Index

Abramovitz, M. 10, 13
Abramson, A. 149
adoption of new technology 16, 17, 434, 438
adoption decisions 24–5, 29, 30
catastrophe adoption path 430, 431, 435
continuous adoption path 430
epidemic adoption theory 432, 433, 436
equilibrium adoption theory 428–9, 431, 432, 433, 436
fax machines 433, 434
increasing returns to adoption 23–4, 34
network effects 428, 429, 430, 431
uncertainty 439
see also competing technologies; real options model of technology adoption; robots
Aghion, P. 302
Aitchinson, J. 444
Aitken, H. 141
Akerlof, G. 189
Allen, R. 243
Alma-Tadema, L. 179, 180, 181, 182, 183
Alston, L. 324
American Telephone and Telegraph (AT&T) 120, 122, 127, 141
share of US patenting 141, 142, 143
technological specialisation path dependency 154
profile of 46–8, 149, 150, 151, 152, 153
Andersen, H. 128
Antonelli, C. 158
Aoki, M. 353
Archibugi, D. 128, 365, 366
Arora, A. 80
Arrow, K. 13, 55, 241
art
inter-painter price relationships 201, 202
oil paintings prices of 179
price measures of demand 165, 166, 167–77, 190–93, 195–6
‘fad component’ 193–5
inherently good painters 198–9, 200
study data 177, 178
study methodology 177, 178, 180
tastes avant-garde effect 188–9, 196, 197, 198, 199, 200–201
characteristics approach 164–5
conformity effect 188, 196, 197, 201
path dependence 162, 163, 182, 183
volatility of 160, 161, 162
trends in popularity of artists 180–82, 183, 188, 189, 197, 198, 201, 202–3
see also taste
Arthur, W. 24, 25, 26, 30, 31, 36, 39, 60, 118
Arundel, A. 363, 367, 369
AT&T, see American Telephone and Telegraph
Atkinson, A. 58
Audretsch, D. 256
Ayers, F. 173
Bacharach, M. 164
Balassa, B. 373
Banerjee, A. 24
Barnes, R. 161
Barré, R. 258
Barrera, M. 127, 137
Basberg, B. 128
Baumol, W. 158, 160
Bayer 120
Index

share of US patenting 131
ftechnological specialisation 154
path dependency 154
profile of 133, 134, 135, 136, 137, 150, 151, 152
see also IG Farben
Bayma, T. 341
Beaton, K. 122
Beaver, D. 256
Becker, G. 160, 189
Beer, J. 119, 129, 136
Bell, A. 141
Bell, C. 161
Bell, Q. 161
Beniger, J. 213
Berndt, E. 457
Bernheim, B. 24
Berthet, M. 245, 249
Bessen, J. 420
Bianchi, M. 160
Bienz-Tadmor, B. 78
Birdzell, L. 324, 327
Bonnard, P. 181, 182, 183
Bordo, M. 325
Boucher, F. 181, 182, 183
Bound, J. 126
Bourdieu, P. 159
Boyer, H. 77
Braun, T. 365
Bresnahan, T. 332, 389
Brock, W. 24
Brown, J. 308, 309, 311, 444
Brynjolfsson, E. 24
Burstall, M. 85

Caballero, R.-J. 439, 440
Callon, M. 242, 255, 256
Canaletto, A. 179, 181, 182, 183
Cantwell, J. 365, 369, 374
Carlsson, B. 365
Casson, M. 297
Centre National de la Recherche Scientifique (CNRS) study of collaboration between researchers 258–91
Cézanne, P. 179, 181, 182, 183
Chandler, A. 71, 121, 122, 130, 153, 299
Chanel, O. 165
chemical industry 119–20

