Index

Aastrup, J. 17
action plan
model, European development strategies 294–6
policy, European development strategies 298–9
see also planning actions
European development strategies, for already taken 273–5
required to lift barriers 279–86
to be taken, as priority 291–4
actors
EIT
demand side 15–17
supply side 17–21
network design, quality and efficiency improvement challenges and 153
terminal, container handling service quality and 93–3
transport, quality and efficiency improvement challenges and 152
see also operators
Agile Port System (USA)
technical approach 6, 135–6, 150
collection and distribution along trains, high-capacity box mover for 145–50
hub technology, innovative 140–45
marine terminal, efficient 137–40
storage facilities, outplacing from ocean harbours 136–7
see also hinterland development; port systems; USA
air transport
integration into intermodal chains, European development strategies 290–91
Alberghini, G. 80

Alexander, E.R. 253
Alicke, Knut 144
Anderson, W. 44
ATA (American Trucking Association) 314
Australian-European Conference 229–30
Austria
interconnectivity and interoperability and 235
NG concepts and 160
automation
container handling future and 114
gate operations with increased, container handling system developments 128–9
NG concepts implementation and 161, 163
road services interface, of, container handling system developments 129–30
terminal handling system 125–7
see also technology
Avery, P. 137, 139, 142
Bailey, J.P. 256
Bakos, J.Y. 256, 257
Ballis, A. 30
barges see inland shipping
Barke, M. 74
barriers
European development strategies, to, 275–8, 279–86, 287
intermodalism 225
Bärthel, Fredrik 2–3, 14, 25
Bauer, R. 147
Belgium
container bundling 81, 83, 84, 86
EIT and 27
hinterland development networks and 76–9, 82
Benjamin, R.I. 255, 256, 257
Berkin, C.G. 41
Bergstrand, J. 30
Berry, L.L. 89, 94
Beuthe, M. 211
Bodendorf, F. 255, 257
Bontekoning, Y.M. 30, 69, 92, 208, 209–10, 276
Boske, L. 303–4
Bowersox, D.J. 93

box mover
- high-capacity, for collection and distribution along trains, Agile port system 147–50

Bradley, P. 51
Breitzmann, K.-H. 213
Britain see UK
Brun, E. 161
Brynjolfsson, E. 256, 257
BTS (Bureau of Transportation Statistics) (USA) 44, 46, 307
Buchholz, J. 207
Buis, J. 265
Bukold, S. 14, 17

bundling
- complex, principles and impacts of 155
- container see container bundling
- container flows rail-bound inland, innovative hub technology and, Agile port system 140–45
- freight flows 66, 69–72, 85, 87, 157
- load unit exchange and 153, 154–9
- networks, load unit exchange and 174, 175

bundling triangle
- cost function and economies of scale in network design relating to 180–82
- qualitative elaboration 165–73
Bürkl, M. 161, 173
Buxmann, P. 252

cargo see freight
CargoNet 18, 21

challenges
- development 2–10
- transport quality and efficiency improvement 152–3
- US government innovation role 309, 318

characteristics
- container cranes 119–20
- continental terminals, container handling service quality in 100
- coordination structures 254–5, 260–61
- freight flows, EIT 25–7
- future type container vessels 115
- maritime terminals, container handling service quality in 95
- service, container terminal handling quality and 96, 100
- urban intermodal freight transport, Japan 59–61
Charlier, J. 80
Chatterjee, Latta 3–4
Chircu, A.M. 255

choice
- interconnectivity and interoperability and 225–6
- ports and terminals, of, container handling future 133
Choong, S.T. 276
Churchman, C.W. 14
Clark, T.H. 256
Clausen, U. 207
Clinger, J. 40
Closs, D.J. 93
CNC (Compagnie Nouvelle de Cadres) 18, 21, 24

coastal shipping
- Japan 58, 59–60
- mainport development tends and 112
- see also shipping
Cole, M.H. 276

collection
- along trains, high-capacity box mover for, Agile port system 145–50

communicability
- MEA and, system design 195, 196
Index

competition
container handling future and 109, 132
container handling service quality and 97, 103, 104
EIT 25, 27, 30
European development strategies and 273, 278
freight bundling and 69–71
hinterland development networks design and 73, 78–9
interconnectivity and interoperability and 248–9
interorganizational coordination processes and 260
Japan 62
US intermodalism and 37, 39, 53, 55–6
see also SSCA
conditions
external, system design 197–8
working, safe, mainport development trends and 112
see also quality conditions
connectivity see interconnectivity
consolidators
US intermodalism and 51
Consortium (Germany) 147
container bundling
concepts in multi-terminal container ports 76
hinterland development networks and 80–86
see also bundling
container flows
rail-bound inland, bundling of, innovative hub technology and, Agile port system 140–45
see also flows
container handling
future scale dilemma 5–6, 109–10, 132
choice of ports and terminals 133
container cranes, requirements for 119–23
cost-driven approach 132–3
increased scale, impact of 113–14
port and terminal development 110–13, 117–19
service-driven approach 132
system developments 123–31
vessel size 114–16
service quality 4–5, 89–90
continental terminals 98–104
costs 91
further research 94, 104
maritime terminals 94–8, 103–4
measurement 93–4
production process 90–91
terminal actors 92–3
container line service
design 67
frequency 67
intermediate terminals, stops at 68
loading capacity 67–8
see also services
containerization
EIT and 17, 18
hinterland development networks and 66
hinterland transport and, modal split in 79
Japan 59
maritime, interconnectivity and interoperability development and 228–30
US intermodalism and 45–6, 50–51, 52, 53
control
container handling future and 114, 125
see also performance
Cooke, J. 51
cooperation
road services and terminals, container handling system developments 130–31
satellite and main terminals, container handling system developments 131
coordination see interorganizational coordination
Copacino, W.C. 91
Corsi, T.M. 29
cost advantage strategy
SSCA and, system design 192–3, 194
see also strategies
cost-driven approach
container handling future and 132–3
Index

