy 72–3, 86, 285
contagion effect 61–2
copyright 168
core technology, changes in 107–8
Cornie, Jim 185
costs
of raising capital 265
of technologies 199
use of university resources 256–7
Cottrell, Frederick 42
Court of Appeals, US 60
culture, of universities 81–3, 96
customer
documentation 198
networks 99
preferences 142
service 215–17
value 30–31, 213–15
customer demands/needs 131–2, 179,
201–2, 205–7, 234, 246, 250
assessment and satisfying 252–4
changes to meet 183, 205–7, 270–71
identification of 203–5
customer feedback 196, 207–9, 253–4
difficulty of obtaining 209–12
customer value technologies 128–32,
213–15

customers
 access to 85–6
 and competitors 202–3
 future technology plans 209
 information-gathering from 196,
 266–7
 knowledge of 234, 246, 250
 location of 216–17
 and proof of principle 179–80
cutting edge technology 132–3, 206

Dallas Biomedical Corporation 52
Department of Agriculture, US 45
Department of Defense, US 48, 87, 167,
272
Department of Health, Education and
Welfare, US 48, 50
Department of Trade and Industry, UK, 226

Develcon 16
development gap 114–15
DeVoe-Holbein 289
Diamond Materials Corporation 283
Diamond v. Chakrabarthy 60
Diamond v. Diehr 60
Digital Equipment Corporation 15, 46
DiGregorio, Dante 13
disbelief in radical technologies 108–10
disclosures 44, 68, 74, 81, 145, 166,
168–70
diversification 265
doctoral students, role in spinoffs 283–4
documentation 198
Dupont 121
Dwyer, Jim 71, 80

eyear stage inventions 113–23
eyear stage investment 224–6, 237
economic development, encouragement
 of 20–21, 23–5
Edgerton, Harold 45
education of students 29, 283–4
electronics spinoffs 139
Emory University 67
entrepreneurial experience 161–2

infrastructure 98–100
networks 94
role models 61–2, 83–4
types 155

entrepreneurs
 adverse selection of 230
 psychological attributes of 156
 working time 249
entry costs 146, 308
equity
 effects on inventor involvement
 26–7
 ownership of 32–6, 70–71, 112
 sale of 288
 university policies on 63–4

established companies
 advanced technology 132–3
 competition from 258
 development of technologies 117–20
 early stage inventions 113–14
 focus on existing operations 115–17
 general purpose technologies 124–5,
 127, 261–2
 investment 105, 107, 109
 licensing 32–6, 103–4, 108, 111–12,
 173
 market segmentation 145
 multiple market applications 125–6,
 127
 radical technologies 110
 research funding 127–8
 technical knowledge in 144
 time horizons 121–3
 uncertain technology 114
 value chain problems 127–8