geographic origin of research activities 370, 371, 372
knowledge specialisation 373–5, 376, 377, 378, 379, 380
shares of US patenting 131
ftechnological specialisation 151
see also Bayer; Du Pont; IG Farben
Chien, R. 84
Church, J. 24, 25
Claude Gellée 181, 182, 183
CNRS, see Centre National de la Recherche Scientifique
co-publication in scientific research 255
determinants of 255, 256
future research on 285, 286
see also Centre National de la Recherche Scientifique
Coase, R. 7
Cockburn, I. 77, 79, 81, 82
Cohen, M. 296
Cohendet, P. 303
Coleman, D. 122
Collins, W. 180, 181, 182, 183
communities of practice
interaction with epistemic communities 314
learning in 306–7, 309, 310, 311
fcompeting technologies 29
models of 27–9, 30–34, 35, 36–9
proof of proposition 1 40–41
proof of proposition 2 41–3
proof of proposition 4 43–6
rate of convergence to technological monopoly/market sharing 35–9
sequence of historical events 38
time required 38, 39
relative impact of increasing returns and degree of heterogeneity 38, 39
competitive advantage in industry 209
composition effects 59, 60, 61
computer manufacturers 217
software systems 217, 218
see also information and communication technology
Conant, J. 364
condensed matter physics 258
conspicuous consumption 159
Constable, J. 181, 182, 183
Cottereau, A. 248, 249, 250
Index 477

Cowan, R. 24, 25, 30, 31, 160, 306
Cozzi, G. 160
creativity 62, 63, 64
Crémer, J. 313
cross-licensing agreements 340, 343
Cusumano, M. 24, 29
Cyert, R. 296

dalum, B. 374
Dasgupta, P. 7, 232, 240, 242, 251, 255, 323, 326, 328, 347, 348, 364
data warehouses 229
de-centred and distributed learning 310, 311, 312
communication 312–13
de Gennes, P.-G. 258
de Lasalle, P. 244, 246–7, 249
de-localisation of knowledge 212–14
De Marchi, N. 160, 164
De Piles, R. 164, 165
Deane, P. 177, 178, 179
Debreu, G. 13
decentralised system of knowledge management 231–2
decision-making structures 64
Degas, E. 181, 182, 183
Deng, Z. 333
Diamond, A. 255
diffusion of innovations and new technology 16, 17
fax machines 433, 434
see also adoption of new technology; real options model of technology adoption; robots
dissonance 311
distant past historicism 167
distributed information technology 217, 218
Dixit, A. 439, 443, 444
Dornseifer, B. 130
Dosi, G. 160, 296, 299
Driver, C. 439, 440
Du Pont 120, 122, 127
share of US patenting 131
technological development 129–30
technological specialisation path dependency 154
profile of 137–40, 150, 151, 152
Duguid, P. 308, 309, 311
Durlauf, S. 24
dynamic efficiency of economic systems, conditions for 61–6, 67

eckhardt, S. 82
economic theory 3, 4
economics of science 255, 256
Economides, N. 24, 433
economics of learning 208
Edison, T. 141, 143
Egidi, M. 299
Eisenberg, R. 325, 338, 340
electrical equipment industry 120
development of 141
shares of US patenting 141–3
technological specialisation 151
vertically integrated systems 141, 149
see also American Telephone and Telegraph; General Electric
Eliasson, G. 296, 308
Engel, E. 439
enterprise management software 229
epistemic communities interactions with communities of practice 314
production of knowledge 306
ergodic processes 52, 53
Ernst and Young 81
ETAN 332, 333, 334
European Commission 365, 369
European Technology Assessment Network (ETAN) 332, 333, 334
experimental learning 307, 308, 311–12
Fagerberg, J. 366
Fai, F. 118, 119
Falcon, J.-P. 244, 249
Farrell, J. 24, 34, 433
Favereau, O. 298
fax machines 433, 434
Federal Reserve Bank of Dallas 223
Filene, E. 214, 217
firms building of a common knowledge specific to the firm 313–14
Index