cost function
 economies of scale and, network design in relation to bundling triangle 180–82
costs
 bundling triangle and 166, 168, 180–82
 business economic, system design and 203
 container handling future and 109, 110, 112, 132
 container handling service quality and 91, 96, 97, 102, 103
 differences per load unit 178–9
 EIT and 30
 exchange nodes and 173, 175
 freight flows bundling and 66, 69
 hinterland development networks design and 72, 80
 integral, load unit exchange and 175–80
 interconnectivity and interoperability and 226, 229, 241, 248
 Japan 60–61
 load unit exchange innovation and 154, 156
 mainport development trends and 112
 MegaHub and 144–5
 socio-economic, system design and 203
 US government innovation role and 302
 US intermodalism and 49, 50
 see also price
 Crainic, T.G. 208, 210
 Cramton, P.C. 256, 257
 cranes
 container, requirements for, container handling future and 119–23
 RMG (rail-mounted gantry) 125, 138
 STS (ship-to-shore) 137, 139
 see also equipment; infrastructure
 Crowston, K. 253, 254, 255, 256
 Cullinane, K. 74
customs brokers
 US intermodalism and 51

De Boer, J. David 233
De Witt, W. 40
definitions
 coordination 253
 intermodal freight transport 206–7
 intermodal transport 189
 intermodalism 35, 36
 intermodality 189–90
 supply chain 40
 system components and, system design 189–91
 transport chain 207
 uncertainty 257
demand side
 market and actors, EIT 15–17
 Demilie, C.L. 211
 Denis, J. 163
deregulation
 EIT and 23, 27
 US government innovation role and 314
 US intermodalism and 41
 US railroads and intermodalism, interconnectivity and interoperability and 233
design
 container line service 67
 hinterland development networks 72–3
 planning guidance and, public sector role in, US intermodalism 54
 see also network design; system design
design tools
 development challenge 2, 5–8
 D’Este, G. 276
development
 challenges 2–10
 hinterland, networks design 72–3
 interconnectivity and interoperability 227–35
 passenger and freight transport, US economic growth and 43
 port and terminal, container handling future and 110–13, 117–19
terminal container handling system 123–4
 gate operations, with increased automation 128–9
gate process redesign with reduced inspection activities 131
lands ide operations 127–8
satellite terminals, cooperation with 131
train shuttles 131
truck interface, automated handling of 129–30
trucking and terminals, partnership between 130–31
waterside operations 124–7
development strategies
Europe 9–10, 271–2, 275–6
actions already taken 273–5
actions to be taken, as priority 291–4
air transport integration into intermodal chains 290–91
barriers 275–8, 279–86, 287
policy action plan for 298–9
railways, role of as traction providers 287–8
short-distance services 288–9
short-sea shipping services 291
small shipments services 289–90
differentiation strategy
SSCA and, system design 192, 193–4
see also strategies
Dijkstra, E.W. 265
DIN (Deutsches Institut für Normung) 207
Dinwoodie, J. 13
distribution
along trains, high-capacity box mover for, Agile port system 145–50
diversity
durability and, effects of institutional, US government innovation role and 305–9
price of, interconnectivity and interoperability 226–7
Donaldson, L. 252
durability
diversity and, effects of institutional, US government innovation role and 305–9

efficiency
fairness and, of pricing, as priority action, European development strategies 292
interconnectivity and interoperability and 225, 226–7
transport, improving, load unit exchange and 152–3
see also EMT; performance
Eisenberg, E.M. 254
EIT (European intermodal road-rail freight transport)
demand side market and actors 15–17
expectations unfulfilled 13–14
freight flows, size and character of 25–7
marketplace market and actors 21
overview 2–3
production system 21–5
solution to road and rail transport problems, as 13
supply side market and actors 17–21
synthesis and outlook 27–31
see also European Union
Ekering, C.F. 256
EMT (Efficient Marine Terminal) 136, 137–40, 141, 147, 150
see also efficiency
ENO Transportation Foundation, Inc. 302
environm ent
differentiation strategy and, system design 194
EIT and 30–31
Japan 60, 63, 65
mainport development trends and system design and 204
US government role, innovation and price of, interconnectivity and interoperability 245–6
see also cranes; infrastructure
Index

