Index

Abramovitz, M. 10, 13
Abramson, A. 149
adoption of new technology 16, 17, 434, 438
adoption decisions 24–5, 29, 30
catastrophe adoption path 430, 431, 435
continuous adoption path 430
etic adoption theory 432, 433, 436
equilibrium adoption theory 428–9, 431, 432, 433, 436
Fax machines 433, 434
increasing returns to adoption 23–4, 34
network effects 428, 429, 430, 431
uncertainty 439
see also competing technologies; real options model of technology adoption; robots

Aghion, P. 302
Aitchinson, J. 444
Aitken, H. 141
Akerlof, G. 189
Allen, R. 243
Alma-Tadema, L. 179, 180, 181, 182, 183
Alston, L. 324
American Telephone and Telegraph (AT&T) 120, 122, 127, 141
share of US patenting 141, 142, 143
technological specialisation path dependency 154
profile of 46–8, 149, 150, 151, 152, 153
Andersen, H. 128
Antonelli, C. 158
Aoki, M. 353
Archibugi, D. 128, 365, 366
Arora, A. 80
Arrow, K. 13, 55, 241

Inter-painter price relationships 201, 202
oil paintings prices of 179
price measures of demand 165, 166, 167–77, 190–93, 195–6
‘fad component’ 193–5
inherently good painters 198–9, 200
study data 177, 178
study methodology 177, 178, 180
tastes avant-garde effect 188–9, 196, 197, 198, 199, 200–201
characteristics approach 164–5
conformity effect 188, 196, 197, 201
path dependence 162, 163, 182, 183
vatility of 160, 161, 162
trends in popularity of artists 180–82, 183, 188, 189, 197, 198, 201, 202–3
see also taste

Arthur, W. 24, 25, 26, 30, 31, 36, 39, 60, 118
Arundel, A. 363, 367, 369
AT&T, see American Telephone and Telegraph

Atkinson, A. 58
Audretsch, D. 256
Ayers, F. 173

Bacharach, M. 164
Balassa, B. 373
Banerjee, A. 24
Barnes, R. 161
Barré, R. 258
Barrera, M. 127, 137
Basberg, B. 128
Baumol, W. 158, 160
Bayer 120
Index

share of US patenting 131

technological specialisation
path dependency 154
profile of 133, 134, 135, 136, 137, 150, 151, 152

see also IG Farben
Bayma, T. 341
Beaton, K. 122
Beaver, D. 256
Becker, G. 160, 189
Beer, J. 119, 129, 136
Bell, A. 141
Bell, C. 161
Bell, Q. 161
Beniger, J. 213
Berndt, E. 457
Bernheim, B. 24
Berthet, M. 245, 249
Bessen, J. 420
Bianchi, M. 160
Bienz-Tadmor, B. 78
Birdzell, L. 324, 327
Bonnard, P. 181, 182, 183
Bordo, M. 325
Boucher, F. 181, 182, 183
Bound, J. 126
Bourdieu, P. 159
Boyer, H. 77
Braun, T. 365
Bresnahan, T. 332, 389
Brock, W. 24
Brown, J. 308, 309, 311, 444
Brynjolfsson, E. 24
Burstall, M. 85
Caballero, R.-J. 439, 440
Callon, M. 242, 255, 256
Canaletto, A. 179, 181, 182, 183
Cantwell, J. 365, 369, 374
Carlsson, B. 365
Casson, M. 297
Centre National de la Recherche Scientifique (CNRS) study of collaboration between researchers 258–91
Cézanne, P. 179, 181, 182, 183
Chandler, A. 71, 121, 122, 130, 153, 299
Chanel, O. 165
chemical industry 119–20
geographic origin of research activities 370, 371, 372
knowledge specialisation 373–5, 376, 377, 378, 379, 380
shares of US patenting 131

technological specialisation 151

see also Bayer; Du Pont; IG Farben
Chien, R. 84
Church, J. 24, 25
Claude Gellée 181, 182, 183
CNRS. see Centre National de la Recherche Scientifique
co-publication in scientific research 255 determinants of 255, 256 future research on 285, 286