core competences 300
exchange of knowledge through networks 301, 302
governance 304, 305
knowledge formation in the firm 309, 310
management of collectively distributed knowledge within the organisation 308, 309
non-core competences 301
peripheral activities 302
ranking of activities 302, 303, 304, 314
declassifying routines 303–4
structure of governance 304
theories of 296, 297
competence 300, 304, 305
principal/agent theory 297–8
processor of information, as 297–8
processor of knowledge, as 298–9
transaction cost 298, 300
flexible production 216, 217, 222; see also product variety
Foray, D. 158, 255, 258, 361, 367
Ford, H. 213, 216, 339
Ford Motor Company 216
forgetting 311
Foss, N. 296, 302
Frank, R. 160, 189
Fransman, M. 296
Freeman, C. 133
Frey Jr., C. 418
Frey, B. 160
Frost, R. 8

Galambos, L. 71
Gambardella, A. 71, 77, 79, 80, 81, 370
Gandal, N. 24, 25
General Electric 120, 122, 127, 141
share of US patenting 142, 143
technological specialisation
path dependency 146, 154
profile of 143–6, 150, 151, 152, 153
General Motors 216
general purpose technologies (GPTs)
analysis of
data 390, 391
generality measurement 393, 395–400, 419, 420, 421, 423
identifying GPT patents 410, 413–17, 418, 419
definition of 390
ICT-related patents 418, 419
patent characteristics 392
see also patent citations; patents
geographic origins of research
activities 370, 371, 372
Ghoshal, S. 305, 311, 312
Gibbons, M. 255, 308
Gilbert, R. 336
Ginsburgh, V. 160
globalisation as cause of technological change 65
Godin, B. 365, 373
Gogh, V. van 160, 181, 182, 183, 188
Gombrich, E. 161, 162
Gomperts, P. 331
Goodwin, C. 160
Gorman, W. 164
Gould, S. 57
GPTs, see general purpose technologies
Grabowski, H. 78, 84
Grampp, W. 160
Granstrand, O. 366, 379
Green, J. 337
Greenstein, S. 328
Griliches, Z. 16, 123, 127, 128
Grindley, P. 340, 343
Grossman, S. 335
growth 66
conditions for 61–6
Guerrioni, G. 177

Haber, L. 119, 129
Hadley, W. 340
Hall, B. 329, 340
Hals, F. 180, 181, 182, 183
Hand, J. 333
Hart, O. 335
Hayek, F. von 299
Heckman, J. 455
Heller, M. 325, 338, 340
Helpman, E. 389, 390
Henderson, R. 71, 77, 79, 81, 82, 85, 346, 393, 397
Heston, A. 450
higher education, see university-based research
Hill, B. 41, 43
Index

Himmelberg, C. 433
Hounshell, D. 122, 126, 130, 137, 140, 213, 214, 215, 216
Hughes, T. 141, 213
Hunt, R. 420

Iansiti, M. 366
ICT, see information and communication technology
 IG Farben 120, 122, 127, 133
 share of US patenting 131
 technological development 129, 130
 technological specialisation
 path dependency 154
 profile of 133, 134, 135, 136, 137, 150, 151, 152
 see also Bayer
 IMF 450
 incentives and institutional standards
 224, 225, 226, 249, 328, 329–30
 increasing returns to adoption 23–4, 25, 26, 34, 39
 individual knowledge 208
 individual learning 208
 information and communication technology (ICT) 11
 construction of integrated systems 218–19
 decentralising information processing 218, 219
 distributed technology 217, 218
 incentives and institutional standards 226
 interpersonal communication
 226–8
 minicomputers 218
 modelling business processes 228–9
 patents 418, 419
 supporting local learning 219, 220
 see also computer manufacturers; software
 information search costs 334
 innovation economics 3, 4, 5, 6
 innovative capacity 4, 5
 intellectual property 12, 335
 security interests in 333–4
 see also patents
 intensive use of knowledge 8
 International Monetary Fund (IMF) 450
 interpersonal communication
 exchange of knowledge 226–8
 interrelatedness of technology 150
 Ireland, N. 444
 Ironmonger, D. 164
 irreversibility 59
 Islas, J. 24

