Index

academic research environments 62–72
see also universities

accord and creativity 32

actor interaction as coordination mechanism 153

Äkerman, N. 52, 197

Amabile, T.M. 1, 11–12, 18, 34, 41, 45, 62, 194, 198

America, South, research collaboration 179–89, 204–5

Anderson, N. 18

Andrews, F.M. 33, 40, 52, 65, 198

Asmervik, S. 33

autonomy and creativity 44–5, 46–7, 51, 65–7, 196

Axtell, C.M. 21

Barnett, R. 105

Becher, T. 105

Beret, P. 133

bilateral collaboration, S. America 185–8, 188–9

BioRegio programme 167

biotechnology industry, Germany 161–4

R&D policies 166–8

technological paradigm shift 155–6, 168–9

Bohlin, G. 87

Bouty, J. 21

Bradfield, J. 96

Britain

higher education 104–5, 130, 133

recruitment, engineers and scientists 126–7, 133–4, 201–2

research linkages, optoelectronics 134–46

budget see funding research

bureaucracy, impact on creativity 45–6

business model, biotech companies 162

Camagni, R. 127

Cambridge Science Park 95–8

Carpenter, M.P. 189

challenge and creativity 51

climate factors influencing creativity 18

collaborative research 68–70, 174–8, 204–5

co-authorship and research 177–8

S. America 178–81, 204–5

cognitive environment 3

cognitive factors in CKEs 22

collaborative research 68–70, 174–8, 204–5

S. America 178–89

collaboration

communication 6

and creativity 43, 48–9

companies, relationship with doctoral students 112–20

constraints on CKEs 195–6

consultant environment, and doctoral students 113–15, 117–18, 200

contributory creativity 13

cooperation see collaborative research

coordination modes 151–4

biotechnology industry 161–4

telecommunications industry 156–60

creative tension 18, 31–54, 197–9, 200, 201, 216

creativity

definition 4–5

of individuals 39–44, 208–9

organizational influences 44–50

Csikszentmihalyi, M. 12, 59–60

cumulative advantage, effect on creativity 54

curiosity and creativity 42

customers, research links with optoelectronics firms 135, 140–41

Dalton, I. 83

Deutsche Forschungsgemeinschaft (DFG) 159, 163

Dewey, J. 108–9
Index

Diehl, M. 196

discord and creativity see creative tension

diversity in research teams 44
doctoral studies in industry 104–23
domain of creativity 59–60
Dougherty, D. 35, 198, 212