Europe, universities 1
European Union 95
Evans, Herbert 42
exclusive licenses 69–70, 173, 232,
260–61, 281–2
exit costs 308
expenditure, research and development
 47–8
exploitation of graduate students 50, 59,
283–4
external entrepreneur-led spinoffs 153–4
external entrepreneurs/managers
 attraction of 129–30
 costs of 526–7
technology shopping 129–30
external liaison organizations 257
faculty, retention of 29
faculty research, subject matter 282–3
faculty support, lack of 277–80
failure of companies 258
federal government, US 50, 59
feedback from customers 196, 207–9, 253–4
difficulty of obtaining 209–12
Ferguson, Mark 117
finance
institutions 52–3
system of 62–3
financial abuse 285
focus strategies 263–8
Food and Drug Administration (FDA) 33, 181
founders
attributes 233–4
time constraints of 243
France 20, 31, 140, 255
full-time entrepreneurs 249
funding for research 8, 27, 45–50, 167
public sector 224–9
see also capital
Genentech 1, 16, 23, 281, 295
general-purpose technologies 123–4, 232–3, 261–2
established firm difficulties 124–5, 127–8
Genetic Systems 152
Genta 16
geographic location of spinoffs 24–5, 91–2
reasons for 93–100, 153–4
Georgia Institute of Technology 75
Germany 41, 64, 98
Germeshausen, Kenneth 45
Goldfine, Neil 281
Google 16, 36, 295
Gothenburg, Sweden 20, 21, 24
Gothenburg University 67
Gourman Report 85
government funding see public sector funding
graduate students, exploitation of 50, 59, 283–4
Handler, Cheryl 254
Hangers Cleaners 16
hardening process 193
Harvard University 16, 26
Computer Laboratory 15
expertise 141
networks 80, 99
patent protection 12, 144
policies 67, 71
Hatch Act, US 8, 41, 64
Hewlett Packard 45
high performing companies, spinoffs as 30–32
high technology companies 20–21
high value applications 214
High Voltage Engineering Corporation 46
Hillis, Danny 254
Howard Hughes Medical Institute 67, 284
human capital, effect of 240–49, 307–8
human resources 118–19, 263–5
humanities faculty 279
Hybritech 152
IBM 128
ideas, selling of 121
Imperial College, UK 16
incremental technologies 104–6
incubators 52, 100
independence, desire for 158–9
Industrial and Corporate Change 12
industrial equipment/machinery spinoffs 139
industries
characteristics promoting commercialization 146–9
characteristics promoting spinoffs 143–6
distribution of spinoffs across 139–40, 297, 304–5
industry
experience 233
standards 198
industry-funded research 86–8
information asymmetry 229–35
initial public offerings 1–2, 30–31, 255
Inktomi 16, 288
Institute for Ventures in New
'living dead' firms 282
local economic development 23–5
local entrepreneurial networks 93–4
Louisiana 74
Lycos 15, 35, 73, 76, 288

MacDonald Dettwiler 16
Maddon, Paul 83
management
 experience 233
 knowledge 242–4
Management Science 12
manufacturing
 complementary assets 144
 speed of 200
manufacturing value-added 147–8
market
 adaptation 270–73
 delivery 215–17
 evaluation 203
 failure 175–6
 segmentation 146–7
 size 213
 uncertainty 147, 201–3
market applications 123–8, 261–2
 choice of 212–13
 identification of 208–9, 251–2
market demand/need 131–2, 143, 246
 solutions for 205–7
market development 201–20
marketing process 59–60, 166–7, 170–71
marketing, complementary assets 144
markets
 identification of 110
 knowledge of 246–7
 large 231
 shifting 271–3
mass appeal 206
Massachusetts Biotech Council 78
Massachusetts Technology Development Corporation 78
Massachusetts Eye and Ear Infirmary 285
Massachusetts Institute of Technology
 50K Business Plan Competition 83, 99
 Enterprise Forum 82
Lincoln Laboratory 15, 24–5, 46, 134–5, 186, 190
Media Lab 70, 130, 131, 261
research at 3, 11–12, 13
Sloan School of Management 155
Technology-Licensing Office 80, 161, 235, 260, 261, 293
Massachusetts Institute of Technology Development Foundation (MITDF) 49
McGill University 289
mechanisms, changes in 199–201
Media Lab 70, 130, 131, 261
medical faculty 279
Medical Science Partners 53
Medtronic 16
Metal Matrix Cast Composites 128, 183, 185
military technologies 46
'minus two stage' companies 173–4, 178–9
molecular biology 141
Morse, Richard 49
Mosaic 33, 98–9
motivation, of inventors 130–32
Motorola 259
multi products technology 124
multiple founders 241
multiple market applications 123–4, 261–2
 problem of 125–7, 264
National Aeronautics and Space Administration (NASA) 167, 227, 272
National Institute of Standards and Technology, US 226
National Institutes of Health, US 58, 167, 226, 286
National Research Corporation 49
National Science Foundation, US 48, 226, 227
Nelsen, Lita 78, 104, 123–4, 135, 152, 160, 173, 242, 255, 256
Nerkar, Atul 12–13
Netherlands
 job creation 22
 spinoff companies 31
Netscape 34, 98
new companies
 intellectual property protection 133
 licensing 128
Index

and market segmentation 146–7
patents 143
risk of creating 288–90
technology development in 26–7
new technologies
commercialization of 156–8
development of 118
disclosure of 168
investment in 104, 109–10

