Index

abatement cost curves (ACCs) 11–12, 19–20, 22–3, 500
abater principle 98, 99
Abbey, D.E. 43, 50–51, 52, 152
accidents 383
acid deposition 58, 59
impact and damage cost by economic sector
crops 262–71
materials 271, 272–5
interaction between limestone, rain and 434
UK 135–6
materials 172, 221
acid rain precursors 29, 30
acute morbidity 476
acute mortality 44, 49, 476
damage attribution by economic sector 233–6, 237–44
developments in valuation 70–74
Germany 143–4, 207
Netherlands 153–4, 158, 160
sensitivity analysis 193–6, 197, 223, 225
UK 166, 167, 169, 171, 217, 219, 220
Adams, R.M. 295, 296, 299–300, 301, 310, 312
adaptation 416, 418–19
adapted products 461–2
additivity of effects 48
Adriaanse, A. 3
age
age dependent mortality 68–9
independence of VOLY from 70–74
aggregation 417, 424
aggregation bias 312–13, 491
agricultural land prices 353–4
agricultural output 305, 307, 309, 310
agriculture 475
damage attribution by economic sector 228, 229–83, 290
defensive expenditure in the Netherlands 452
effect of land contamination 382–3
see also crop damages
air pollution
approach using modelled emissions 226–92, 481–4, 497
analysis of linearity 286–7
emission scenarios 227–9
impacts and damage costs by country 228–9, 284–5, 290–91, 481–3, 497
impacts and damage costs by economic sector 229–83, 288–90, 481, 483–4, 497
methodology of impact and damage cost assessment 88–91, 226–7
comparison of approaches 479–80
comparison of modelled and measured concentration data 287–8, 289, 290
damage attribution 481–4
damage cost estimates using measured concentration data 113–225, 473–81, 497, 498
air quality data 114–36
background concentrations 136–8
impacts on health, crops and materials 142–75
methodology 87–8, 114–42
physical impacts 142, 205–25
sensitivity analysis 37, 175–96, 197, 198, 221–5, 483
stock at risk data 138–42
defensive expenditures 100, 441–2, 444
GARP approach 4–5, 6–9
methodology 87–92
policy conclusions and recommendations 497, 498, 499–500

503
updating damage estimates 473–81
applications 477–80
consistency 476–7
future work 480–81
reliability 474–6
replicability 473–4, 475
air quality modelling 38, 89, 123, 474, 475; see also modelled concentration data
air quality monitoring data, see measured concentration data
altruistic values 79–80
amenity
impacts of land contamination 383
valuation of water quality 82–4, 374–5, 376–7, 377–8
ammonia
analysis of linearity 286–7
damage attribution by country 284–5, 290–91
damage attribution by economic sector 229–32
Anderson, H.R. 44, 49
applications of methodology 499–500
air pollution damage estimates 477–80
land damages 488–9
water damages 486
aquifer pollution 383
arsenic 54
as-built cost 399–400, 401
Asam fresco 435
asthma 80, 140
acute effects on asthmatics 43, 50
chronic cases of 78, 81
Atkinson, G. 25
avertive behaviour 77
avoidance costs 11–12, 19–20, 22–3, 500

background concentrations 12, 88, 136–8, 179, 188
Baddeley, J.A. 347
Balchin, S. 28
Baldi, P. 434
Bardos, B.P. 393
Bartolomeo, M. 448
Bates, D.V. 42, 50