European Commission
development strategies and 272, 275, 288, 290, 292, 293, 297
EIT and 13, 25, 30
interconnectivity and interoperability and 242–4
IQ (Intermodal Quality) 27, 89, 277–8
network modelling and 207
PACT programme 248, 250
PROMOTIQ 278, 287
STREAMS 209
European Union
barging network, container bundling in 83–6
development strategies see development strategies, Europe
interconnectivity and interoperability and 227, 229–30, 231, 232–4, 239, 242, 245–50
rail networks, container bundling in 80, 82–3
SAIL Project 247
transport flows (1999) 28
transported volumes of major operators (1990–2002) 26
see also EIT
Eurostat 14
evaluation
SSCA 201–4
system design 200–201, 205
exchange
hub, NG concepts implementation and 163–4
see also innovation, load unit exchange
Fabel, P. 142
fairness
efficiency and, of pricing, as priority action, European development strategies 292
feeding
success of, interconnectivity and interoperability development and 234–5
FHWA (Federal Highway Administration) (USA) 306–7
flexibility
container handling future and 109, 132
container handling service quality and 89, 92, 104
see also performance
Florian, M. 210
flows
container, rail-bound inland, bundling of, innovative hub technology and, Agile port system 140–45
freight, size and character of, EIT 25–7
NG concepts implementation and 163
open corridors, European development strategies and 278
transport, European intermodal (1999) 28
Floyd, R.W. 265
Flughafen/Cargo City, Frankfurt, Germany 275
FMCSA (Federal Motor Carrier Safety Administration) (USA) 307
focus strategy
SSCA and, system design 192, 194–5
see also strategies
forwarders
EIT and 15–17, 18, 29
tasks of, planning and, network modelling 208
US intermodalism and 50
Foundation for Promoting Personal Mobility and Ecological Transportation (Japan) 64
FRA (Federal Railroad Administration) (USA) 307
France
container bundling 80, 81, 83, 86
EIT and 13, 17, 18, 21, 24, 27
hinterland development networks, Hamburg–Le Havre (H-LH) range 76–9
interconnectivity and interoperability and 232, 235, 240, 247
MegaHub technology and 145
network modelling and 210
NG concepts and 159, 160
Index

non-technical network innovations and 165
Franke, Klaus-Peter 6, 141, 143, 145, 173
Frankel, J. 43
Fränkle, A. 214
freight bundling, hinterland development networks and 66, 69–72, 87
commercial activity by mode of transportation 1997, estimate of total, USA 46
domestic transport, modal share of, Japan 59
flows, size and character of, EIT 25–7
growth by traffic modes 1970–95, USA 44
handling equipment, US intermodalism and improvements in 51–2
intensity, USA 45
intermodalism by commodities, form of, USA 48
shipments by value and tonnage, USA 35, 47
spatial concentration of, in port systems, hinterland development networks and 73–5
transport costs, Japan 61
transport development, passenger transport development and US economic growth and 43
value, by, USA 45
freight concentration level in port systems and hinterland, inland services configuration as function of 74
throughput and in H-LH range 77
freight sector
US government role, innovation and, passenger sector compared 309–12
US intermodalism patterns and 42–5
frequency
container handling service quality and 89
container line service 67
ICT impact on interorganizational coordination and 257, 261–2
volumes and unit capacity and 68, 167
see also performance
Frindik, R. 161
Gadde, L.E. 14
Galbraith, J.R. 257
gasoline transportation by inland river shipping, Japan 63
gate
operations with increased automation, container handling system developments 128–9
process, redesign with reduced inspection activities, container handling system developments 131
Gebauer, J. 252
Germany container bundling 80, 81, 82, 83–4, 85, 86
EIT and 13, 17, 18, 19, 27
European development strategies and 273–4, 275
hinterland development networks, Hamburg–Le Havre (H-LH) range 76–9
interconnectivity and interoperability and 232, 234, 235, 249–50
LMTT and 47
MegaHub technology and 141, 142–3, 145, 150
network modelling and 212, 218, 219–20
NG concepts and 159, 160
GHR 259
Gifford, J.L. 19
Gilman, S. 74
globalization
container handling future and 109, 110
mainport development trends and 111
US government innovation role and 303
US intermodalism and 39, 40
US transport changes and 34
Godlee, F. 303
Index

Golias, J. 28, 30
Golob, T.F. 29
Gooley, T. 51
Gould, P.R. 73

government
role in fostering innovation, USA see USA, government innovation role
see also public sector

Grimm, C.M. 29
Guttman, R.H. 254
Gwilliam, K. 53

Ha Con 161
Hagler Bailly, Inc. 52
Haines, M. 55
Håkansson, H. 14
hauliers see PPH
Hayuth, Y. 74
Helferich, O.K. 93
Hengst, Marielle den 9, 255, 256, 268
Henstra, D. 14, 30
Hickling, L. 37

hinterland development networks
container bundling 80–86
design 72–3
freight flows bundling and 66–72, 87
inland service configuration and, Hamburg–Le Havre (H-LH) range 76–9
overview 4
port areas, concepts in 75–6
port systems, spatial concentration of cargo in 73–5
see also Agile port system; networks hinterland traffic
network modelling and 212–16
Holguín-Veras, José 10, 303, 308, 310
Hollingshead, A.B. 252
homogeneity
interorganizational coordination and 256–7, 261
Houtman, J. 30
hub exchange
NG concepts implementation and 163–4
hub technology
innovative, Agile port system 140–45
see also technology

human behaviour
hinterland development networks design, impact on 73
Hupac/Trans Alps Service 274–5
Huth, E. 147

ICF (Intercontainer-Interfrigo) 18, 21, 24, 25, 81
ICT (information and communication technology)
EIT and 17, 22, 29–30
increased scale impact 114
interorganizational coordination and 252–3, 255–8, 260, 261, 262, 266–8
mainport development trends and 112
US intermodalism and 40–41, 42, 52, 55
see also information system; technology