 Jacque, J.-M. 248, 249, 250
 Jaffe, A. 393, 395, 397
 Janson, A. 188
 Janson, H. 188
 Jensen, R. 439
 Jones, R. 122
 Joskow, P. 456
 Kahneman, D. 55
 Karshenas, K. 443, 447, 456
 Katz, J. 256
 Katz, M. 23, 24, 25, 27, 29, 31
 Kenmer, C. 24
 Kenney, M. 349
 Kirman, A. 190
 Klemperer, P. 336
 Klevorick, A. 83
 knowledge 6
 circulation 210
 codification 10
 de-localisation of 12–14
 individual 208
 intensive use of 8
 management 230, 231, 232–3
 decentralised system of 231–2
 meaning of 230–31
 organisational 208
 value of 209
 production of 8
 public domain 7, 12
 financing of knowledge production 240–41
 public–private interactions 12
 role of, in industry 211, 212
 tacit 10, 11
 transfers of 12
 see also knowledge commons;
 knowledge integration;
 knowledge openness;
 knowledge persistence;
 knowledge specialisation
knowledge commons 8, 9
localised 58, 60
knowledge integration 363, 366, 367, 368
chemical and pharmaceutical industries 375–6, 377, 378, 379, 380
future research 381
policies for 380
knowledge openness 239, 240, 241, 242
collective ethos 246, 247, 248
efficiency of 248–50
establishment of technical standards 249
reward system 248, 250, 251
see also open science; open source software; open technology
knowledge persistence 362, 364, 365, 366
chemical and pharmaceutical industries 373–5, 377, 378, 379, 380
future research 381
see also knowledge integration
knowledge specialisation
RSI index 381–2
specialisation profiles of chemical and pharmaceutical industries 377–8, 380
see also knowledge integration; knowledge persistence; technological specialisation
Konno, N. 304
Kortum, S. 342
Koski, H. 37
Kremer, M. 344
Krugman, P. 26

Lamoreaux, N. 71, 334
Lancaster, K. 164
Landau, R. 366
Landseer, E. 180, 181, 182, 183
Lane, D. 24
Langlois, R. 296, 302, 328, 339
Lasdon, L. 180
Leahy, J. 439
Leamer, E. 278
learning 308
by doing 9, 10
de-centred and distributed 310, 311, 312, 313
economies of 208
experimental 307, 308, 311–12
governance for 313
individual 208
organisational 208
‘technology of 208–9
through error production 310
see also communities of practice
Leibig, J. 82
Lerner, J. 342
Lev, B. 333
Liebowitz, S. 24, 29
Linden, G. 329, 330
Llerena, P. 314
Loasby, B. 296
localised introduction of new technologies 58
factors affecting 65
localised knowledge commons 58, 60
localised problem-solving 229
lock-in effects 14, 15, 61, 119
Lundvall, B. 307, 361
Lyons silk industry
diffusion of new technology 248–50
invention in 243–4
sharing of knowledge 244–8, 250, 251