Bavaria 405
Belgium 393, 394
benzene 178, 180, 180–81, 221
Berg, H.R.T. 160
biodiversity 319–20, 336–54, 490–91
physical damage indicators 338–47
restoration costs 336, 350, 352–4, 355, 490–91
studies on 348–52
birds 346
BOD (biochemical oxygen demand) 366–70
Bräuniger, W. 114, 115, 116
Briblecombe, P. 433
bronchitis, chronic 78, 81, 154, 175
Brunet, J. 327
Bruzzo, A. 445, 446, 447
building soiling 184–5
Bunce, R.G.H. 320, 345, 346
Bunte, F.H.J. 297, 299, 302
business sector, see private sector
butadiene 178, 180–81, 221
Butlin, R.N. 142
butterflies 346
cadmium 54, 143, 207
calcium carbonate 434
cancer 75–6, 183
benzene and butadiene 180–81, 184, 221
cadmium and in Germany 143, 207
effects and metals 53–6
lung cancer 55
Netherlands 214
non-fatal 78, 81
capital expenditure, see investment expenditure
CARACAS Research Programme 406, 487
carbon dioxide
doubling of concentration 412, 413–19
marginal damage cost estimates 421–2, 422–4
carbon monoxide
damage estimates for the Netherlands 153–66, 212–13, 214–15
exposure–response functions 41, 46, 49
sensitivity analysis 178, 179, 180, 183, 188, 189–90, 191, 192, 221, 223
carcinogens 36
cardiovascular hospital admissions (CVA) 44, 48, 49
Carlucci, M. 448
Cesaretti, C.M. 446, 447
characteristic activities 97, 461–2
chemical manufacturing sites 402, 403
children
bronchitis and coughs 80, 81
chronic morbidity in 43, 51
lead in air and lead in blood 56
lead in blood and childhood IQ 56, 181, 184
chromium 54–5
chronic morbidity 78, 81, 154, 175, 476
adults 43, 50–51
children 43, 51
chronic mortality 13, 41, 175, 476
damage attribution by economic sector 233–6, 237–44
developments in valuation 74–6
Germany 143–4, 208
Netherlands 153–4, 159, 160
and particles 44, 51–3
sensitivity analysis 190–92, 193, 193–6, 197, 225
UK 167, 169, 219
classical pollutants 41, 42–53; see also under individual names
Classification of Consumption per Purpose (COICOP) 461–2
Classification of Environmental Protection Activities (CEPA) 97, 98
climate change, see global warming; greenhouse gas emissions
coarse fishing 83, 373–4, 375–6, 380
Cody, R.P. 50
cohort studies 51–2
Colglazier, E.W. 399
collective demand curve 19
commercial, institutional and residential combustion plants 228, 229–83
Common Agricultural Policy 302
comparative methodology for land 406, 489
Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) 399
concentration data 477, 478; see also measured concentration data; modelled concentration data
Concerted Action for Risk Assessment for Contaminated Sites (CARACAS) programme 406, 487
confidence bands 37
connected products 461–2
consistency
air pollution damage estimates 476–7
land damages 488
water damages 486
construction industry 453
consumer surplus 294–5
DRAM 305–6, 308, 313
compared with single multiplication method 312
consumerism, green 462
contaminated land registers 388, 391, 393, 487–8, 488–9
contaminated land remediation strategies 393, 394–6
contingent valuation method (CVM) 66–7, 77
Convention on Biodiversity 339
Convention on Long-range Transboundary Air Pollution – ICP Forests 320, 324
CORINAIR 1990 emission database 89, 226, 481, 484
economic sectors 228
Corn Belt region 300
cost-effectiveness analysis 19–20, 22–3
‘cost-effectiveness’ curve for soil remediation 403–4
cost function 297–8
cost internalisation 406, 489
costs of illness (COI) 76
‘costs of own environmental activities’ of a sector 451–6
countries, damage attribution to 88–91, 228–9, 284–5, 290–91, 481–3, 497
Countryside Surveys 344–7
Coyle, R.N. 133, 135
critical load approach 7, 8
Crocker, T.D. 295, 296
crop damages 173–5, 293–318, 476, 491–2, 498
damage attribution by economic sector 227, 262–71, 276–7, 279
developments in valuation 65–6
DRAM 301–9, 317–18, 491–2
crop data 138–9, 139, 140, 141, 142
crop prices 155, 161, 162–3
cropping plans 305, 308
cross-sectional studies 51
CSERGE 67–8
Cullino, R. 448, 449
cultural buildings 433–9
current expenditure 99, 493–5
Germany 430–33
Italy 445, 447–9
UK 457, 458, 459
damage attribution 5, 226–92, 497
air pollution 481–4
analysis of linearity 286–7
to anthropogenic sectors 88
countries 88–91, 228–9, 284–5, 290–91, 481–3, 497
economic sectors 38–9, 88–91, 228, 229–83, 288–90, 481, 483–4, 497
crops 227, 262–71, 276–7, 279
emissions of substances 229–32
materials 227, 271, 272–7, 279
morbidity 227, 236–62, 276–7, 279
mortality 227, 233–6, 237–44, 276–7, 279
emission scenarios 227–9
GARP approach 5, 6, 7, 8
methodology 88–91, 226–7
damage avoidance from environmental deterioration 94, 429
damage calculation 7, 8, 87–8, 113–225, 473–81, 497, 498
air quality data 114–36
background concentrations 136–8
methodology 87–8, 114–42
physical impacts 205–25
results of impacts on health, crops and materials 142–75
Germany 143–8, 173–5, 198, 205–9, 498
UK 166–73, 173–5, 198, 217–21, 498
sensitivity analysis 37, 175–96, 197, 198, 221–5, 483
stock at risk data 138–42
damage estimation procedure 89–90
damage export 276–7, 278, 280–83
data availability 23, 477, 499
air quality data in Italy 123–5
contaminated land 405–6, 407
across the EU 393, 394–6
legislation and 385–93
water damage 368–70
defensive expenditures 3–4, 17, 93–109, 429–69, 492–7, 497
EU countries 463–5
for forest areas 336–8
GARP approach 6, 7, 9
Germany 430–39, 440, 493–6
expenditures for environmental protection 430–33
materials in historic and cultural buildings 433–9
Italy 439–50, 493–6
private sector 447–50
public sector 439–47
Netherlands 451–7, 493–6
breakdown by sector and by environmental theme 452–6