New York Times 53, 290
New York University 31, 99, 139, 175
spinoff policies 74, 77, 81
Newman, Robert 46
Nitres 237
non-exclusive licenses 69, 70, 173, 261
non-inventor licenses 148–9
North Carolina State University 16
Northeast Council 42
Northern Ireland, spinoff companies 22, 31, 226
Northwestern University 68

‘not-invented-here’ syndrome 133

Oberg, Sherie 172, 203, 230
Olson, Kenneth 15, 46
on-the-job training 243
Open Market 182
opportunities 174–5
options to license 171–2
Organization Science 12
organizational attitudes 81–3
organizational competencies/skills 106, 118–19
replication of 147
organizational filters 109

Pangenix 27
part-time employment 72, 73
patent portfolios 48–9, 134–5, 258
patenting of doctoral student research 284
patents
applications 55
broad scope 133, 135–6
criteria for 169–70
effectiveness of 143–4, 148–9, 282–3
growth of 58

history of 42–3, 49
laws governing 60
system of 35, 281
US 51
Pennsylvania State University 52, 82, 134–5, 283
people, role in spinoffs 297–8
performance
of firms 30–32
improvements in 190–92, 214–15
milestones 256, 266, 282
technical push problem 249–54
performance effects of
capital 254–5
company strategies 263–73
human capital 240–49
technology 257–62
university support 256–7
pharmaceutical companies 139
licensing 113, 117
molecular biology 141
product development 119

physical sciences
equity 71
inventions 142
Pickel, Johann 41
‘pipelining’ 289–90
platform technologies see general-purpose technologies
Polymer Technology Corporation 16
pre-seed stage capital 75–6, 93–4
pricing 121, 202
private sector funding 62–3, 224–5, 229–30
problem solving 243
process
innovation 145
inventions 104
management 187–8
product development 184–6
commercialization 190–201
expertise in 117–19
knowledge of 244–6
necessity for 182–4
time horizons 186–8
uncertainty of 188–90
production
knowledge of 244
simplicity of 215–16

and market segmentation 146–7
patents 143
risk of creating 288–90
technology development in 26–7
new technologies
commercialization of 156–8
development of 118
disclosure of 168
investment in 104, 109–10

New York Times 53, 290
New York University 31, 99, 139, 175
spinoff policies 74, 77, 81
Newman, Robert 46
Nitres 237
non-exclusive licenses 69, 70, 173, 261
non-inventor licenses 148–9
North Carolina State University 16
Northeast Council 42
Northern Ireland, spinoff companies 22, 31, 226
Northwestern University 68

‘not-invented-here’ syndrome 133

Oberg, Sherie 172, 203, 230
Olson, Kenneth 15, 46
on-the-job training 243
Open Market 182
opportunities 174–5
options to license 171–2
Organization Science 12
organizational attitudes 81–3
organizational competencies/skills 106, 118–19
replication of 147
organizational filters 109

Pangenix 27
part-time employment 72, 73
patent portfolios 48–9, 134–5, 258
patenting of doctoral student research 284
patents
applications 55
broad scope 133, 135–6
criteria for 169–70
effectiveness of 143–4, 148–9, 282–3
growth of 58

history of 42–3, 49
laws governing 60
system of 35, 281
US 51
Pennsylvania State University 52, 82, 134–5, 283
people, role in spinoffs 297–8
performance
of firms 30–32
improvements in 190–92, 214–15
milestones 256, 266, 282
technical push problem 249–54
performance effects of
capital 254–5
company strategies 263–73
human capital 240–49
technology 257–62
university support 256–7
pharmaceutical companies 139
licensing 113, 117
molecular biology 141
product development 119

physical sciences
equity 71
inventions 142
Pickel, Johann 41
‘pipelining’ 289–90
platform technologies see general-purpose technologies
Polymer Technology Corporation 16
pre-seed stage capital 75–6, 93–4
pricing 121, 202
private sector funding 62–3, 224–5, 229–30
problem solving 243
process
innovation 145
inventions 104
management 187–8
product development 184–6
commercialization 190–201
expertise in 117–19
knowledge of 244–6
necessity for 182–4
time horizons 186–8
uncertainty of 188–90
production
knowledge of 244
simplicity of 215–16