drug development, Germany 161–2
Druilhe, C. 95

economic coordination modes 151–4
education, higher 104–23, 130, 133
engineering environment, doctoral students 113–15, 116–17, 200
engineers, recruitment 126–7, 130, 133–4
environment
influence on creativity 14–15, 34
knowledge 6–11
see also research environment
Ericsson 83–4, 87–8
Ericsson EuroLab Gmbh 158
Etzkowitz, H. 109
European Union
and biotechnology research 167–8
and telecommunications research 165–6
expected creativity 13
extraorganizational environment, and creativity 212–13
FENIX 111
field of creativity 60
finance see funding research
financial rewards and creativity 40
Finland, academic research environment 63–72
Ford, C.M. 6, 18–19
Forsen, S. 82, 83
Första Fastighetsbolaget Ideon (FFI) 85
Foss Hansen, H. 35, 198
Foundation for Advancement of Knowledge and Competence Development 105
Frame, J.D. 189
frame breaker 93
France
higher education, engineering and science 130, 133
research links, optoelectronics firms 134–46
freedom and creativity 44–5, 46–7, 51, 65–7, 196
funding research 62–5
Finland 70–71
Germany 147, 160, 164–5
less developed countries 176–7
Garfield, E. 180
Garnsey, E. 95
German Research Council 159, 163
Germany
biotechnology industry 161–4, 166–8
recruitment engineers and scientists 126–7
telecommunication industry 154–5, 156–60
Gibbons, M. 109, 122, 200, 204
giftedness 60, 194
Goodlad, S. 105
government CKEs 9
government support
biotechnology, Germany 166–7
Ideon Science Park 88–9
telecommunications research, Germany 165
Graversen, E.K. 64, 68
Great Britain see Britain
Grenoble science park 95–8
group characteristics and creativity 21–2, 209–10
Grupp, H. 149
Hagedoorn, J. 153
Hagstrom, W.O. 189
Heinrich-Hertz-Institute (HHI) 159–60
Hemlin, S. 208
hierarchical coordination 152, 153
high-tech innovation system, and science parks 99–101
higher education 104–23, 130, 133
Hirschberg, N. 208
Holm, S.-T. 86
Hörjel, N. 82, 84, 85, 86, 88–9
Hurley, J. 65
ICT and creativity 210–11
Ideon Science Park 80–102
IKEA and Ideon Science Park 84–5
ILMs (internal labour markets),
France 133
imagination and creativity 42
incentives for creativity 40, 194
individuals and creativity 11–14, 39–44, 60, 208–9
industrial CKEs 8–9
industry
and doctoral education 104–23
and Ideon Science Park 90–91
research school, Linköping University 109–11
informality and creativity 47–8
inner motivation 12, 40
innovation environments 17–19
academic 58–72
innovation processes, economic
coordination 151–4
innovation system, regional, role of
science parks 99–101
intellectual property rights and
cooperative research 160
interdisciplinary research 68–70, 196–7, 207–8
interinstitutional collaboration,
S. America 181–3, 183–4
internal labour markets, France 133
international collaboration, S. America
184–8, 188–9
interpersonal collaboration, S. America
181
intersectoral collaboration, S. America
183–4
intrinsic motivation 12, 40
Itkin, S. 208
Jacobsen, B. 32, 198
Kamprad, I. 84
Kanter, R.M. 17
Kasperson, C.J. 209
Kaukonen, E. 64
KK Foundation 105
Klahr, D. 194–5
Knowledge and Competence
Development, Foundation for
Advancement of 105
knowledge
and creativity 42
definition 5–6
discipline, and CKEs 206–8
production 174–6
see also publication of research; research
Kogan, M. 105
Koopman, P. 215
Kuhn, T.S. 31, 39, 198
Kwang, N.A. 32
Larédo, P. 142
leadership and creativity 46, 213
learning environment 108–9
Lechler, T. 20–21
Lindberg, L.N. 152
Lindén, J. 119
Linköping University, industry research
school 109–11
local government support, science parks
89, 96–7
Lubart, T.I. 12
Lund
Ideon Science Park University 80–102
University 81–3, 89–90
Luukkonen, T. 188
macro-level CKEs 199–205
market as coordination mechanism 152, 153
German telecom sector 156–60
market uncertainties and network
relations 127–8
Mason, G. 126
Matthew effect, scientific recognition 54
Max-Planck-Society (MPG) 163
McClelland, D.C. 208
Merton, R.K. 54
deso-level CKEs 199–205
micro-level CKEs 195–9, 199–205
Mode 2 knowledge production 175
Mohamed, M.Z. 34, 198
motivation for creativity 40, 194
MPG (Max-Planck-Society) 163
multidisciplinary research 196–7, 207–8
multinational firms and Ideon Science
Park 94
Mustar, P. 142
network-based regional development 79
network linkages, optoelectronics
establishments 134–46
network relations and labour market
networks as coordination mechanism 152, 153–4
Nieminen, M. 64
Nokia, R&D 158
non-university research organizations 159–60, 162–4
Not-Invented-Here syndrome 53
occupational labour markets (OLMs), Britain 133