Anil Markandya and Marialuisa Tamborra - 9781845428136
Downloaded from Elgar Online at 07/16/2019 11:34:19AM
via free access
methodology 451–2
nature and landscape management 456
OECD and Eurostat approaches 95–100
scope and content 94
SEEA approach 101–7
subtraction from national income 24–6
types of expenditure 98–9
UK 457–63, 493–6
government expenditure 463, 464
household expenditure 458–63
industry expenditure 457–8, 459, 460
defoliation 324–5
Dellink, R. 403–4
demand curve shift 295–6
demand and supply of environmental functions 18–19
Denmark 393, 394, 488
Department of the Environment (DOE) 28
derelict land 384; see also land contamination
Deutsche Bundessitftung Umwelt 438
Deutsche Stiftung Denkmalschutz 438
development 415–16, 416–17, 424
Diamond, J.M. 320
discoloration 324–5
discount rates 76
acute mortality 70, 72, 73–4, 236, 237–44
chronic mortality 74–5
marginal costs of greenhouse gas emissions 417, 421–2, 423
Dockery, D.W. 43, 47, 50, 51, 52
domestic crop prices 155, 161, 162–3
Donnan, P. 42
doubling of greenhouse gas concentrations 412, 413–19
Dowlatabadi, H. 419
Downing, T.E. 416, 422, 423
DSD (Duales System Deutschland) 431
duality theory 297–8, 300–301
Dusseldorp, A. 43, 50
Dutch Regional Agricultural Model (DRAM) 301–9, 312–13, 491–2
comparison with simple multiplication method 309–12, 313, 491–2
mathematical representation 317–18
model application 303–9
structure 301–3
Eastern Europe 46
Echter, C.-P. 434
Ecological Main Network (EHS) 336, 353–4, 355
ecological spot check of sites 338–41
econometric methods 297–8, 298–9, 300–301
economic sectors
classification of contaminated land 385, 386
CORINAIR 228
damage attribution 38–9, 88–91, 228, 229–83, 288–90, 481, 483–4, 497
crops 227, 262–71, 276–7, 279
emissions 229–32
materials 227, 271, 272–7, 279
morbidity 227, 236–62, 276–7, 279
mortality 227, 233–6, 237–44, 276–7, 279
defensive expenditures 100
Netherlands 451–3
UK 457–8, 459, 460
water damage valuation 366–70, 377
ECOSENSE model 6, 7, 8, 38, 88
ecosystems 4–5, 7, 8, 146–7, 336–54, 475, 490–91
effect of land contamination 382–3
physical damage indicators 338–47
restoration costs of biodiversity 336, 350, 352–4, 355, 490–91
valuation studies 348–52
Eerden, L.J. van der 297, 299
effective pollutant loads 363, 364
Elsasser, P. 329–31, 332
emergency room visits (ERVs) 49–50, 80, 81
emission database 89, 226, 228, 481, 484
emission inventories 475
emission scenarios 89–90, 91, 227–9
emissions data 477, 478
end-use approach 387–8, 396
endangered species 339, 341, 342–3, 344, 345
energy efficiency 462
English Nature 345–6, 347
environmental accounting 15–33
GREENSTAMP 11–12, 16–24
NAMEA system 26–8, 103
SNI 16–24, 354
subtraction of defensive expenditures from national income 24–6
UKENA 28–31, 31–2
environmental associations, membership in 462
environmental media 100, 493, 494
defensive expenditures in Germany 430–33
defensive expenditures in Italy 441–2, 443–4
defensive expenditures in UK 457, 458
environmental protection activities 94, 429
environmental protection expenditure accounts (EPEAs) 96–7, 104
environmental protection expenditures, see defensive expenditures
environmental restoration 94, 429
environmental standards 11–12, 25–6
environmental stocks 25–6
environmental themes
Netherlands 26–7, 455–6
UK 29–31, 463, 464
equity weighting 421
estimates per site type 406, 489
European Commission 10, 15
European Union (EU) 4, 5, 484
contaminated land data availability 393, 394–6
damage attribution to countries 228–9, 284–5, 290–91, 481–3
defensive expenditures 463–5
Eurostat 96–7, 98–100, 108, 492, 497
equity weighting 319
exposure indices 477, 478
exposure–response (E–R) functions 36–7, 41–64, 480, 483
alternative in sensitivity analysis 186–96
crops 58–60
health 41–56
chronic mortality and particles 51–3
classical pollutants 42–8
comments on some E–R relationships 48–51
metals and cancer effects 53–6
materials 56–8, 60
replicability 474, 475
external satellite account 28–9
ExternE project 34–5, 37, 41–2, 79, 141, 412
National Implementation Programme 38–9
VOSL 66, 67
extraction and distribution of fossil fuels 228, 229–83
Falcitelli, F. 448
fees 99
fertiliser 262, 263, 265, 267, 269
FINABO system 389
financial costs 353–4
financing principle 98, 99
fish stocks 372–3
flow of land damage 406, 489
Foekema, H. 350
Forest Condition in Europe reports 320
forest damage 4–5, 319–38, 475, 490–91
causes 319–21
commercial value of forests 327–8
defensive expenditures 336–8
GARP approach 7, 8
physical damage indicators 321–7
valuation studies 328–36, 337–8
Foundation for Water Research 373
foundations 437–9, 440
Framework Directive on Ambient Air Quality (FDAAQ) 474, 477
France 284–5, 291, 393, 394, 482, 483
Frankel, M. 67
Freeman, A.M. 294
future research
air pollution 480–81
land damages 489
water damages 486–7
game fishing 83, 373–4, 375–6, 379
GARP 3–14, 21–2, 23, 412
Index