IFEU and SKGV 30–31
IIC (Intermodal Interface Center) 6, 136, 140–41, 150
ILU (intermodal loading unit)
EIT and 13, 14
freight flows 27
market demand side 15, 16
market supply side 17, 18
standardization, lack of 30
see also load unit
implementation
development challenge 8–10
innovation, possible path for 320
realized, of NG concepts 161–4
IMPULSE 161
information
availability of, network modelling 219–20
hinterland traffic alternatives and, network modelling 215–16
network, interorganizational coordination processes and 260
structure of, interorganizational coordination system and 263–4
working practices and, rail services interconnectivity and interoperability and 241
information system
improvement needed, Japan 64–5
see also ICT; system
infrastructure
EIT and 15, 22, 28–9, 30
freight bundling and 72
increased scale impact 114, 117
interconnectivity and
interoperability and 238–9
intermodal transport in, system
design and 190
Japan 63, 64, 65
mainport development trends and
111
transport modes implications for
network modelling and 216–19
US intermodalism and 37, 39
see also equipment; resources
inland services
configuration as function of cargo
concentration level in port
systems and hinterland 74
direct versus indirect 71
see also services
inland shipping
continental container terminal
service quality and 100, 101–2,
103, 104
European interconnectivity and
interoperability and 245–6
hinterland development networks
and 76–9, 83–6
hinterland traffic alternatives 214–15
infrastructure implications, network
modelling and 218–19
mainport development trends and
112
NG concepts and 160–61, 162–3
see also shipping
innovation
development challenge 2
government role in fostering, USA
see USA, government
innovation role
hinterland development networks
and 66
implementation path for 320
load unit exchange 6–7
bundling 154–9
bundling triangle 165–73, 180–82
costs, integral 175–80
exchange nodes 173–5
network design research 183–4
networks, best 183
NG (new-generation) concepts
159–64
non-technical network
innovations 164–5
PPH 183
transport quality and efficiency,
improving 152–3
US intermodalism and 52
see also technology
inspection
mainport development trends and 112
reduced activities, gate process
redesign with, container handling
system developments 131
institutions
diversity and durability effects, US
government innovation role and
305–9
US intermodalism and 35, 41, 49–51
see also interorganizational
coordination
integration
European development strategies
and 276–7, 278, 290–91
MEA and, system design 195–6
terminal and box projects, networks
and 160
interconnectivity
importance, Japan 59
interoperability and 8–9, 235–9,
250–51
barriers to 225
choice, making 225–6
development 227–35
diversity, price of 226–7
European Union and 227, 232–3,
245–50
railways 239–41
US intermodalism and 49–50
intermodal freight transport
defined 206–7
future of, overview 1–2
intermodalism
air transport integration into,
European development
strategies 290–91
domestic, European interconnectivity and interoperability and 246–7
modalism to, interconnectivity and interoperability development and 227–8
see also USA, intermodalism
interoperability
promotion of as priority action, European development strategies 293–4
see also interconnectivity, interoperability and interorganizational coordination
ICT and 252–3, 255–8, 266–8
overview 9
practice 258–62
system 262–6
theory 253–5
IQ (Intermodal Quality) 27, 89, 277–8
see also European Commission; quality
ISO (International Standards Organization) 231, 236
IT (information technology) see ICT
Italy
container bundling in rail networks 80
EIT and 13, 17, 18, 27
European development strategies and 274
interconnectivity and interoperability and 232, 234
Jablin, F.M. 253
Jahnke, B. 158
Janic, M. 210
Japan
urban intermodal freight transport 4, 58–9
characteristics 59–61
methods for promoting 64–5
rail, waste materials transportation by 61–2
shipping, inland river 62–3
Jara-Diaz, S. 310
Jensen, Arne 7, 187, 188–9, 200
Jordan, J.M. 264
Jourquin, B. 211
Kalakota, R. 255, 256
Kasper, H. 90, 91
Kauffman, R.J. 255
Khanna, M. 74
Kombiverkehr 18, 27, 273–4
Konings, J.W. 30, 76, 92, 276
Kornelius, L. 256
Kortschak, B.H. 142
Kreutzberger, Ekki 6–7, 30, 92, 102, 135, 136, 207
Kuhn, A. 212
Kuipers, B. 92
Kutanoglu, E. 276
Lakshmanan, T.R. 3–4, 44, 47
Lee, H.G. 256
legislation
Decision 884/2004 (Trans-European Transport Network) 272, 287
Directive 91/440 (Railways Development) 287, 288
Directive 96/48 (Interoperability Harmonization) 272, 287
Directive 2001/12 (Access to Railway Infrastructure) 287, 288
Directive 2001/13 (Licences to Railway Operators) 287, 288
Directive 2001/14 (Railway Capacity) 237, 272, 287, 288
Directive 2004/50 (Interoperability for High-Speed Rail) 287
Directive 2004/51 (Railways Development) 287, 288
European interconnectivity and interoperability 242–4
Intermodal Surface Transportation Efficiency Act (ISTEA) (USA) 37, 53, 54, 238, 308, 312
Staggers Act 1980 (USA) 233
TEA 21 (USA) 53, 54, 238
Treaty of Rome 243
Lemper, B. 212
Lena, T.S. 303
Levacic, R. 257
Ljungemyr, H. 30
LMTT (linear motor-based transfer technology) 138, 145–50
Rob Konings, Hugo Priemus and Peter Nijkamp - 9781848441392
Downloaded from Elgar Online at 04/21/2019 06:17:12AM via free access
Index

load unit
exchange, technical concepts for
see innovation, load unit exchange
system design definitions and 189
see also ILU
loading capacity
container line service 67–8
logistics service providers
EIT and 16
tasks of, planning and, network modelling 208
US intermodalism and 51
logistics system
European development strategies and 273
US intermodalism and 35–6, 41–2
see also system
Ludvigsen, J. 30
Luttekes, E. 120