Index
production processes, investment in 106–7
productization 182–90
products
 change in 270–71
 composition 107
 creation of 250–51
 efficacy of 142
 exclusivity of 217
 innovation in 144–5
 revision of 211–12
 sale of 217–20
profitability, spinoffs 31–6
Progenics Pharmaceuticals 83
proof of principle 179–80
proofs of concept 75, 113, 226
property rights, locus of 95–7
proprietary technology 231–2
prototype development 180–82, 210–11
Psychemedics Corporation 285
psychological attributes of entrepreneurs 156
Ptashne, Mark 53
public sector funding 62, 86, 224–9, 307
 private gain from 286
Purdue University 44
quality control 158
quality of universities 84–6
Queen’s University, Northern Ireland 22, 31, 226
quick-to-market iteration strategy 211
radical technology 104–10
raw technology 116, 170–71, 182
Regeneron 16
regional development funding 95
reliability, improvements to 194
Renovo 117
reputation of universities 289
research 27–9, 167–8
 dissemination of results 281
 funding for 23, 47–8, 86–8, 91–2, 127–8
 on spinoffs 293–4, 300–310
 subject matter 282–3
Research Corporation 42, 44, 48, 65
Research Policy 13
research process 165–70
research results, dissemination of 281
research-intensive companies 116
resource acquisition, importance of 223–4
Rheocast 49
risk
 in company creation 288–90
 diversification of 123
 management of 229
robustness, enhancement of 192–5
Rockefeller Foundation 42
Roizman, Bernard 284
role models 61, 83–4
Rosenthal, Perry 16
Route 128 20
royalties 32–4, 35–6
 agreements 78
 division of 74–5
Royston, Ivor 152
Sala Magnetics 49
sales volumes 213, 219
San Francisco 23, 98
scaling up 196
Science Enterprise Challenge 94
science parks 52
sciences faculties 279
scientific instruments spinoffs 108
Scotland, job creation 22
Scottish Enterprise 22
Scottish Proof of Concept Funds 94
SED Systems 16
seed capital 93–4, 225
‘seed stage’ companies 173
selling, importance of 217–20
Seragen 285, 288
shifting markets 271–3
shopper-led spinoffs 152
single founders 241
single product
 extensions 104
 technology 124
single purpose technology 262, 266
skilled labor, access to 100
Sloan School of Management 1, 99, 155
Small Business Innovation Research Program (SBIR) 27, 62–3, 226, 227, 228, 229, 255
Index