acceptance of the methodology 34–5
GARP I 4–5, 6, 8, 13, 38
GARP II 6, 6–10, 12, 13, 31
methodological issues 10–12
overview of approach 6–10
project objectives 5–6
specific issues for 12–13
Geisendorf, S. 348, 349, 350, 490
Germany 479
adjusted health damages 480
air pollution 498
analysis of linearity 286–7
comparison of modelled and measured concentration data 288, 289
damage attribution by country 284–5, 291, 481, 482, 483
damage attribution by economic sector 229–83, 288–90
damage cost estimates 143–8, 173–5, 198, 498
physical impacts 205–9
sulphur dioxide emissions 91, 114–15
air quality data 114–18, 120–21
biodiversity
physical damage indicators 338–41, 342
restoration costs 336, 350
valuation studies 348–50
contaminated land 407
land remediation costs 404–5
legislation and data availability 390, 391, 393, 394, 488
defensive expenditures 430–39, 440, 493–6
environmental protection 430–33
historical and cultural buildings 433–9
forests 327
physical damage indicators 321–3
valuation studies 329–33
stock at risk data 138–9
water damage 368–70
global warming 5, 36, 411
GARP approach 7, 9
UKENA 29, 30
see also greenhouse gas emissions
Gosseling, H.J. 141
government expenditure, see public sector
grassland 307, 345–7
gravimetric units 47
Greece 284–5, 291, 393, 394, 482, 483
green consumerism 462
greenhouse gas emissions 411–28
assessment of marginal damages 421–4
doubling of carbon dioxide 412, 413–19
future developments 419–20
UKENA 29, 30
GREENSENSE 479
GREENSTAMP project 11–12, 16–24
prevention cost curve and cost-effectiveness approach 22–3
sustainability norm 20–22
Gren, I.-M. 490
groundwater pollution 383
Haardt forest 331, 332–3
Habitat Directive 341
Hamburg forest areas 329–31, 332–3
Hamilton, K. 25
Hampicke, U. 329, 332, 431
Hanley, N. 336
Hartwick, J.M. 17
Haynie, F.H. 57, 172
health impacts 4, 12–13, 173–5, 475, 498
adjusted comparison 479–80
damage attribution by economic sector 227, 233–62, 276–7, 278, 279
developments in valuation, see valuation
effects of land contamination 382
exposure–response functions, see exposure–response functions
Germany 143–4, 144–8, 205–8
Italy 148–51, 152–3, 209–11
Netherlands 153–4, 156–60, 161–6, 212–15
sensitivity analysis 180–84, 186, 188–96, 197, 221–5
UK 166–70, 171, 172–3, 217–20
see also morbidity; mortality
health production function 77
heavy metals 6
Netherlands 153–66, 214
sensitivity analysis 181–4, 185
see also under individual names
Helming, J.F.M. 301, 303
Hessia 405
Hicks, J. 18
historic buildings 433–9
expenditures on restoration 435–9
Hoffman-Kroll, R. 338, 340, 341
Holland, M.R. 186
home improvement 462
Hoos, D. 139
Horner, G.L. 303
house prices 83–4, 374–5, 376–7, 377–8
households 24–6
defensive expenditures 100, 465, 493–6
Germany 430–33
Italy 449, 450
Netherlands 453–4
UK 458–63
Howitt, R.E. 299–300, 301, 303, 305
Hueting, R. 16, 17–24, 354
Hummel, M. 434
Hurley, J.F. 42
hybrid accounts 26–31, 103
‘ideal forest’ 336, 337–8
impact pathway analysis 7, 8, 34–40, 87
acceptance of methodology 34–5
applications 477–80
comparison of approaches 479–80
consistency 476–7
damage attribution by sector 38–9
exposure–response functions and valuation data 36–7
full approach and air pollution 88–91, 226–92, 478–80
improved modelling and reporting of air quality 38
land contamination 382–4
partial approach and air pollution 87–8, 113–225, 478–80
range of effects now quantifiable 36
reliability 474–6
treatment of uncertainty 37–8
water quality valuation 370–77, 379–80
year on year changes 39
industrial combustion 228, 229–83, 290
industry expenditures, see private sector
inhalation effects 214
inspection, and contaminated land 387–8
intensity of use 339, 341
Intergovernmental Panel on Climate Change (IPCC) 412
intermunicipal corporations 454
international crop prices 155, 161, 162–3
interpolation of measured concentration data 114–18, 125–7, 129–31, 132
investment expenditure 98, 99, 493–5
Germany 430–33
Italy 445, 448–9
UK 458, 459
IQ 214
lead in blood and childhood IQ 56, 181, 184
Ireland 284–5, 291, 393, 394, 482, 483
ISPE study 440, 441, 492
Italy 38
adjusted comparison of health damages 480
air pollution
damage attribution by country 284–5, 291, 481, 482, 483
damage attribution by economic sector 229–83, 288–90
damage cost estimates 148–53, 173–5, 198, 498
physical impacts 209–11
air quality data 118–27
biodiversity and ecosystems 339–42
contaminated land 407
legislation and data availability 390–93, 394–5
defensive expenditures 439–50, 493–6
private sector 447–50
public sector 439–47
forests
damage 323–5
valuation studies 333–5
Index 511