see also Centre National de la Recherche Scientifique
Coase, R. 7
Cockburn, I. 77, 79, 81, 82
Cohen, M. 296
Cohendet, P. 303
Coleman, D. 122
Collins, W. 180, 181, 182, 183
communities of practice interaction with epistemic communities 314 learning in 306–7, 309, 310, 311

competing technologies 29
models of 27–9, 30–34, 35, 36–9
proof of proposition 1 40–41
proof of proposition 2 41–3
proof of proposition 4 43–6
rate of convergence to technological monopoly/market sharing 35–9
sequence of historical events 38
time required 38, 39
relative impact of increasing returns
and degree of heterogeneity 38, 39

competitive advantage in industry 209
composition effects 59, 60, 61
computer manufacturers 217
software systems 217, 218

see also information and communication technology
Conant, J. 364
condensed matter physics 258
conspicuous consumption 159
Constable, J. 181, 182, 183
 Cottereau, A. 248, 249, 250
Index

Cowan, R. 24, 25, 30, 31, 160, 306
Cozzi, G. 160
creativity 62, 63, 64
Crémer, J. 313
cross-licensing agreements 340, 343
Cusumano, M. 24, 29
Cyert, R. 296

dalum, B. 374
Dasgupta, P. 7, 232, 240, 242, 251, 255, 323, 326, 328, 347, 348, 364
data warehouses 229
de-centred and distributed learning 310, 311, 312
communication 312–13
de Gennes, P.-G. 258
de Lasalle, P. 244, 246–7, 249
de-localisation of knowledge 212–14
de Marchi, N. 160, 164
De Piles, R. 164, 165
Deane, P. 177, 178, 179
Debreu, G. 13
decentralised system of knowledge management 231–2
decision-making structures 64
Degas, E. 181, 182, 183
Deng, Z. 333
Diamond, A. 255
diffusion of innovations and new technology 16, 17
fax machines 433, 434
see also adoption of new technology; real options model of technology adoption; robots
dissonance 311
distant past historicism 167
distributed information technology 217, 218
Dixit, A. 439, 443, 444
Dornseifer, B. 130
Dosi, G. 160, 296, 299
Driver, C. 439, 440
Du Pont 120, 122, 127
share of US patenting 131
technological development 129–30
technological specialisation
path dependency 154
profile of 137–40, 150, 151, 152
Duguid, P. 308, 309, 311
Durlauf, S. 24
dynamic efficiency of economic systems, conditions for 61–6, 67
Eckhardt, S. 82
economic theory 3, 4
economics of science 255, 256
Economides, N. 24, 433
economies of learning 208
Edison, T. 141, 143
Egidi, M. 299
Eisenberg, R. 325, 338, 340
electrical equipment industry 120
development of 141
shares of US patenting 141–3
technological specialisation 151
vertically integrated systems 141, 149
see also American Telephone and Telegraph; General Electric
Eliasson, G. 296, 308
Engel, E. 439
enterprise management software 229
epistemic communities interactions with communities of practice 314
production of knowledge 306
ergodic processes 52, 53
Ernst and Young 81
ETAN 332, 333, 334
European Commission 365, 369
European Technology Assessment Network (ETAN) 332, 333, 334
experimental learning 307, 308, 311–12
Fagerberg, J. 366
Fai, F. 118, 119
Falcon, J-P. 244, 249
Farrell, J. 24, 34, 433
Favereau, O. 298
fax machines 433, 434
Federal Reserve Bank of Dallas 223
Filene, E. 214, 217
firms
building of a common knowledge specific to the firm 313–14

Cristiano Antonelli, Dominique Foray, Bronwyn H. Hall and W. Edward Steinmueller - 9781845427924
Downloaded from Elgar Online at 01/11/2019 11:25:39AM via free access
core competences 300
exchange of knowledge through
networks 301, 302
governance 304, 305
knowledge formation in the firm
309, 310
management of collectively
distributed knowledge within
the organisation 308, 309
non-core competences 301
peripheral activities 302
ranking of activities 302, 303, 304,
314
declassifying routines 303–4
structure of governance 304
theories of 296, 297
competence 300, 304, 305
principal/agent theory 297–8
processor of information, as 297–8
processor of knowledge, as 298–9
transaction cost 298, 300
flexible production 216, 217, 222; see
also product variety
Foray, D. 158, 255, 258, 361, 367
Ford, H. 213, 216, 339
Ford Motor Company 216
forgetting 311
Foss, N. 296, 302
Frank, R. 160, 189
Fransman, M. 296
Freeman, C. 133
Frey Jr., C. 418
Frey, B. 160
Frost, R. 8

