Index

academic research environments 62–72
see also universities
accord and creativity 32
actor interaction as coordination mechanism 153
Åkerman, N. 52, 197
Amabile, T.M. 1, 11–12, 18, 34, 41, 45, 62, 194, 198
America, South, research collaboration 179–89, 204–5
Anderson, N. 18
Andrews, F.M. 33, 40, 52, 65, 198
Asmervik, S. 33
autonomy and creativity 44–5, 46–7, 51, 65–7, 196
Axtell, C.M. 21
Barnett, R. 105
Becher, T. 105
Beret, P. 133
bilateral collaboration, S. America 185–8, 188–9
BioRegio programme 167
biotechnology industry, Germany 161–4
R&D policies 166–8
technological paradigm shift 155–6, 168–9
Bohlin, G. 87
Bouty, J. 21
Bradfield, J. 96
Britain
higher education 104–5, 130, 133
recruitment, engineers and scientists 126–7, 133–4, 201–2
research linkages, optoelectronics 134–46
budget see funding research
bureaucracy, impact on creativity 45–6
business model, biotech companies 162
Camagni, R. 127
Cambridge Science Park 95–8
Carpenter, M.P. 189
challenge and creativity 51
climate factors influencing creativity 18
co-authorship and research 177–8
S. America 178–81, 204–5
cognitive environment 3
cognitive factors in CKEs 22
collaborative research 68–70, 174–8, 204–5
S. America 178–89
communication 6
and creativity 43, 48–9
companies, relationship with doctoral students 112–20
constraints on CKEs 195–6
consultant environment, and doctoral students 113–15, 117–18, 200
contributory creativity 13
collaboration see collaborative research
coordination modes 151–4
biotechnology industry 161–4
telecommunications industry 156–60
creative tension 18, 31–54, 197–9, 200, 201, 216
creativity
definition 4–5
of individuals 39–44, 208–9
organizational influences 44–50
Csikszentmihalyi, M. 12, 59–60
cumulative advantage, effect on creativity 54
curiosity and creativity 42
customers, research links with optoelectronics firms 135, 140–41
Dalton, I. 83
Deutsche Forschungsgemeinschaft (DFG) 159, 163
Dewey, J. 108–9
Diehl, M. 196
discord and creativity see creative
tension
diversity in research teams 44
doctoral studies in industry 104–23
domain of creativity 59–60
Dougherty, D. 35, 198, 212
drug development, Germany 161–2
Drullhe, C. 95
economic coordination modes 151–4
education, higher 104–23, 130, 133
ingineering environment, doctoral
students 113–15, 116–17, 200
engineers, recruitment 126–7, 130,
133–4
environment
influence on creativity 14–15, 34
knowledge 6–11
see also research environment
Ericsson 83–4, 87–8
Ericsson Eurolab Gmbh 158
Etzkowitz, H. 109
European Union
and biotechnology research 167–8
and telecommunications research
165–6
expected creativity 13
extraorganizational environment, and
creativity 212–13
FENIX 111
field of creativity 60
finance see funding research
financial rewards and creativity 40
Finland, academic research environment
63–72
Ford, C.M. 6, 18–19
Forsen, S. 82, 83
Första Fastighetsbolaget Ideon (FFI) 85
Foss Hansen, H. 35, 198
Foundation for Advancement of
Knowledge and Competence
Development 105
Frame, J.D. 189
frame breaker 93
France
higher education, engineering and
science 130, 133
research links, optoelectronics firms
134–46
freedom and creativity 44–5, 46–7, 51,
65–7, 196
funding research 62–5
Finland 70–71
Germany 147, 160, 164–5
less developed countries 176–7
Garfield, E. 180
Garnsey, E. 95
German Research Council 159, 163
Germany
biotechnology industry 161–4, 166–8
recruitment engineers and scientists
126–7
telecommunication industry 154–5,
156–60
Gibbons, M. 109, 122, 200, 204
giftedness 60, 194
Goodlad, S. 105