MacLean, Malcolm 229
Maes, P. 254
Magee, J.F. 91
mainports see ports; terminals
Malone, T.W. 252, 253, 254, 255, 256, 257
management
container handling service quality and 89, 92
interorganizational coordination and 260
US intermodalism and 49–51
see also performance
market
demand side, EIT 15–17
supply side, EIT 17–21
marketplace
EIT 21
Matheja, A. 218
Mayer, G. 180–82
McGrath, J.E. 252
MDS Transmodal 79
MEA (market entry ability)
system design and 191–2, 195–6, 197–8, 200, 204–5
MegaHub technology 141, 142–5, 147, 150
see also technology
megahub terminals
NG concept, load unit exchange innovation and 159
Meyer, Peter 144
Miller, D.W. 202
Mintzberg, H. 253
models
action plan, European development strategies 294–6
interorganizational coordination system 264–6
SERVQUAL, container handling service quality and 89, 94
system, intermodal chain and 15, 20, 21, 22
tools for, development challenge 2, 5–8
see also network modelling
Möller, K. 161
Monge, P.R. 254
Moore, N. 256
Morlok, E.K. 15, 210
Morrill, R.L. 73
MPOs (metropolitan planning organizations) (USA) 308, 317
Muller, Gerhardt 49, 233, 258, 314
multimodalism
intermodalism distinguished 36–7, 58

N.N. 136, 150
Narver, J.C. 90
National Commission on Intermodal Transportation (USA) 53
National Research Council (USA) 53
NCHRP (National Cooperative Highway Research Program)
(USA) 307–8
Nelldal, B.-L. 22
Nemoto, Toshinori 4
NERA 292
Netherlands
container bundling 84, 86
EIT and 17
hinterland development networks, Hamburg–Le Havre (H-LH)
range 76–9
interconnectivity and interoperability and 234, 235
interorganizational coordination and NG concepts and 160
network design actors, quality and efficiency improvement challenges and 153 cost function and economies of scale in, relating to bundling triangle 180–82 EIT production system and 23–5 research 183–4 see also design network modelling future research tasks and 206 information, availability of 219–20 intermodal freight transport defined 206–7 overview 7–8 planning, strategic for operators 210–12 planning models 207–10 seaport hinterland traffic 212–16 transport modes, infrastructure implications 216–19 see also models networks best 183 bundling, load unit exchange and 174, 175 complex bundling 156–8 European barging, container bundling in 83–6 European development strategies and 278 information, interorganizational coordination processes and 260 integrated terminal and box projects 160 non-technical, innovations 164–5 rail, container bundling in 80–83 system analysis applying network approach, results of 29 see also hinterland development networks Newman, A.M. 210 Niérat, P. 15 Nijkamp, Peter 4, 210 NG (new-generation) concepts load unit exchange innovation and 153, 159–64 NODUS 210–11, 212 Noell Crane Systems GmbH 137–9, 140, 142, 147 Norris, B. 55 Norway EIT and 18 Notteboom, Theo 4, 79 Nozick, L. 210 NSF (National Science Foundation) (USA) 306 objectives national economic, government–private industry dynamics, US government innovation role 315–16 system design 191–2 OECD (Organization for Economic Cooperation and Development) 58 Ohnell, S. 16 oil see gasoline O’Kelly, M.E. 180 operations development challenge 2–5 gate, with increased automation, container handling system developments 128–9 landside, container handling system developments 127–8 waterside, container handling system developments 124–7 operators intermodal, EIT and 18–21, 28 maritime terminal, quality importance according to 96 rail, EIT and 17–18 strategic planning for, network modelling and 210–12 tasks of, planning and, network modelling 208–9 see also actors organization see management organizations see institutions Paaswell, Robert 10 Parasuraman, A. 89, 94 partnership see cooperation Patterson, K.A. 29
Index