Galambos, L. 71
Gambardella, A. 71, 77, 79, 80, 81, 370
Gandal, N. 24, 25
General Electric 120, 122, 127, 141
share of US patenting 142, 143
technological specialisation
path dependency 146, 154
profile of 143–6, 150, 151, 152,
153
General Motors 216
general purpose technologies (GPTs)
analysis of
data 390, 391
generality measurement 393,
395–400, 419, 420, 421, 423
identifying GPT patents 410,
413–17, 418, 419
definition of 390
ICT-related patents 418, 419
patent characteristics 392
see also patent citations; patents
geographic origins of research
activities 370, 371, 372
Ghoshal, S. 305, 311, 312
Gibbons, M. 255, 308
Gilbert, R. 336
Ginsburgh, V. 160
globalisation as cause of technological
change 65
Godin, B. 365, 373
Gogh, V. van 160, 181, 182, 183, 188
Gombrich, E. 161, 162
Gomperts, P. 331
Goodwin, C. 160
Gorman, W. 164
Gould, S. 57
GPTs, see general purpose technologies
Grabowski, H. 78, 84
Grampp, W. 160
Granstrand, O. 366, 379
Green, J. 337
Greenstein, S. 328
Griliches, Z. 16, 123, 127, 128
Grindley, P. 340, 343
Grossman, S. 335
growth 66
conditions for 61–6
Guerroni, G. 177

Haber, L. 119, 129
Hadley, W. 340
Hall, B. 329, 340
Hals, F. 180, 181, 182, 183
Hand, J. 333
Hart, O. 335
Hayek, F. von 299
Heckman, J. 455
Heller, M. 325, 338, 340
Helpman, E. 389, 390
Henderson, R. 71, 77, 79, 81, 82, 85,
346, 393, 397
Heston, A. 450
higher education, see university-based
research
Hill, B. 41, 43
Himmelberg, C. 433
Hounshell, D. 122, 126, 130, 137, 140, 213, 214, 215, 216
Hughes, T. 141, 213
Hunt, R. 420
Iansiti, M. 366
ICT, see information and communication technology
IG Farben 120, 122, 127, 133
share of US patenting 131
technological development 129, 130
technological specialisation
path dependency 154
profile of 133, 134, 135, 136, 137, 150, 151, 152
see also Bayer
IMF 450
incentives and institutional standards
224, 225, 226, 249, 328, 329–30
increasing returns to adoption 23–4, 25, 26, 34, 39
individual knowledge 208
individual learning 208
information and communication technology (ICT) 11
construction of integrated systems 218–19
decentralising information processing 218, 219
distributed technology 217, 218
incentives and institutional standards 226
interpersonal communication 226–8
minicomputers 218
modelling business processes 228–9
patents 418, 419
supporting local learning 219, 220
see also computer manufacturers;
software
information search costs 334
innovation economics 3, 4, 5, 6
innovative capacity 4, 5
intellectual property 12, 335
security interests in 333–4
see also patents
intensive use of knowledge 8
International Monetary Fund (IMF) 450
interpersonal communication
exchange of knowledge 226–8
interrelatedness of technology 150
Ireland, N. 444
Ironmonger, D. 164
irreversibility 59
Iras, J. 24
Jacquard, J.-M. 248, 249, 250
Jaffe, A. 393, 395, 397
Janson, A. 188
Janson, H. 188
Jensen, R. 439
Jones, R. 122
Joskow, P. 456
Kahneman, D. 55
Karshenas, K. 443, 447, 456
Katz, J. 256
Katz, M. 23, 24, 25, 27, 29, 31
Kemerer, C. 24
Kenney, M. 349
Kirman, A. 190
Klemperer, P. 336
Klevorick, A. 83
knowledge 6
circulation 210
codification 10
de-localisation of 12–14
individual 208
intensive use of 8
management 230, 231, 232–3
decentralised system of 231–2
meaning of 230–31
organisational 208
value of 209
production of 8
public domain 7, 12
financing of knowledge production 240–41
public–private interactions 12
role of, in industry 211, 212
tacit 10, 11
transfers of 12
see also knowledge commons;
knowledge integration;
knowledge openness;
knowledge persistence;
knowledge specialisation
Index