Maclaurin, W. 143
Madison, J. 16
Magalhães, R. 309
Malerba, F. 365
Malo, S. 367, 370
Malraux, A. 162
Manet, E. 181, 182, 183, 188
Mansfield, E. 364, 439
March, J. 296, 299, 305
Marcus, G. 162
Marengo, L. 296, 299
Margolis, S. 24, 29
market sharing 23, 26, 34; see also competing technologies
markets for technology
financial institutions, role of 331
global market 349–53
information search costs 334
institutional settings 327
intellectual property rights 335
security interests in 333–4
limitation of liability 334
patent offices, role of 341–3
patent-pooling agreements 343
patents 335, 336, 337–8
‘efficient breach’ 344
extension of ‘eminent domain’ 344
fragmentation 338, 339, 340, 343, 344
legal costs 340
research and development tax credits 332–3
standards 328, 329–30
startup firms, government support for 332
technology suppliers, role of 331, 344
university research 344
valuation of technology 333
venture capitalists, role of 331–2
Marriot, O. 122
Martin, B. 380
mass production system 213, 214, 216, 217
information goods 220–21
Matraves, C. 74
Maxwell, R. 82
McCain, R. 160
McCormick, C. 214, 215
McCormick, L. 214, 215
McCormick Reaper Works 214, 215
production system 214–16
McDermott, C. 162
McPherson, M. 160
Meissonier, E. 180, 181, 182, 183
Meliciani, V. 365
memory 230, 311
Menger, P.-M. 160
Merges, R. 78, 335, 337, 340
Merton, R. 364
Metcalfe, J. 65
Metcalfe, S. 308
minicomputers 218
Mitchell, B. 177, 178, 179
Monet, C. 164, 181, 182, 183, 188
Moore, J. 335
moral property rights 241, 242
Moreton, D. 439, 440
Mowery, D. 345, 346, 347, 349
Mullins, N. 256
Musil, R. 471, 472
Narin, F. 364, 367
Nash, L. 364
national competitiveness, scientific and technological specialisation, role of 362
National Research Council 340
national systems of innovation (NSI) 361
Nattier, J.-M. 180, 181, 182, 183
Nelson, R. 78, 120, 136, 299, 312, 337, 340, 361
network effects 15, 24, 29, 428, 429, 430, 431
Newey, W. 457
Nijkamp, P. 37
Nohria, N. 305, 311, 312
non-ergodic processes 52, 53; see also past dependence; path dependence
Nonaka, I. 304
Nooetheboom, B. 308, 312
North, D. 324
NSI 361
Nuvolari, A. 243
OECD 307
Office of Science and Technology (OST) 365
Office of Technology Assessment and Forecast (OTAF) 392
oil firms, shares of US patenting 132
open science 7–8; see also knowledge openness
open source software 227
open technology 243, 251; see also knowledge openness; Lyons silk industry
Oren, S. 24
Organisation for Economic Cooperation and Development (OECD) 307
organisational capability 208
organisational knowledge 208
value of 209
organisational learning 208
organisational memory 230
Orsenigo, L. 365, 370
patent citations 391–2
citation lags 407, 408, 409
highly cited patents 393, 394
characteristics of 408, 409, 410
generality measures 400, 401–2
probability of 410, 411–12
technology sub-categories of 421, 422, 423
see also general purpose
technologies; patents
patents
characteristics of 409
cross-licensing agreements 340, 343
growth of patent classes 400, 403–5, 406, 407, 409
legal costs 340
pharmaceutical industry 78, 83, 87
technology sub-categories of 421, 422, 423
university-based research 345, 346
see also general purpose
technologies; markets for
technology; patent citations
path dependence 51, 52, 53, 54, 56, 60–61, 66, 67, 118
characteristics of 52, 54
definitions of 163
external factors, role of 58, 59, 60
feedbacks 54, 55, 56, 119
internal factors, role of 58, 59, 60, 61
irreversibility 54, 55
local externalities 54, 55, 56, 58
lock-in 61
sequence of steps 54
strength of 119
theory of 13–15
path independence 163
Pavitt, K. 123, 128, 362, 365, 366, 369, 373
Peltzman, S. 84
Penrose, E. 299
personal computers
construction of integrated systems 218–19
decentralising information processing 218, 219
supporting local learning 219, 220
pharmaceutical industry 70, 71
biotechnology
development of 81
impact of 77, 78, 79
collaborative research 80, 81
commercialisation of penicillin 72
competition 75
development of 71–2, 113
geographic origin of research activities 371, 372