social ties 234–5, 247
software spinoffs see computer software spin off
decision to 173–4
motivation to 156–62
spinoffs
academic opposition to 277–80
biotechnology spinoffs
clusters of 99
conflict of interest 284, 289
customer needs/value 130–31, 250
dissemination of knowledge 281
exploitation of graduate students 283
founding of 140, 155, 157–8, 160, 175, 176, 288
France 140
funding 225, 226, 229, 230, 235, 236, 255
general purpose technology 233
growth of 130–31, 202–3, 204, 215, 250
history of 50
identification of opportunities 175
licensing 110, 113, 116–17, 121, 122, 127
management knowledge 242–3, 244, 245, 246
patents 134, 135, 231–2, 258, 259
product development 111–12, 117, 119, 176, 262, 286
proof of principle 179
strategic focus 123, 265, 266, 267–8, 269–70
Sweden 139
technical development 179, 184, 185, 189, 195
computer hardware spinoffs
customer needs 253
licensing of 109, 114
management knowledge 245–6, 247
market applications 252
product sales 218
strategic focus 264, 270–71
technical development 186, 188, 190, 205–6
time constraints of founders 243–4
computer software spinoffs
academic research 293–5, 300–310
advanced technology 133
broad technology 124
commercialization 212–13
creation of 298
customer feedback 207–9, 210, 211
customer interest/needs 198, 202, 204, 205, 206, 234, 252, 253
customer value 129, 130, 131, 214–15
economic importance of 293
founding of 139, 140, 155, 157
funding 225, 227, 228–9, 235, 236, 263, 299, 307
hardening process 193, 194
importance of 17–36, 300–301
industry experience 233–4
inventor involvement 248
licensing 111, 116, 118, 125–7
management knowledge 245, 246, 247
market applications 251
market need 132
patents 136, 260–61
performance of 299, 301–2
problems of 299–300
product creation 250–51
product development 182–3, 184–6, 187, 189
role of people 151–64, 297–8, 305
strategic focus 264–5, 268, 271–2, 273
supporting technology 195–6
concentration of 67–9
costs and difficulty of developing 287–8
creation of 165–77, 298, 305–6
definitions of 4–7
development process 298–9, 306–7
dissemination of knowledge 281–2
distribution across industries 139–40, 304–5
examples 15–17
generation factors 69–88
geographic location of 24–5, 91–100, 153–4
history of 40–57
importance of 17–36
industry characteristics promoting 143–6
influence on faculty research 282–3
materials spinoffs
commercialization 202, 208–9, 214, 216
founding of 158, 174
funding 229
licenses 122, 232
management knowledge 243
patents 134–5
product development 179, 180, 190, 192, 193
strategic focus 264, 269
mechanical device spinoffs
and advanced technology 132–3
commercialization 200, 251
customer needs 203–4, 209–10, 253, 254
development of 180, 181
funding 225, 226, 228
licensing 114, 117–19, 125, 172
patents 135, 259
product development 119, 180, 181, 188, 192
prototypes 211
radical technology 104
single purpose technology 262
strategic focus 264, 265
medical device spinoffs
commercialization 201, 215, 216
distribution of 139
funding 232, 235
knowledge/motivation of founders 112, 130, 156
marketing 218
patents 260
product development 181, 244–5
start-up networks 80
strategic focus 264, 265, 271, 272
technical costs/standards 198, 199
optics spinoffs
commercialization 130
funding 237, 263
licensing 128
market applications 251
product development 189, 204, 213, 214, 216
strategic focus 267
profitability 31–6
proximity to host universities 153
research on 11–14
robotics spinoffs
commercialization 131, 200
founding of 121
marketing 218, 219
patents 261
sale of 114, 115
semiconductor spinoffs
consultancy in 285
customer needs 253–4
founding of 158, 176
funding 109–10, 111, 227
human resources 263–4
industry-funded research 87–8
investment in 109–10, 111
management knowledge 247
market applications 251
patents 260
product sales 220
radical technology 104, 107–8
strategic focus 268–9
university support 257
survival rates 31
trends towards 57–64
types of 304
university attitudes towards 53–4
and university culture 82
university support for 256–7, 309
‘spinout’ companies 6
sponsored research agreements 74
Stanford University
Center for Biotechnology Research 52
culture 83, 84
policies 44, 70, 73, 74, 173, 288
spinoffs 16, 45
study of 13
technology licensing office 169, 170, 171, 231
star scientists 161
start-up networks, linkage to 78–81
Steenbok, Harry 43
Index