knowledge commons 8, 9
de-centred and distributed 310, 311, 312, 313
localised 58, 60
economies of 208
knowledge integration 363, 366, 367, 368
experimental 307, 308, 311–12
chemical and pharmaceutical
governance for 313
domains 375–6, 377, 378, 379, 380
individual 208
future research 381
organisational 208
policies for 380
knowledge openness 239, 240, 241, 242
‘technology of 208–9
collective ethos 246, 247, 248
type through error production 310
establishment of technical standards
see also communities of practice
reward system 248, 250, 251
Leibig, J. 82
see also open science; open source
software; open technology
knowledge persistence 362, 364, 365, 366
localised introduction of new
ten factors affecting 65
collective and pharmaceutical
industries 373–5, 377, 378, 379, 380
future research 381
see also knowledge integration
knowledge specialisation
Lundvall, B. 307, 361
RSI index 381–2
diffusion of new technology
specialisation profiles of chemical
248–50
and pharmaceutical industries
invention in 243–4
377–8, 380
sharing of knowledge 244–8, 250,
see also knowledge integration;
251
knowledge persistence;
technological specialisation
Konno, N. 304
Maclaurin, W. 143
Kortum, S. 342
Madison, J. 16
Koski, H. 37
Magalhães, R. 309
Kremer, M. 344
Malerba, F. 365
Krugman, P. 26
Malo, S. 367, 370
Lamoreaux, N. 71, 334
Malraux, A. 162
Lancaster, K. 164
Manet, E. 181, 182, 183, 188
Landau, R. 366
Mansfield, E. 364, 439
Landseer, R. 366
March, J. 296, 299, 305
Lane, D. 24
Marcus, G. 162
Langlois, R. 296, 302, 328, 339
Marengo, L. 296, 299
Lasdon, L. 180
Margolis, S. 24, 29
Leahy, J. 439
market sharing 23, 26, 34; see also
learning 308
competing technologies
by doing 9, 10
markets for technology
financial institutions, role of 331
global market 349–53
information search costs 334
institutional settings 327
intellectual property rights 335
security interests in 333–4
limitation of liability 334
patent offices, role of 341–3
patent-pooling agreements 343
patents 335, 336, 337–8
‘efficient breach’ 344
extension of ‘eminent domain’ 344
fragmentation 338, 339, 340, 343, 344
legal costs 340
research and development tax credits 332–3
standards 328, 329–30
startup firms, government support for 332
technology suppliers, role of 331, 344
university research 344
valuation of technology 333
venture capitalists, role of 331–2
Marriot, O. 122
Martin, B. 380
mass production system 213, 214, 216, 217
information goods 220–21
Matraves, C. 74
Maxwell, R. 82
McCain, R. 160
McCormick, C. 214, 215
McCormick, L. 214, 215
McCormick Reaper Works 214, 215
production system 214–16
McDermott, C. 162
McPherson, M. 160
Meissonier, E. 180, 181, 182, 183
Meliciani, V. 365
memory 230, 311
Menger, P.-M. 160
Merges, R. 78, 335, 337, 340
Merton, R. 364
Metcalf, J. 65
Metcalf, S. 308
minicomputers 218
Mitchell, B. 177, 178, 179
Monet, C. 164, 181, 182, 183, 188
Moore, J. 335
moral property rights 241, 242
Moreton, D. 439, 440
Mowery, D. 345, 346, 347, 349
Mullins, N. 256
Musil, R. 471, 472
Narin, F. 364, 367
Nash, L. 364
national competitiveness, scientific and technological specialisation, role of 362
National Research Council 340
national systems of innovation (NSI) 361
Nattier, J.-M. 180, 181, 182, 183
Nelson, R. 78, 120, 136, 299, 312, 337, 340, 361
network effects 15, 24, 29, 428, 429, 430, 431
Newey, W. 457
Nijkamp, P. 37
Nohria, N. 305, 311, 312
non-ergodic processes 52, 53; see also past dependence; path dependence
Nonaka, I. 304
Nooteboom, B. 308, 312
North, D. 324
NSI 361
Nuvolari, A. 243
OECD 307
Office of Science and Technology (OST) 365
Office of Technology Assessment and Forecast (OTAF) 392
oil firms, shares of US patenting 132
open science 7–8; see also knowledge openness
open source software 227
open technology 243, 251; see also knowledge openness; Lyons silk industry
Oren, S. 24
Organisation for Economic Cooperation and Development (OECD) 307
organisational capability 208
organisational knowledge 208
value of 209
organisational learning 208
organisational memory 230
Orsenigo, L. 365, 370
construction of integrated systems 218–19
decentralising information processing 218, 219
supporting local learning 219, 220
pharmaceutical industry 70, 71
biotechnology
 development of 81
 impact of 77, 78, 79
collaborative research 80, 81
commercialisation of penicillin 72
competition 75
development of 71–2, 113
geographic origin of research activities 371, 372
health-care systems, structure of 84
innovation 85–6
 economic benefits from 73, 74, 75
 forms of 75
 imitator firms 93
 innovative firms 93
 levels of 73, 74
knowledge specialisation 373–5, 376, 377, 378, 379, 380
levels of concentration 75–6, 86
model of new drug development 87–92, 93, 114
extension of time of patent protection, effect of 108, 113
firms’ activity in different therapeutic categories 106
imitative products, number of 101, 102, 103, 104
increase in number of firms, effect of 108, 113
increase in stringency of approval procedures, effect of 108, 113
innovative products, number of 101, 102, 103, 104
innovative products, share of 105
market concentration 94, 95, 96, 108
number of firms in each therapeutic area 100
number of innovative and imitative products in each therapeutic area 108, 109, 110, 111, 112
number of products in therapeutic area 99
number of therapeutic areas discovered 98
performance index 107
surviving firms 97
new firm entrants 75, 78
patents 78, 83, 87
price regulation 84, 85
product approval 83–4, 87
publicly funded research 76, 82–3
random screening 71, 73, 74, 75, 76
source of first-mover advantage 75
rate of technological change 81
rational drug design 76, 77
research approach 70, 72, 73
transforming research into successful products 372
university research 82
university spin-offs 77
vertical integration 81