health-care systems, structure of 84
innovation 85–6
economic benefits from 73, 74, 75
forms of 75
imitator firms 93
innovative firms 93
levels of 73, 74
knowledge specialisation 373–5, 376, 377, 378, 379, 380
levels of concentration 75–6, 86
model of new drug development 87–92, 93, 114
extension of time of patent protection, effect of 108, 113
firms’ activity in different therapeutic categories 106
imitative products, number of 101, 102, 103, 104
increase in number of firms, effect of 108, 113
increase in stringency of approval procedures, effect of 108, 113
innovative products, number of 101, 102, 103, 104
innovative products, share of 105
market concentration 94, 95, 96, 108
number of firms in each therapeutic area 100
number of innovative and imitative products in each therapeutic area 108, 109, 110, 111, 112
number of products in therapeutic area 99
number of therapeutic areas discovered 98
performance index 107
surviving firms 97
new firm entrants 75, 78
patents 78, 83, 87
price regulation 84, 85
product approval 83–4, 87
publicly funded research 76, 82–3
random screening 71, 73, 74, 75, 76
source of first-mover advantage 75
rate of technological change 81
rational drug design 76, 77
research approach 70, 72, 73
transforming research into successful products 372
university research 82
university spin-offs 77
vertical integration 81
Pharmaceutical Manufacturers Association 78
Pianta, M. 365, 366
Pindyck, R. 439, 440, 443, 444
Pisano, G. 71, 362, 366, 370
Pissarro, C. 181, 182, 183
Plumpe, G. 122, 126, 127, 129
Ponnerehne, W. 160
Porter, M. 362
Prencipe, A. 366
Price, D. de S. 365
Price, R. 16
producer–user relationship in industry 212
product diversification, link to technological diversification 153
product selection decisions 25, 29, 30, 37
product variety 221, 222, 223
decentralisation, need for 223, 224, 225
see also flexible production
productivity of scientific research, determinants of 255
prospect theory 55
public and quasi-public databases 341
Quillen, C. 340
Rallet, A. 258
Rauch, J. 26
real options model of technology adoption 439–40, 442–50
data sources 450, 463–4
descriptive statistics 451–4
methodology 455–7, 463, 464, 465
see also robots
recent past historicism 167
Reich, L. 120, 122, 126, 127, 141, 143, 146, 149
Reitlinger, G. 166, 177, 179
Rembrandt van Ryn 181, 182, 183
Renoir, P. 181, 182, 183, 188
reputation capital 241
research and development (R&D) tax credits 332–3
Rheims, M. 161
Richardson, G. 299
Robertson, P. 328
robots 440–41
adoption of 441
determinants of 458, 459, 460
government policy changes, effect of 460–62
numbers 453, 454, 456
uncertainty, impact of 462–3
application areas 441
investment in 441
volatility of 441, 442
prices 450, 453, 454, 455, 456, 458, 460, 463
see also real options model of technology adoption
Rohlfs, J. 24
Roos, J. 309
Rose, N. 456
Rosen, R. 256
Rosenberg, N. 24, 136, 213, 324, 327, 362, 366, 389
Rostoker, M. 340
Ruskin, J. 158, 160, 164, 166
Ruttan, V. 55
Saloner, G. 24, 34
Sanderson, W. 9, 307
Santangelo, G. 153
Saviotti, P. 24
Scherer, F. 123, 126
Schmookler, J. 121, 123, 126
Schwartzman, D. 71
Schwerin, J. 243
Science Citation Index (SCI) 279, 281, 282
Scotchmer, S. 337
sectoral knowledge bases 367, 368; see also knowledge specialisation
security interests in intellectual property rights 333–4
self-sustaining process of growth and innovation 62, 63
Sewell, J. 71
Shapiro, C. 23, 24, 25, 27, 29, 31, 336, 433
Sharp, M. 372
Shi, Y. 255
Shrum, W. 256
Silverman, B. 395, 398
Simon, H. 299
Sisley, A. 181, 182, 183
slack 311
Sloan, A. 217, 219
Smith, A. 164, 189, 212
Smith, J. 122, 126, 130, 137, 140
Smith, S. 24
social referral networks 229–30
Soete, L. 123, 365, 373
software
enterprise management 229
open source 227
systems 217, 218
Sokoloff, K. 334
Solimano, A. 439, 440
Somaya, D. 329, 330
startup firms 332
Stephan, P. 255, 256
Sternberg, R. 378
Stigler, G. 212
Stiglitz, J. 58
Stocking, G. 122
Storper, M. 278
Sturchio, J. 71
Summers, R. 450
Sutton, J. 74
Swann, G. 198, 201, 203
Swanson, R. 77
systematisation 213