stock at risk data 139
water damage 368–70

Jansen, H.M.A. 166
Johannesson, M. 72–3
Johansson, P-O. 72–3
Johnson, D.W. 327
Jones-Lee, M. 67, 68–9, 79

Katsouyanni, K. 42, 186
Keuning, S.J. 26
Klein, C. 331
Korn, E.L. 43, 50
Kroth, W. 336–8
Krupnick, A.J. 44, 50, 78
Kucera, V. 172

land contamination 36, 381–410, 487–9, 499, 500
classification 385, 386
contaminated land legislation and data availability 385–93
costs of treatment 393–405, 406, 407, 488, 489
clean-up costs of special sites 399–403
remediation costs 403–5
defensive expenditures 441–2, 443
defensive expenditures in Germany 144–8, 209

GARP approach 7, 9
impact pathways 382–4
land cover 344–6
land remediation options 397, 398
land restoration plans 390–93
landfill sites 402, 403
Larsen, J.B. 320
latency 55, 74–5
Laurenzi Tabasso, M. 433
lead 55
non-cancer risks 56
sensitivity analysis 178, 181–2, 184
legislation on contaminated land 385–93, 406
Leipert, C. 94, 429, 452
Lekkerkerk 381, 388
life-table methods 53
limestone 57
additional and acid deposition 262, 263, 265, 267, 269

Linden, J.W. van der 335
linearity, analysis of 286–7
Lipfert, F.W. 51, 434
LML (Dutch Air Quality Monitoring Network) 127–9, 130
local government 387–8
defensive expenditures 445–7, 454
London Group on Environmental and Resource Accounting 15, 103, 108
Love Canal, US 381
Löwenstein, W. 331–2
lung cancer 55
Luxembourg 284–5, 291, 482, 483

MacArthur, R.H. 344
Mahlman, J.D. 417
maize 307
Mäler, K.-G. 24–6
management costs of nature reserves 353
marginal damage costs 421–4
marginal valuation 11
Markandya, A. 4, 8, 9, 10, 12, 13, 31, 36, 46, 56, 58, 65, 66, 67, 166, 169, 293, 312, 319, 336, 499
mass balance 364
materials damage 4, 475, 476
damage cost assessment 173–5, 227, 271, 272–7, 279, 298, 498
defensive expenditures in Germany 433–9
exposure–response functions 56–8, 60
GARP approach 7, 8
Germany 144, 144–8, 209
and land contamination 383
Netherlands 155–61, 161–6, 216–17
sensitivity analysis 184–6
UK 172, 172–3, 221
materials data 139, 140–41, 142
mathematical programming 296–7, 298–9, 299–300
McCal, B.A. 300, 301
McInnes, G. 228
measured concentration data 38, 87–8, 114–36, 474, 475
background concentrations 136–8
comparison with modelled data 287–8, 289, 290
Germany 114–18, 120–21
Italy 118–27
Netherlands 127–31
sensitivity analysis 178–9, 180, 181, 187–8
UK 131–6
Mendelsohn, R.O. 414–15, 419–20
mercury 55
non-cancer risks 55
Messerschmidt Stiftung 439
meta analysis 67–8
metal working sites 402, 403
metals 53–6
heavy, see heavy metals
methodology
acceptance 34–5
air pollution 87–92
using measured concentration data 87–8, 114–42
using modelled concentration data 88–91, 226–7
applications, see applications of methodology
MIDAS project 439
Milborrow, I. 4, 31
Miller, B. 53
Ministry of the Environment (Italy) 442
minor restricted activity days (MRAD) 43, 48
Mjelde, J.W. 300–301
modelled concentration data 88–91
air pollution damage attribution using 226–92, 481–4, 497
comparison with measured concentration data 287–8, 289, 290
Moore, M.J. 70–72
morbidity 476, 498
damage attribution by economic sector 227, 236–62, 276–7, 279
Germany 143, 205–7
Italy 148–51, 209–11
Netherlands 153–4, 156–8, 160, 212–15
sensitivity analysis 180–84, 186, 188, 190, 191, 192, 221–2, 223, 224
UK 166–70, 171, 217–20
valuation 76–80, 81, 82
morbidity data 140
Morris, R. 43, 49
mortality 13, 82, 476, 498
damage attribution by economic sector 227, 233–6, 237–44, 276–7, 279
Germany 143–4, 207–8
Italy 148–51, 209–11
Netherlands 153–4, 158–9, 160, 166, 212–15
sensitivity analysis 186, 188, 189–96, 197, 223, 225
UK 166–70, 171, 217–20
and VOL Y 70–76
mortality data 139–40
Müller-Edzards, C. 320–21
multi-criteria decision support analysis (MCDA) 20
multifunctionality 388, 396
municipalities 454
Murty, M.N. 68
National Accounting Matrix including Environmental Accounts (NAMEA) 26–8, 103
National Expenditure for Environmental Protection 104–7
national income 3, 5, 10, 12
subtraction of defensive expenditures from 24–6
National Priority List (NPL) (US) 399–400, 401
natural resource depletion 3, 7, 9–10, 17
natural resource use and management account 96–7
nature and landscape management 456
nature reserves 353
Nature 2000 network 341
Navrud, S. 79
Needleman, L. 79
‘net environmental burden’ of a sector 451–6
net exporting countries 284–5, 291, 483
net importing countries 284–5
net national product (NNP) 24–6
net pollution 25, 32
Netherlands
adjusted comparison of health damages 480
air pollution