performance
container handling future and 110
container handling service quality
and 96–7, 98, 100–101, 103–4
exchange nodes and 173–5
focus strategy and, system design
194–5
load unit exchange innovation and
154
mainport development trends and
111
MegaHub 143–4
NG concepts implementation and
163
relationships, system design
198–9
SSCA and 202–4
total, and per unit, system design
and 195
see also efficiency
Perl, Anthony 10, 305
Perreault Jr., W.D. 95
Persson, P.-Å. 30
Peterson, B.E. 211
Planco GmbH 214, 219
planning
container handling future and 125
guidance, public sector role in design
and, US intermodalism 54
long-term 89, 117–19
models, network modelling and
207–10
strategic, for operators, network
modelling and 210–12
US government innovation role and
304, 316–17
see also action plan; performance
policy
development challenge 8–10
European development strategies
and 272, 277–8, 298–9
US government innovation role and
303, 310, 317–21
US intermodalism issues 52–6
policy makers
tasks of, planning and, network
modelling 209
Port of Gioia Tauro, Medcenter
Container Terminal 274
Porter, M.E. 255
ports
choice of, container handling future
and 133
connectivity importance, Japan 59
deep-sea, mainport development
trends and 111–12
development, container handling
future and 110–13, 117–19
EIT and 19
hinterland development networks
and 73–6
hinterland traffic, network modelling
and 212–16
improved access needed, Japan 64
US government innovation role and
315
see also terminals
PPH (pre-and post-haulage by road)
EIT and
competitiveness 30
ICT importance 29
market demand side 15, 16, 17
market supply side 18
marketplace 21
production system 24
hinterland development networks
and 79
interconnectivity and interoperability
development and 230–32
load unit exchange innovation and
154, 156, 180, 183
see also road services
practice
interorganizational coordination
258–62
working, information and, rail
services interconnectivity and
interoperability and 241
price
diversity, of, interconnectivity and
interoperability 226–7
handling, container handling service
quality and 89, 93, 101, 103
see also costs; performance
pricing
fair and efficient, as priority action,
European development
strategies 292
policy, European development
strategies and 277
private sector
government–private industry
dynamics, US government
innovation role and 309–17
US intermodalism as public good
and 53
privatization
mainport development trends and
111
process
gate, redesign with reduced
inspection activities, container
handling system developments
131
interorganizational coordination
practice 260
interorganizational coordination
theory 253–4
production, service, container
handling 90–91, 95
production process
service, container handling 90–91, 95
production system
EIT 21–5
maritime containerization as,
interconnectivity and
interoperability and 228–9
MegaHub 142
US intermodalism and 40
see also system
productivity trends
1955–97, US intermodalism and
41
PROMOTIQ 278, 287
see also European Commission
Proper, A. 52
prototype
interorganizational coordination
system 265–6
see also models
public policy
US intermodalism issues 52–6
see also policy
public sector
role in planning guidance and
design, US intermodalism 54
see also government
Quadrante Europa/Verona Freight
Village 273
quality
bundling triangle and, load unit
exchange 165–73
differentiation strategy and, system
design 194
European development strategies
and 271
service see container handling,
service quality
see also IQ: transport quality
quality conditions
continental terminals, container
handling in 100–101
maritime terminals, container
handling in 95–7
see also conditions
quality judgements
continental container terminals 102
history
continental terminals, container
handling in 98–100
maritime terminals, container
handling in 94–5
rail services
bundling of container flows bound
inland by, innovative hub
technology and, Agile Port
System 140–45
bundling triangle and 168–73
collection and distribution along
trains, high-capacity box mover
for, Agile Port System 145–50
continental container terminal
service quality and 98, 100, 101,
103, 104
EIT and 21, 22–3, 29–30
European development strategies
and 271–2, 287–8
exchange nodes and 173–5
hinterland development networks
and 79
hinterland traffic alternatives 214–15
increased scale impact 113
infrastructure implications, network
modelling 217–18
integral costs 175–6
interconnectivity and
interoperability and 213, 232–4,
237, 239–41, 242
Japan 58, 59–60, 61–2, 64
load unit exchange innovation and 158–9, 160
mainport development trends and 112
networks, container bundling in 80–83
NG concepts implementation and 162, 163
non-technical network innovations and 164–5
operators, EIT and 17–18
shuttles, container handling system developments 131
US government innovation role and 314
US intermodalism and 47, 49, 52
see also services
Regan, A.C. 29
Reggiani, A. 210
regulator
pan-European, establishment of as priority action, European development strategies 292–3
Reinhardt, F. 194
Reinheimer, S. 255, 257
relationships
supplier–buyer, interorganizational coordination and 253, 254, 257, 261
reliability
container handling future and 132
container handling service quality and 89
continental terminals 98, 100, 101, 104
maritime terminals 95, 96, 97, 103
see also performance
RENFE (Spain) 98
research
container handling service quality, further 94, 104
future tasks, network modelling and 206
intermodal transport 276, 277–8
network design 183–4
task and design, system design 188–9
resources
competitive, interorganizational coordination and 253–4
cost advantage strategy and, system design 192–3
economic, public sector role in channelling, US intermodalism 54
EIT, for 21–2
haulers’ 17
see also infrastructure
Ridolfi, G. 80
Rietveld, Piet 4
Rijsenbrij, Joan C. 5–6, 114, 120, 124, 125
road services
container handling system developments 129–31
European development strategies and 276
hinterland development networks and 79
hinterland traffic alternatives 214
infrastructure implications, network modelling 216–17
Japan 58, 59
increased scale impact 113
interconnectivity and interoperability and 230–32, 237–8, 249
load unit exchange innovation and 160
mainport development trends and 112
US government innovation role and 303, 313–14
US intermodalism and 46–7
see also PPH; services
robotization see automation
Rockart, J.F. 252, 256
Rodrigue, J.-P. 75
Rolloff, M.E. 264
Rosenfield, D.B. 91
Rosenchein, J.S. 256
Roy, M.-J. 194
Russ, F.A. 95
Rutten, B.J.C.M. 27, 180
Saanen, Y.A. 114
security and, public sector role in, US intermodalism 54–5
safety