strategic focus 263–8
strong patents 143–4
Stuart, Toby 12
students, education of 29, 283–4
supplier networks 99
support mechanisms 100
supporting technology, addition of 195–6
Surftech Corporation 49
survival rates, spinoffs 31
Swanson, Robert 50
Sweden
job creation 22
patents 21, 97
spinoff companies 96, 139–40, 160
Syrengen 284
tacit knowledge 110–12, 153
technical
advances 132–3
competence/skills 106
knowledge 144
standards 198
technical development 178–201
technical field, age of 144–5
technologies
adaptation of 268–70
business opportunities in 174–5
commercialization of 25–6
communication of information 120
customer value of 128–32
cutting edge 132–3, 206
eyear stage 113–23
genral purpose 123–8, 232–3, 261–2
history of 40–57
integration of 209
radical 104–10
scalability of 216
strong intellectual property protection 133–6
uncertain 114–15
technology base, age of 144–5
technology costs 199
technology creation, expertise in 141–2
technology licensing offices (TLOs) 76, 79,
aims of 280
costs of 287
evaluation of inventions 168–70
expertise in company formation 76–7
growth of 293
licensing 172–3
linkage to start-up networks 78–81
marketing of inventions 170–71
resources of 76
shoppers at 152–5
technology push problem 204–5, 249–54
technology transfer 154
management of 287–90
technology, commercialization of 146–9
technology, effect of 257–62
technology, investment in 22–3
Texas A&M University 52
Thinking Machines Corporation 254
Three Dimensional Printing Technology 106, 114, 115–16, 126, 214
time horizons 121–3, 141, 186–8
time to market 216
Tracor 15
training 29, 243
Triad Investors Corporation 53
Trump, John 46
TurboGenset 16
uncertain technologies 25–6, 114–15
uncertainty 232
and capital acquisition 229–35, 255
of markets 201–3
of new companies 234
of product development 188–90
United Kingdom
educational institutions 100
funding 31, 92, 117, 226–7
intellectual property rights 5, 96
inventor interest 152
job creation 22
licensing 35, 71, 77, 111, 154–5
pre-seed stage capital 75, 94
radical technologies 104–5
United States
economic impact of spinoffs 20, 23, 24–5
history/trends of spinoff activity 41–66
initial public offerings (IPOs) 30–31
intellectual property rights 5, 35–6, 71, 96

Downloaded from Elgar Online at 08/31/2019 11:41:48AM via free access
investment capital 22–3, 93, 95, 224, 225, 226, 227
job creation 21
legislation 8
location of spinoffs 67–9, 91–2, 139–40
marketing of technology 171
research funding 167, 287
research into spinoffs 3, 11–14
spinoff companies 1–2, 15–19, 191
university characteristics/policies 72–4, 83, 98
universities
attitudes to spinoffs 53–4
culture 81–3, 96
equity policies 63–4
expertise of 141
faculty, retention of 29
governance 277–8
industrial composition of area surrounding 98–100
industry-funded research 86–8
land grant system 41
leaves of absence 72–3, 97
missions 27, 277
policies 69–76, 168
property rights 96–7
quality of 84–6
reputation 289
research in 27–9, 167–8
support from 256–7, 309
use of resources 73–4, 168, 169, 256

see also Technology Licensing Offices (TLOs)
University Challenge Funds 94, 226
university model and firm foundation 277–86
University of California 72
University of California at Berkeley 288
University of California at San Francisco 16
University of California, Los Angeles 74, 134, 135
University of California, San Diego 152
University of Chicago 52, 284
University of Cincinnati 44
University of Colorado 284
University of Florida 48
University of Illinois 34
University of Illinois at Chicago 134
University of Liège 22
University of Linköping 22
University of Manchester 117
University of Maryland 68
University of Minnesota 16
University of New Mexico 13, 256
University of North Carolina 11–12
University of Pennsylvania 6
Medical School 285
University of Rochester 52
University of Texas at Austin 15, 52
Southwestern Medical Center 52
University of Twente 22, 31
University of Vermont 15
University of Virginia 68, 75
University of Washington 35
University of Wisconsin 43, 44, 139
University Seed Corn Funds 226–7
US Air Force 226
US Patent and Trademark Office 145
user friendliness 197–8

value
capture 32, 120–21, 128–32
to customers 130–31, 213–15
products and services 219, 252–3
radical technologies 108–10
spinoffs 230–31
value chain problems 127–8
value-added 31, 147–8
Van de Graaff, Robert 46
venture capital organizations, history of 46
ventures, value of 230–31
volume sales 213, 219
Von Liebig, Justus 5

Academic entrepreneurship
Wang, An 15
weak patents 258–9, 260
wealth, desire for 158
Wharton Economic Forecasting Association 6
winnowing process 166–7
Wisconsin Alumni Research Foundation (WARF) 43
workforce skills 106, 118–19, 147

World Com 270
Wurtman, Richard 286
Xenometrix 152
Yahoo! 169
Zero Stage Capital 52