tacit knowledge 10, 11
taste
aspiration 160
association 160

bandwagons of 190
conformity 189
distinction 159, 160, 189
path dependence of 162, 163, 182
price as a measure of 165, 166
volatility of 160, 161–2
see also art
technological commons 57
technological disparities between firms 210
technological diversification
interrelatedness of technological activities 153–4
link to product diversification 153
motives for 153
see also technological specialisation

technological knowledge 4, 5
collective activity, as 56–7

technological monopolies 23
different monopolies in different markets 39
increasing returns to adoption 25, 26, 39
see also competing technologies
‘technological opportunity’ 209
technological specialisation 362
research study
data 121–2
measure of specialisation 122–8
see also American Telephone and Telegraph; Bayer; Du Pont; General Electric; IG Farben; knowledge specialisation; technological diversification
technology adoption, see adoption of new technology
‘technology of learning’ 208–9
technology suppliers 331, 344
technology transfer 208
Teece, D. 299, 340, 343
Thomas, L. 84, 85
Throsby, D. 160
Tijessen, R. 369
Tirole, J. 302
Toniolo, G. 309, 310
Torre, A. 258
Trickett, A. 24
Tversky, A. 55
<table>
<thead>
<tr>
<th>university-based research</th>
<th>von Krogh, G. 309, 313</th>
</tr>
</thead>
<tbody>
<tr>
<td>commercialisation 345</td>
<td>von Krogh, G. 309, 313</td>
</tr>
<tr>
<td>impact on academic norms</td>
<td>Vopel, K. 395, 420, 421</td>
</tr>
<tr>
<td>licensing 345, 346</td>
<td>Walras, M.-E.L. 13, 14</td>
</tr>
<tr>
<td>patents 345, 346</td>
<td>Walsh, J. 341</td>
</tr>
<tr>
<td>university spin-offs 77</td>
<td>Waren, A. 180</td>
</tr>
<tr>
<td>valuation of technology</td>
<td>Wenger, E. 306, 311</td>
</tr>
<tr>
<td>van Gogh, V. 160, 181, 182, 183, 188</td>
<td>White, M. 165</td>
</tr>
<tr>
<td>van Wijk, E. 369</td>
<td>Whited, T. 439</td>
</tr>
<tr>
<td>Vaucanson, J. 244, 249</td>
<td>Wilkins, M. 122</td>
</tr>
<tr>
<td>Veblen, T. 159</td>
<td>Wilkinson, L. 215</td>
</tr>
<tr>
<td>Venables, A. 26</td>
<td>Wilson, G. 249</td>
</tr>
<tr>
<td>venture capitalists 331–2</td>
<td>Winter, S. 26, 118, 120, 136, 299</td>
</tr>
<tr>
<td>Vernon, J. 78, 84</td>
<td>Witt, U. 55</td>
</tr>
<tr>
<td>Vicari, S. 309, 310</td>
<td>Young, A. 212</td>
</tr>
<tr>
<td>Vincenti, W. 347, 366</td>
<td>Ziedonis, R. 329, 340, 346, 347, 420</td>
</tr>
<tr>
<td>von Hippel, E. 243</td>
<td>Zucker, L. 278</td>
</tr>
<tr>
<td></td>
<td>Zuscovitch, E. 301</td>
</tr>
</tbody>
</table>