Anil Markandya and Marialuisa Tamborra - 9781845428136
Downloaded from Elgar Online at 07/16/2019 11:34:19AM
via free access
analysis of linearity 286–7
damage attribution by country 284–5, 481, 482, 483
damage attribution by economic sector 229–83, 288–90
damage cost estimates 153–66, 173–5, 198, 498
physical impacts 212–17
air quality data 127–31
biodiversity
physical damage indicators 342–3, 344, 345
restoration costs 336, 353–4, 355
valuation studies 348, 350–52
crop damage 299
defensive expenditures 451–7, 493–6
breakdown by sector and environmental theme 452–6
nature and landscape management 456
scope and limitations of methodology 451–2
forests
commercial value 327–8
damage 325–6
valuation studies 335
land contamination 381, 407
land remediation costs 403–4
legislation and data availability 388–90, 393, 395, 488
NAMEA system 26–8, 103
stock at risk data 139–41
water damage 370
Network for Industrial Land in Europe (NICOLE) programme 406
Neumann, J.E. 419
nickel 55
nitrates 8
damage attribution by economic sector 290
morbidity 236–62
mortality 233–6, 237–44
nitrogen deposition 8, 36
crop damage 58, 59, 262–71
Netherlands 326
nitrogen dioxide 46, 136
air quality data 115–16
sensitivity analysis 186–7, 187–8, 189, 190, 191, 192, 222, 223
nitrous oxide 422, 423
noise 36
noise abatement 462
non-fatal cancers 78, 81
non-methyl volatile organic compounds (NMVOC) 176–7, 229–32
Nordhaus, W.D. 414–15, 419–20
North America 47; see also United States
O/E ASPT measure of water quality 372
Oosterhuis, F.H. 335
operating expenditure, see current expenditure
opportunity costs 23
social 353–4
organically grown products 462
Organisation for Economic Cooperation and Development (OECD) 95–6, 98–100, 108, 497
Oskam, A.J. 353, 354
Ostro, B.D. 41, 43, 50, 152
other mobile sources and machinery 228, 229–83
oxides of nitrogen (NOx) 136
air quality data 125, 127
analysis of linearity 286–7
damage attribution by country 284–5, 290–91
emissions by economic sector 229–32
exposure–response functions 41, 46, 49
increase in emissions and decrease in ozone 232–3, 262
sensitivity analysis 176–7
see also nitrogen dioxide; nitrous oxide
ozone 8, 36, 284
air quality data
Germany 116–18, 120–21
Italy 124–5
Netherlands 131, 132
UK 134–5
background concentrations 137, 138
crop damage 293–4, 303–13, 491–2
damage attribution by economic sector 232, 278, 290
crops 262–71
morbidity 236–62
mortality 233–6, 237–44
damage cost estimates 173–5, 498
Germany 143–8, 173–5, 206, 207, 208, 209
Italy 148–53, 211
Netherlands 153–66, 215, 216–17
sensitivity analysis 176–7, 186, 188, 189, 190, 222
UK 166–73, 220
exposure–response functions
crop damage 58–9
health 41, 43–4, 45, 48, 49–50
material damage 57–8
ozone depletion 29, 30
paint 57
parks 328–36
partial equilibrium method 10–11
PM$_{2.5}$ 52
exposure–response functions 47
sensitivity analysis 188, 193–6, 197, 224, 225
PM$_{10}$ 38, 479
air quality data 127, 133–4
background concentrations 137, 138
damage attribution by economic sector 229, 230, 290
morbidity 249–50
mortality 233, 234, 237–8
damage cost estimates 173–5, 498
Germany 143–8, 173–5, 205–6, 208
Italy 148–53, 210
Netherlands 153–66, 212–13, 214–15
sensitivity analysis 176–7, 188, 189, 190, 191–2, 193, 197, 222
UK 166–73, 218–19
particulate matter (PM) 36
building soiling 184–5
exposure–response functions 41, 43–4, 45, 48, 49–51
chronic mortality 44, 51–3
see also PM$_{2.5}$, PM$_{10}$; total suspended particulates (TSP)
Pavan, M. 4, 8, 9, 10, 12, 13, 36, 46, 56, 58, 65, 66, 67, 166, 169, 293, 319, 336, 499
Pearce, D.W. 67, 312, 413, 414
Peskint, H. 93
Pfälzerwald 329–31, 332–3
physical impacts 5, 477, 478
air pollution 142, 205–25
climate change 411–12
ecosystems and biodiversity 338–47
forest damage 321–7
land damage 382–4
Pilkington, A. 42
policy analysis 34–5
policy guidance 23–4
policy recommendations 497–500
pollution abatement and control (PAC) expenditure 95–6, 98–100; see also
defensive expenditures
pollution maps, see measured concentration data
Ponce de Leon, A. 44, 49
Pons, A. 185
Pope, C.A. 43, 47, 50, 51, 52, 190
population data 138–9, 139, 139–40, 142
population equivalent 366–8
Portugal 284–5, 291, 393, 395, 482, 483
Positive Mathematical Programming (PMP) 303
potential pollutant loads 363, 364
estimation 366–8
prevention costs 11–12, 19–20, 22–3, 500
preventive environmental protection activities 94, 429
price elasticities of demand 301–2
prices
agricultural land 353–4
agricultural products 155, 161, 162–3, 305, 306
waterfront property 83–4, 374–5, 376–7, 377–8
primary pollutants 6–8, 12, 229–32
private sector 100
defensive expenditure 465, 493–6