openness and creativity 47–8
optoelectronics establishments 128–30
research links 134–46
Oredsson, S. 83
organizational collaboration, S.America 181–4
organizational influences on creativity 21–2, 44–54, 211–12
originality in research work 37–9
paradox perspective, research environments 35
Parker, S.K. 19, 21, 194
Pelz, D.C. 33, 52, 65, 198
Penser, E. 85, 86
personal qualities and creativity 11–14, 39–44, 60, 208–9
pharmaceutical biotechnology 161–4, 166–8
technological paradigm shift 155–6, 168–9, 203–4
PhD students and industry 104–23, 138
physical environment, CKEs 2–3, 211
policies for creativity 213–14
Pool, J. 215
Porter, M. 154
postgraduate education 104–23, 138
research intensive environment, doctoral students 113–16, 199–200
researcher characteristics 39–44, 208–9
resources, influence on creativity 49–50, 62–5
responsive creativity 13
rewards and creativity 40, 194
Rickards, T. 34, 198
Rochlin, G.I. 53
Route 128 79–80
Rushion, J.P. 208, 209
Sabato triangle 176
sacred spark theory 194
see also giftedness
Säljö, R. 108
Saxenian, A. 79, 99, 100
Schmoch, U. 149
science parks 80–102, 202
scientists, recruitment 126–7, 130, 133–4
Siemens, R&D 157
Silicon Valley 79–80
Simon, H.A. 42, 194–5
Simonton, D.K. 23, 208, 209
qualifications, scientists and engineers 126–7, 130, 133–4
see also higher education
quality in research work 37–9
recruitment, engineers and scientists 126–7, 130, 133–4
regional innovation systems 79–102, 202
relational entrepreneurs 94–5, 214
Ideon Science Park 99–100, 100–101, 202
research collaboration see collaborative research and development market, telecommunications 156–60
environment, effects on creativity 16–17, 58–72
field change, and creativity 14–15
funding see funding research linkages, optoelectronics establishments 134–46
see also collaborative research publication see publication of research schools, Sweden 107–8
teams 21–2, 44–50, 209–10
research-intensive environment, doctoral students 113–16, 199–200
researcher characteristics 39–44, 208–9
resources, influence on creativity 49–50, 62–5
responsive creativity 13
rewards and creativity 40, 194
Rickards, T. 34, 198
Rochlin, G.I. 53
Route 128 79–80
Rushion, J.P. 208, 209
Sabato triangle 176
sacred spark theory 194
see also giftedness
Säljö, R. 108
Saxenian, A. 79, 99, 100
Schmoch, U. 149
science parks 80–102, 202
scientists, recruitment 126–7, 130, 133–4
Siemens, R&D 157
Silicon Valley 79–80
Simon, H.A. 42, 194–5
Simonton, D.K. 23, 208, 209
qualities, scientists and engineers 126–7, 130, 133–4
see also higher education
quality in research work 37–9
recruitment, engineers and scientists 126–7, 130, 133–4
regional innovation systems 79–102, 202
relational entrepreneurs 94–5, 214
Ideon Science Park 99–100, 100–101, 202
research change see collaborative research and development market, telecommunications 156–60
environment, effects on creativity 16–17, 58–72
field change, and creativity 14–15
funding see funding research linkages, optoelectronics establishments 134–46
see also collaborative research publication see publication of research schools, Sweden 107–8
teams 21–2, 44–50, 209–10
research-intensive environment, doctoral students 113–16, 199–200
researcher characteristics 39–44, 208–9
resources, influence on creativity 49–50, 62–5
responsive creativity 13
rewards and creativity 40, 194
Rickards, T. 34, 198
Rochlin, G.I. 53
Route 128 79–80
Rushion, J.P. 208, 209
Sabato triangle 176
sacred spark theory 194
see also giftedness
Säljö, R. 108
Saxenian, A. 79, 99, 100
Schmoch, U. 149
science parks 80–102, 202
scientists, recruitment 126–7, 130, 133–4
Siemens, R&D 157
Silicon Valley 79–80
Simon, H.A. 42, 194–5
Simonton, D.K. 23, 208, 209
telecommunications
R&D, Germany 156–60, 165–6
technological paradigm shifts 154–5
tensions and creativity 18, 31–54, 197–9, 200, 201, 216
Thagaard, T. 51
Tijssen, R. 160
time use, and creativity 33, 48
tolerance and creativity 47
Triple Helix model 9–10, 80, 176

universities
CKEs 8–9
links with industry 138, 142–3
Lund University and Ideon Science Park 89–90
and research, Germany 159, 162–3
research environments 62–72
Unsworth, K.L. 12–13, 19, 21, 194

van Wijk, E. 160
variety-generating phase, strategy development 92–3
variety-reducing phase, strategy development 93–5
Vinkenberg, C.J. 22

Wagner, K. 126
Wallenberg, M. 84
Wallgren, L. 119
weak methods, problem solving 194–5
Weick, K.E. 6, 35
Westling, H. 81, 90
Woodman, R.W. 12, 18
workteam see research team
Ziman, J.M. 15
ZIRST Techopole, Grenoble 95–8