Index

working conditions, of, mainport development trends and 112
Sarres, D. 142
satellite terminals
cooporation with, container handling system developments 131
increased scale impact and 119
see also terminals
Schmer, K.J. 264
Schuh, G. 214
Schwarz, Florian 7–8, 214
SCUSY (Simulation von Containerumschlag-Systemen) 147–9
seaport see ports
Seidelmann, C. 161
service-driven approach
container handling future and 132
service quality see container handling, service quality
services
container line 67–8
rationalization strategies, European development strategies and 273–5
short-distance, European development strategies and 288–9
see also inland services; rail services; road services; shipping
shippers
EIT and 15, 30
requirements of, hinterland development networks design and 72–3
shipping
container, volumes, mainport development trends 110
increased scale impact 113
inland river, Japan 62–3
maritime terminals and 95, 97
short-sea services, European development strategies and 291
small shipments services, European development strategies and 289–90
vessel size, container handling future and 114–16
see also coastal shipping; inland shipping; services
SIMET 161
Simons, J. 168
size
freight flows, EIT 25–7
geographic factors and industry structure and, US government innovation role 312–15
vessel, container handling future and 114–16
Slack, B. 31
Slater, S.F. 90
software
European interconnectivity and interoperability and 247–9
see also technology
Sol, H.G. 255, 256
Southworth, F. 211
Spain
continental container terminal service quality and 98–9
EIT and 17, 25, 27
Spasovic, L.N. 15
specificity
ICT impact on interorganizational coordination and 257, 261
SSCA (significant, sustainable competitive advantage)
system design and 191–5, 197–8, 200, 201–5
see also competition
Stalebrink, O.J. 19
STAN 210, 211
standardization
cost advantage strategy and, system design 193
lack of, ILU and EIT 30
standards
establishment of as priority action, European development strategies 293
Standifer, G. 211
Starr, M.K. 202
statistics
freight sector, US intermodalism patterns and 42–5
Stone, Bryan 8–9
storage facilities
outplacing from ocean harbours, Agile Port System 136–7
strategies
cost advantage, SSCA and, system
design 192–3, 194
development see development
strategies
differentiation, SSCA and, system
design 192, 193–4
focus, SSCA and, system design 192,
194–5
STREAMS 209
see also European Commission
structures
coordinated, characteristics 254–5,
260–61
industry, size and geographic factors
and, US government innovation
312–15
information, interorganizational
coordination system and
263–4
interorganizational 254–5, 258,
260–62
US trucking industry 313
Study team ME&P and others 209
subsidies
cost advantage strategy and, system
design 193
supply side
market an actors, EIT 17–21
sustainability
European development strategies
and 277
Sweden
EIT and 17, 18, 20, 25, 27
interconnectivity and
interoperability and 247
intermodal operators and their
activities 20
NG concepts and 160
Switzerland
EIT and 24, 27
European development strategies
and 274–5
NG concepts and 160
system
analysis applying network approach,
results of 29
container handling, developments
123–31
information, Japan 64–5
interorganizational coordination
262–6
model, intermodal chain and 15, 20,
21, 22
port 73–5
port equalization 74
see also logistics system; production
system
design 189–91
designer 187–8
evaluation 200–201, 205
external conditions 197–8
MEA (market entry ability) 195–6,
204–5
objectives 191–2
overview 7
performance relationships 198–9
research task and research design
188–9
SSCA 192–5, 201–5
Taafe, E.J. 73
Taniguchi, Eiichi 4, 58
Tax, H. 122
Taylor, G.D. 15
technology
conventional, interorganizational
coordination and 260
European interconnectivity and
interoperability and 247–9
hub, innovative, Agile Port System
140–45
LMTT (linear motor-based transfer
technology) 138, 145–50
MegaHub 141, 142–5, 147, 150
US intermodalism and 34–5, 40,
51–2
see also automation; ICT;
innovation
terminals
choice of, container handling future
and 133
container, handling future see
container handling, future scale
dilemma
container, handling quality see
container handling, service
quality
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>development, container handling future and 110–13, 117–19</td>
<td>127–8, 132</td>
</tr>
<tr>
<td>efficient marine (EMT) 136, 137–40, 141, 147, 150</td>
<td>132</td>
</tr>
<tr>
<td>EIT and 19, 22–3, 28–9</td>
<td>132</td>
</tr>
<tr>
<td>increased scale impact 114</td>
<td>132</td>
</tr>
<tr>
<td>infrastructure implications, network modelling and 219</td>
<td>132</td>
</tr>
<tr>
<td>intermediate, stops at, container line service 68, 69, 72</td>
<td>132</td>
</tr>
<tr>
<td>Japan 60</td>
<td>132</td>
</tr>
<tr>
<td>marine and intermodal, mainport development trends 111</td>
<td>132</td>
</tr>
<tr>
<td>NG concepts and, load unit exchange innovation 159–60, 162</td>
<td>132</td>
</tr>
<tr>
<td>road services and, partnership between, container handling system developments 130–31</td>
<td>132</td>
</tr>
<tr>
<td>safety and security, public sector role in, US intermodalism 54–5</td>
<td>132</td>
</tr>
<tr>
<td>see also ports; satellite terminals</td>
<td>132</td>
</tr>
<tr>
<td>TERMINET 89, 142, 143, 161, 207</td>