government CKEs 9
government support
biotechnology, Germany 166–7
Ideon Science Park 88–9
telecommunications research,
Germany 165
Graversen, E.K. 64, 68
Great Britain see Britain
Grenoble science park 95–8
group characteristics and creativity 21–2,
209–10
Grupp, H. 149
Hagedoor, J. 153
Hagstrom, W.O. 189
Heinrich-Hertz-Institute (HHI) 159–60
Hemlin, S. 208
hierarchical coordination 152, 153
high-tech innovation system, and science
parks 99–101
higher education 104–23, 130, 133
Hirschberg, N. 208
Holm, S.-T. 86
Hörjel, N. 82, 84, 85, 86, 88–9
Hurley, J. 65
ICT and creativity 210–11
Ideon Science Park 80–102
IKEA and Ideon Science Park 84–5
ILMs (internal labour markets),
Index

France 133
imagination and creativity 42
incentives for creativity 40, 194
individuals and creativity 11–14, 39–44,
60, 208–9
industrial CKEs 8–9
industry
and doctoral education 104–23
and Ideon Science Park 90–91
research school, Linköping University
109–11
informality and creativity 47–8
inner motivation 12, 40
innovation environments 17–19
academic 58–72
innovation processes, economic
coordination 151–4
innovation system, regional, role of
science parks 99–101
intellectual property rights and
cooperative research 160
interdisciplinary research 68–70, 196–7,
207–8
interinstitutional collaboration,
S. America 181–3, 183–4
internal labour markets, France 133
international collaboration, S. America
184–8, 188–9
interpersonal collaboration, S. America
181
intersectoral collaboration, S. America
183–4
intrinsic motivation 12, 40
Itkin, S. 208
Jacobsen, B. 32, 198
Kamprad, I. 84
Kanter, R.M. 17
Kasperson, C.J. 209
Kaukonen, E. 64
KK Foundation 105
Klahr, D. 194–5
Knowledge and Competence
Development, Foundation for
Advancement of 105
knowledge
and creativity 42
definition 5–6
discipline, and CKEs 206–8
production 174–6
see also publication of research;
research
Kogan, M. 105
Koopman, P. 215
Kuhn, T.S. 31, 39, 198
Kwang, N.A. 32
Larédo, P. 142
leadership and creativity 46, 213
learning environment 108–9
Lechler, T. 20–21
Lindberg, L.N. 152
Lindén, J. 119
Linköping University, industry research
school 109–11
local government support, science parks
89, 96–7
Lubart, T.I. 12
Lund
Ideon Science Park University 80–102
University 81–3, 89–90
Luukkonen, T. 188
macro-level CKEs 199–205
market as coordination mechanism 152,
153
German telecom sector 156–60
market uncertainties and network
relations 127–8
Mason, G. 126
Matthew effect, scientific recognition 54
Max-Planck-Society (MPG) 163
McClelland, D.C. 208
Merton, R.K. 54
meso-level CKEs 199–205
micro-level CKEs 195–9, 199–205
Mode 2 knowledge production 175
Mohamed, M.Z. 34, 198
motivation for creativity 40, 194
MPG (Max-Planck-Society) 163
multidisciplinary research 196–7, 207–8
multinational firms and Ideon Science
Park 94
Mustar, P. 142
network-based regional development 79
network linkages, optoelectronics
establishments 134–46
network relations and labour market
Index

127–8
networks as coordination mechanism 152, 153–4
Nieminen, M. 64
Nokia, R&D 158
non-university research organizations 159–60, 162–4
Not-Invented-Here syndrome 53
occupational labour markets (OLMs), Britain 133
openness and creativity 47–8
optoelectronics establishments 128–30
recruitment 133–4
research links 134–46
Oredsson, S. 83
organizational collaboration, S.America 181–4
organizational influences on creativity 21–2, 44–50, 211–12
originality in research work 37–9
paradox perspective, research environments 35
Parker, S.K. 19, 21, 194
Pelz, D.C. 33, 52, 65, 198