Germany 430–33, 436–7, 438, 440
Italy 447–50
Netherlands 453
UK 457–8, 459, 460
producer surplus 294–5
DRAM 305–9, 313
compared with simple multiplication method 309–12
production 24–6
extension of the production boundary of the SNA 102
production processes 228, 229–83
profit function 297–8
project financiers 396–7
prospective cohort studies 51–2
protected areas 341–2
provincial governments 454
public power, cogeneration and district heating plants 228, 229–83, 290
public sector 100
defensive expenditures 465, 493–6
Germany 430–33, 435–6, 437, 440
Italy 439–47, 450
Netherlands 453, 454
UK 463, 464
public utilities 453
purchases 99
Pyatt, D.G. 320
Rabl, A. 37, 160
Racomitrium lanuginosum 347
rarity 339, 341
receipts from by-products 99
Records of Decisions (RODs) 399–400
recreation
forest damage 319, 328–36, 490
regional government expenditure 445–7
regional impacts of climate change 413–16
registers of contaminated land 388, 391, 393, 487–8, 488–9
reliability 499
air pollution damages 474–6
land damages 488
water damages 486
remediation costs, land 393–405, 406, 407, 488, 489
clean-up costs of special sites 399–403
Germany 404–5
Netherlands 403–4
replicability
air pollution damages 473–4, 475
land damages 487–8
water damages 485–6
resource depletion 3, 7, 9–10, 17
respiratory hospital admissions (RHA) 43, 48, 80, 81
respiratory symptoms 44, 50
restoration costs of biodiversity 336, 350, 352–4, 355, 490–91
restricted activity days (RAD) 43, 48, 50, 77–8, 81, 175
revenues 99
Review Group on Acid Rain (RGAR) 136–7
RIVM (Dutch Institute of Public Health and Environmental Protection) 127–8, 129–31, 451
road transport 228, 229–83, 290
Roemer, W. 43, 50
Rothschild, S. 43, 50
Rowe, R.D. 76
Ruffell, R. 336
Ruijgrok, E.C.M. 350
Russel, M. 399
safe minimum standards 25–6
salmon fishing 83, 373–4, 375–6
Salway, A.G. 182
sample valuations 7, 8, 9; see also ecosystems; forest damage; land contamination; water pollution
sandstone 57
satellite accounts 15, 23, 500
NAMEA 26–8, 103
UKENA 28–31, 31–2
Schwartz, J. 43, 49, 50, 56
secondary pollutants 6–8, 12, 229–32
sensitivity analysis 37, 175–96, 197, 198, 221–5, 483
alternative exposure–response functions 186–96
extension to other pollutants 177–86
year on year changes 175–7
severe hereditary effects 80, 81
Shephard, D.S. 68
Shortle, J.S. 296
Sijtsma, F.J. 353, 354
Simon, S. 457, 460, 463
simple multiplication method 293, 294–6
comparison with DRAM 309–12, 313, 491–2
Simpson, D. 89
site investigation costs 397
Slangen, L.H.G. 353, 354
social demand curve 18–19
social opportunity costs 353–4
socio-economic development 418–19
Sohngen, B.L. 419
soil remediation 388–90
‘cost-effectiveness curve’ 403–4
Solow, A. 348
solvent use 228, 229–83
Source Receptor Ozone Model (SROM) 89, 287
Spain 284–5, 291, 393, 395, 482, 483
spatial coverage of air monitoring 119, 122
special sites 385, 397, 407
estimating the clean-up costs of 399–403
specialised producers 100
Spix, C. 44, 49
standard deviations 414–15, 415–16
Stedman, J.R. 134, 135, 178, 187
Stern, N. 68
stock at risk data 138–42, 474, 475
stocks, environmental 25–6
Strijker, D. 353, 354
structural diversity 339, 341
subsidies 99, 354
substances, account of 26–7
Südharz 331–2, 332–3
suitability for use 387–8, 396
sulphates 8, 52
comparison of modelled and measured concentration data 287–8, 290
damage attribution by economic sector 290
morbidity 236–62
mortality 233–6, 237–44
sulphur dioxide 8, 36
air quality data
Germany 91, 114–15
Italy 125, 126
Netherlands 131, 132
UK 133
analysis of linearity 286–7
background concentrations 136, 138
comparison of modelled and measured concentration data 287–8, 289
crop damage 262–71, 293–4, 303–5, 491
damage attribution by country 284–5, 290–91
damage attribution by economic sector
crops 262–71
emissions 229–32
materials 271, 272–5
morbidity 236–62
mortality 233–6, 237–44
damage cost estimates 173–5, 498
Germany 143–8, 205, 207, 208, 209
Italy 148–53, 209, 211
Netherlands 153–66, 214–17
sensitivity analysis 176–7, 189, 192
UK 166–73, 217, 221
exposure–response functions
crops 58
health 41, 44, 45–6, 49
forest damage 321–2
Sunyer, J.M. 44, 49
supply and use tables 104–7
survival probabilities 70, 71–2
sustainability norms 11, 18–19, 20–22
Sustainability and the Use of Non-renewable Resources (SAUNER) 9–10, 13
sustainable development 9–10, 18, 21, 23
sustainable development indicators 28
Sustainable National Income (SNI) 16–24, 354
concept 17–18
symptom days 44, 50, 78–9, 81
synthesis 411–12
System of National Accounts (SNA) 15, 101
Système Européen pour le Rassemblement des Informations
Index