Pharmaceutical Manufacturers Association 78
Pianta, M. 365, 366
Pindyck, R. 439, 440, 443, 444
Pisano, G. 71, 362, 366, 370
Pissarro, C. 181, 182, 183
Plumpe, G. 122, 126, 127, 129
Pommerehne, W. 160
Porter, M. 362
Prencipe, A. 366
Price, D. de S. 365
Price, R. 16

producer–user relationship in industry 212
product diversification, link to technological diversification 153
product selection decisions 25, 29, 30, 37
product variety 221, 222, 223
decentralisation, need for 223, 224, 225

see also flexible production
productivity of scientific research, determinants of 255
prospect theory 55
public and quasi-public databases 341

Quillen, C. 340

real options model of technology adoption 439–40, 442–50
data sources 450, 463–4
descriptive statistics 451–4
methodology 455–7, 463, 464, 465
see also robots
recent past historicism 167
Reich, L. 120, 122, 126, 127, 141, 143, 146, 149
Reitlinger, G. 166, 177, 179
Rembrandt van Ryn 181, 182, 183
Renoir, P. 181, 182, 183, 188
reputation capital 241
research and development (R&D) tax credits 332–3
Rheims, M. 161
Richardson, G. 299
Robertson, P. 328
robots 440–41
adoption of 441
determinants of 458, 459, 460
government policy changes, effect of 460–62
numbers 453, 454, 456
uncertainty, impact of 462–3
application areas 441
investment in 441
volatility of 441, 442
prices 450, 453, 454, 455, 456, 458, 460, 463