Penser, E. 85, 86
personal qualities and creativity 11–14, 39–44, 60, 208–9
pharmaceutical biotechnology
R&D, Germany 161–4, 166–8
technological paradigm shift 155–6, 168–9, 203–4
PhD students and industry 104–23, 138
physical environment, CKEs 2–3, 211
policies for creativity 213–14
Pool, J. 215
Porter, M. 154
postgraduate education 104–23, 138
see also higher education
proactive creativity 13
public CKEs 9
public sector research
Germany 164–8
network links 135
publication of research
collaborative 160, 178–89
freedom 118–19
reflecting research constraints 67
qualifications, scientists and engineers 126–7, 130, 133–4
see also higher education
quality in research work 37–9
recruitment, engineers and scientists 126–7, 130, 133–4
regional innovation systems 79–102, 202
relational entrepreneurs 94–5, 214
Ideon Science Park 99–100, 100–101, 202
research
collaboration see collaborative research
and development market,
telecommunications 156–60
environment, effects on creativity 16–17, 58–72
field change, and creativity 14–15
funding see funding research
linkages, optoelectronics establishments 134–46
see also collaborative research
publication see publication of research
schools, Sweden 107–8
teams 21–2, 44–50, 209–10
research-intensive environment, doctoral students 113–16, 199–200
researcher characteristics 39–44, 208–9
resources, influence on creativity 49–50, 62–5
responsive creativity 13
rewards and creativity 40, 194
Rickards, T. 34, 198
Rochlin, G.I. 53
Route 128 79–80
Rushion, J.P. 208, 209
Sabato triangle 176
sacred spark theory 194
see also giftedness
Säljö, R. 108
Saxenian, A. 79, 99, 100
Schmoch, U. 149
science parks 80–102, 202
scientists, recruitment 126–7, 130, 133–4
Siemens, R&D 157
Silicon Valley 79–80
Simon, H.A. 42, 194–5
Simonton, D.K. 23, 208, 209
size of research group, and creativity 49–50
social characteristics of work team, and creativity 20–21, 47–9
social environment, CKEs 3, 19
societal CKEs 9
Sonntag, S. 20
South America, research collaboration 179–89, 204–5
Spangenberg, J.F.A. 194
Sparrowe, R.T. 20
state as coordination mechanism 152–3
state funding see government support
Sternberg, R.J. 11, 12, 198
stimulating CKEs 205–13
Stjernquist, N. 83, 89
strategy development, regional innovation system 91–5
Stroebel, W. 196
SUN (foundation for university-industry cooperation) 83
supervision, industrial doctoral students 119, 121
supply-chain partners, research links 135, 140–42
support and creativity 51
Sweden
doctoral education 104–23
Ideon Science Park 80–102, 202
Tardif, T.Z. 198
task characteristics, and creativity 20, 206
team characteristics 21–2, 44–50, 209–10
team climate 18
technological paradigm shifts 154–6
Teknopol 87
telecommunications
R&D, Germany 156–60, 165–6
technological paradigm shifts 154–5
tensions and creativity 18, 31–54, 197–9, 200, 201, 216
Thagaard, T. 51
Tijssen, R. 160
time use, and creativity 33, 48
tolerance and creativity 47
Triple Helix model 9–10, 80, 176
universities
CKEs 8–9
links with industry 138, 142–3
Lund University and Ideon Science Park 89–90
and research, Germany 159, 162–3
research environments 62–72
Unsworth, K.L. 12–13, 19, 21, 194
van Wijk, E. 160
variety-generating phase, strategy development 92–3
variety-reducing phase, strategy development 93–5
Vinkenberg, C.J. 22
Wagner, K. 126
Wallenberg, M. 84
Wallgren, L. 119
weak methods, problem solving 194–5
Weick, K.E. 6, 35
Westling, H. 81, 90
Woodman, R.W. 12, 18
workteam see research team
Ziman, J.M. 15
ZIRST Techopole, Grenoble 95–8