Anil Markandya and Marialuisa Tamborra - 9781845428136
Downloaded from Elgar Online at 07/16/2019 11:34:19AM
via free access
Index

variation by age 68–9
Vaze, P. 9, 28
Verhoeff, A.P. 44, 49
Vincent, K. 133
Viscusi, W.K. 70–72, 79
vitality of forests 325–6
Volkswagenstiftung 439
volume reductions 22

Waldkircher, C. 434
waste 100
waste treatment and disposal 228, 229–83
water availability 60
water boards 454
Water Framework Directive 485–6, 487
water pollution 363–80, 485–7, 499, 500
defensive expenditures 100, 441–2, 443
developments in valuation 82–4
GARP approach 7, 9, 36
land contamination and 383
monetary valuation of damages 365–70
data availability 368–70
valuation using WTP estimates 370–77
amenity 82–4, 374–5, 376–7, 377–8
methodology 371–5
results 375–7
water treatment costs 365–70, 377, 486, 487
waterfront properties 83–4, 374–5, 376–7, 377–8
Weitzman, M.L. 11, 17
welfare-based values 24
welfare principles 10
Western Europe 46
wet acid deposition (WAD) 155
Whittemore, A.S. 43, 50
Wichmann, H.E. 44, 49
willingness-to-accept (WTA) 8, 11, 66–7
willingness-to-pay (WTP) 8, 11, 21, 66–7, 500
ecosystems and biodiversity 348–52
forestry valuation studies 328–36, 337–8
for an illness 76
Wilson, E.O. 344
Windrose Trajectory Model (WTM) 89, 287–8, 289, 290
Wordley, J. 44, 49
World Health Organisation (WHO) 54–5
Wüstenrot-Stiftung 439

year on year changes 39, 175–7
years of life lost (YOLL) 52–3
yields estimated in the Netherlands 140, 141
losses, see crop damages
Yohe, G.W. 419
Zeckhauser, R.J. 68
zinc 57