see also real options model of technology adoption
Rohlf, J. 24
Roos, J. 309
Rose, N. 456
Rosen, R. 256
Rosenberg, N. 24, 136, 213, 324, 327, 362, 366, 389
Rostoker, M. 340
Ruskin, J. 158, 160, 164, 166
Ruttan, V. 55
Saloner, G. 24, 34
Sanderson, W. 9, 307
Santangelo, G. 153
Saviotti, P. 24
Scherer, F. 123, 126
Schmookler, J. 121, 123, 126
Schwartzman, D. 71
Schwerin, J. 243
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Citation Index (SCI)</td>
<td>279, 281, 282</td>
</tr>
<tr>
<td>Scotchmer, S.</td>
<td>337</td>
</tr>
<tr>
<td>sectoral knowledge bases</td>
<td>367, 368; see also knowledge specialisation</td>
</tr>
<tr>
<td>security interests in intellectual property rights</td>
<td>333–4</td>
</tr>
<tr>
<td>self-sustaining process of growth and innovation</td>
<td>62, 63</td>
</tr>
<tr>
<td>Sewell, J.</td>
<td>71</td>
</tr>
<tr>
<td>Shapiro, C.</td>
<td>23, 24, 25, 27, 29, 31, 336, 433</td>
</tr>
<tr>
<td>Sharp, M.</td>
<td>372</td>
</tr>
<tr>
<td>Shi, Y.</td>
<td>255</td>
</tr>
<tr>
<td>Shrum, W.</td>
<td>256</td>
</tr>
<tr>
<td>Silverman, B.</td>
<td>395, 398</td>
</tr>
<tr>
<td>Simon, H.</td>
<td>299</td>
</tr>
<tr>
<td>Sisley, A.</td>
<td>181, 182, 183</td>
</tr>
<tr>
<td>slack</td>
<td>311</td>
</tr>
<tr>
<td>Sloan, A.</td>
<td>217, 219</td>
</tr>
<tr>
<td>Smith, A.</td>
<td>164, 189, 212</td>
</tr>
<tr>
<td>Smith, J.</td>
<td>122, 126, 130, 137, 140</td>
</tr>
<tr>
<td>Smith, S.</td>
<td>24</td>
</tr>
<tr>
<td>social referral networks</td>
<td>229–30</td>
</tr>
<tr>
<td>Soete, L.</td>
<td>123, 365, 373</td>
</tr>
<tr>
<td>software</td>
<td></td>
</tr>
<tr>
<td>enterprise management</td>
<td>229</td>
</tr>
<tr>
<td>open source</td>
<td>227</td>
</tr>
<tr>
<td>systems</td>
<td>217, 218</td>
</tr>
<tr>
<td>Sokoloff, K.</td>
<td>334</td>
</tr>
<tr>
<td>Solimano, A.</td>
<td>439, 440</td>
</tr>
<tr>
<td>Somaya, D.</td>
<td>329, 330</td>
</tr>
<tr>
<td>startup firms</td>
<td>332</td>
</tr>
<tr>
<td>Stephan, P.</td>
<td>255, 256</td>
</tr>
<tr>
<td>Sternberg, R.</td>
<td>378</td>
</tr>
<tr>
<td>Stigler, G.</td>
<td>212</td>
</tr>
<tr>
<td>Stiglitz, J.</td>
<td>58</td>
</tr>
<tr>
<td>Stocking, G.</td>
<td>122</td>
</tr>
<tr>
<td>Storper, M.</td>
<td>278</td>
</tr>
<tr>
<td>Sturchio, J.</td>
<td>71</td>
</tr>
<tr>
<td>Summers, R.</td>
<td>450</td>
</tr>
<tr>
<td>Sutton, J.</td>
<td>74</td>
</tr>
<tr>
<td>Swann, G.</td>
<td>198, 201, 203</td>
</tr>
<tr>
<td>Swanson, R.</td>
<td>77</td>
</tr>
<tr>
<td>systematisation</td>
<td>213</td>
</tr>
<tr>
<td>tacit knowledge</td>
<td>10, 11</td>
</tr>
<tr>
<td>taste</td>
<td></td>
</tr>
<tr>
<td>aspiration</td>
<td>160</td>
</tr>
<tr>
<td>association</td>
<td>160</td>
</tr>
<tr>
<td>bandwagons of 190</td>
<td></td>
</tr>
<tr>
<td>conformity</td>
<td>189</td>
</tr>
<tr>
<td>distinction</td>
<td>159, 160, 189</td>
</tr>
<tr>
<td>path dependence</td>
<td>162, 163, 182</td>
</tr>
<tr>
<td>price as a measure of 165, 166</td>
<td></td>
</tr>
<tr>
<td>volatility</td>
<td>160, 161–2</td>
</tr>
<tr>
<td>see also art</td>
<td></td>
</tr>
<tr>
<td>technological commons</td>
<td>57</td>
</tr>
<tr>
<td>technological disparities between firms</td>
<td>210</td>
</tr>
<tr>
<td>technological diversification</td>
<td></td>
</tr>
<tr>
<td>interrelatedness of technological activities</td>
<td>153–4</td>
</tr>
<tr>
<td>link to product diversification</td>
<td>153</td>
</tr>
<tr>
<td>motives for 153</td>
<td></td>
</tr>
<tr>
<td>see also technological specialisation</td>
<td></td>
</tr>
<tr>
<td>technological knowledge</td>
<td>4, 5</td>
</tr>
<tr>
<td>collective activity, as 56–7</td>
<td></td>
</tr>
<tr>
<td>technological monopolies</td>
<td>23</td>
</tr>
<tr>
<td>different monopolies in different markets</td>
<td>39</td>
</tr>
<tr>
<td>increasing returns to adoption</td>
<td>25, 26, 39</td>
</tr>
<tr>
<td>see also competing technologies</td>
<td></td>
</tr>
<tr>
<td>‘technological opportunity’</td>
<td>209</td>
</tr>
<tr>
<td>technological specialisation</td>
<td>362</td>
</tr>
<tr>
<td>research study</td>
<td></td>
</tr>
<tr>
<td>data 121–2</td>
<td></td>
</tr>
<tr>
<td>measure of specialisation</td>
<td>122–8</td>
</tr>
<tr>
<td>see also American Telephone and Telegraph; Bayer; Du Pont; General Electric; IG Farben; knowledge specialisation; technological diversification</td>
<td></td>
</tr>
<tr>
<td>technology adoption</td>
<td></td>
</tr>
<tr>
<td>see adoption of new technology</td>
<td></td>
</tr>
<tr>
<td>‘technology of learning’</td>
<td>208–9</td>
</tr>
<tr>
<td>technology suppliers</td>
<td>331, 344</td>
</tr>
<tr>
<td>technology transfer</td>
<td>208</td>
</tr>
<tr>
<td>Teece, D.</td>
<td>299, 340, 343</td>
</tr>
<tr>
<td>Thomas, L.</td>
<td>84, 85</td>
</tr>
<tr>
<td>Throsby, D.</td>
<td>160</td>
</tr>
<tr>
<td>Tijessen, R.</td>
<td>369</td>
</tr>
<tr>
<td>Tirole, J.</td>
<td>302</td>
</tr>
<tr>
<td>Toniolo, G.</td>
<td>309, 310</td>
</tr>
<tr>
<td>Torre, A.</td>
<td>258</td>
</tr>
<tr>
<td>Trickett, A.</td>
<td>24</td>
</tr>
<tr>
<td>Tversky, A.</td>
<td>55</td>
</tr>
</tbody>
</table>
university-based research 82, 241, 344, 345, 346, 347
commercialisation 345
impact on academic norms 347–9
licensing 345, 346
patents 345, 346
university spin-offs 77

valuation of technology 333
van Gogh, V. 160, 181, 182, 183, 188
van Wijk, E. 369
Vaucanson, J. 244, 249
Veblen, T. 159
Venables, A. 26
venture capitalists 331–2
Vernon, J. 78, 84
Vicari, S. 309, 310
Vincenti, W. 347, 366
von Hippel, E. 243
von Krogh, G. 309, 313
Vopel, K. 395, 420, 421
Walras, M.-E.L. 13, 14
Walsh, J. 341
Waren, A. 180
Watkins, M. 122
Wenger, E. 306, 311
White, M. 165
Whited, T. 439
Wilkins, M. 122
Wilkinson, L. 215
Wilson, G. 249
Winter, S. 26, 118, 120, 136, 299
Witt, U. 55
Young, A. 212
Ziedonis, R. 329, 340, 346, 347, 420
Zucker, L. 278
Zuscovitch, E. 301