<td>132</td>
</tr>
<tr>
<td>TFK 161</td>
<td>132</td>
</tr>
<tr>
<td>theory interorganizational coordination 253–5</td>
<td>132</td>
</tr>
<tr>
<td>Thompson, G.J. 254</td>
<td>132</td>
</tr>
<tr>
<td>Thompson, J.D. 253</td>
<td>132</td>
</tr>
<tr>
<td>Thompson, R.G. 58</td>
<td>132</td>
</tr>
<tr>
<td>Thorson, E. 303</td>
<td>132</td>
</tr>
<tr>
<td>Thuong, L.T. 80</td>
<td>132</td>
</tr>
<tr>
<td>time container handling future and 127–8, 132</td>
<td>132</td>
</tr>
<tr>
<td>container handling service quality and 89, 94–5, 97, 100, 101, 103, 104</td>
<td>132</td>
</tr>
<tr>
<td>ICT impact on interorganizational coordination and 257, 261</td>
<td>132</td>
</tr>
<tr>
<td>trains see rail services</td>
<td>132</td>
</tr>
<tr>
<td>transport flows European intermodal (1999) 28</td>
<td>132</td>
</tr>
<tr>
<td>see also flows</td>
<td>132</td>
</tr>
<tr>
<td>transport quality improving, load unit exchange and 152–3</td>
<td>132</td>
</tr>
<tr>
<td>system design and 204</td>
<td>132</td>
</tr>
<tr>
<td>see also quality</td>
<td>132</td>
</tr>
<tr>
<td>TRB (Transportation Research Bureau) (USA) 312</td>
<td>132</td>
</tr>
<tr>
<td>triangle see bundling triangle</td>
<td>132</td>
</tr>
<tr>
<td>Trip, J.J. 30, 102, 207, 276</td>
<td>132</td>
</tr>
<tr>
<td>Troche, G. 22</td>
<td>132</td>
</tr>
<tr>
<td>trucks see road services</td>
<td>132</td>
</tr>
<tr>
<td>Tsamboulas, Dimitrios 9–10</td>
<td>132</td>
</tr>
<tr>
<td>TSI (Technical Standards of Interoperability) 243–4, 247, 248</td>
<td>132</td>
</tr>
<tr>
<td>see also technology</td>
<td>132</td>
</tr>
<tr>
<td>Tulp, F. 265</td>
<td>132</td>
</tr>
<tr>
<td>UIC (Union Internationale des Chemins de Fer) 240, 243</td>
<td>132</td>
</tr>
<tr>
<td>UIRR (International Union of combined Road-Rail companies) 18, 25, 27, 220, 248</td>
<td>132</td>
</tr>
<tr>
<td>UK (United Kingdom) interconnectivity and interoperability and 228, 232–3, 240</td>
<td>132</td>
</tr>
<tr>
<td>network modelling and 209</td>
<td>132</td>
</tr>
<tr>
<td>UN/ECE 207</td>
<td>132</td>
</tr>
<tr>
<td>uncertainty ICT impact on interorganizational coordination and 257</td>
<td>132</td>
</tr>
<tr>
<td>UNICONSULT and ISL 213</td>
<td>132</td>
</tr>
<tr>
<td>US Office of Management and Budget 306</td>
<td>132</td>
</tr>
<tr>
<td>USA (United States of America) container bundling in rail networks 80</td>
<td>132</td>
</tr>
<tr>
<td>EIT and 18, 21 government innovation role 302–4, 321</td>
<td>132</td>
</tr>
<tr>
<td>challenges 309</td>
<td>132</td>
</tr>
<tr>
<td>government–private industry dynamics 309–17</td>
<td>132</td>
</tr>
<tr>
<td>institutional diversity and durability, effects of 305–9</td>
<td>132</td>
</tr>
<tr>
<td>overview 10</td>
<td>132</td>
</tr>
<tr>
<td>systematic policy, towards 317–21 interconnectivity and interoperability and 230, 213, 233–4, 239</td>
<td>132</td>
</tr>
<tr>
<td>intermodalism evolution, definition and elaboration 36–9</td>
<td>132</td>
</tr>
<tr>
<td>forces propelling 40–42</td>
<td>132</td>
</tr>
<tr>
<td>history 38–9</td>
<td>132</td>
</tr>
<tr>
<td>institutional and organizational factors 49–51</td>
<td>132</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>overview</td>
<td>3–4, 34–6</td>
</tr>
<tr>
<td>patterns</td>
<td>42–9</td>
</tr>
<tr>
<td>public policy issues</td>
<td>52–6</td>
</tr>
<tr>
<td>technological factors</td>
<td>51–2</td>
</tr>
<tr>
<td>network modelling and</td>
<td>211</td>
</tr>
<tr>
<td>see also Agile Port System</td>
<td></td>
</tr>
<tr>
<td>USDC (US Department of Commerce)</td>
<td>313</td>
</tr>
<tr>
<td>USDOT (US Department of Transportation)</td>
<td></td>
</tr>
<tr>
<td>European development strategies and</td>
<td>273</td>
</tr>
<tr>
<td>US government innovation role and</td>
<td>302, 303, 310</td>
</tr>
<tr>
<td>US intermodalism and</td>
<td>34, 52, 54, 55</td>
</tr>
<tr>
<td>van de Bos, W.</td>
<td>120</td>
</tr>
<tr>
<td>van den Berg, G.C.</td>
<td>25, 276</td>
</tr>
<tr>
<td>van Duin, R.</td>
<td>212</td>
</tr>
<tr>
<td>van Ham, H.</td>
<td>212</td>
</tr>
<tr>
<td>van Helsdingen, P.J.C.</td>
<td>90, 91</td>
</tr>
<tr>
<td>van Klink, H.A.</td>
<td>25, 276</td>
</tr>
<tr>
<td>van Schijndel, W.-J.</td>
<td>13</td>
</tr>
<tr>
<td>van Zuylen, H.</td>
<td>276</td>
</tr>
<tr>
<td>Vastag, A.</td>
<td>207</td>
</tr>
<tr>
<td>Verbraeck, A.</td>
<td>114</td>
</tr>
<tr>
<td>vessels see shipping</td>
<td></td>
</tr>
<tr>
<td>Vézina, R.</td>
<td>194</td>
</tr>
<tr>
<td>Vickerman, M.J.</td>
<td>135, 136</td>
</tr>
<tr>
<td>Vleugel, J.</td>
<td>30</td>
</tr>
<tr>
<td>Vries Jr., W. de</td>
<td>90, 91</td>
</tr>
<tr>
<td>Wajsman, J.</td>
<td>2</td>
</tr>
<tr>
<td>Walton, C.M.</td>
<td>211</td>
</tr>
<tr>
<td>waste</td>
<td></td>
</tr>
<tr>
<td>transportation by inland river shipping, Japan</td>
<td>63</td>
</tr>
<tr>
<td>transportation by rail, Japan</td>
<td>61–2</td>
</tr>
<tr>
<td>Weber Matthias, J.</td>
<td>276</td>
</tr>
<tr>
<td>Wenger, H.</td>
<td>18</td>
</tr>
<tr>
<td>Whinston, A.B.</td>
<td>255, 256</td>
</tr>
<tr>
<td>Wiegmans, Bart</td>
<td>4</td>
</tr>
<tr>
<td>Wigand, R.</td>
<td>255</td>
</tr>
<tr>
<td>Williamson, O.E.</td>
<td>255, 257</td>
</tr>
<tr>
<td>Winkelsmans, W.</td>
<td>79</td>
</tr>
<tr>
<td>Woitschützke, C.P.</td>
<td>213</td>
</tr>
<tr>
<td>Wölper, A.</td>
<td>147</td>
</tr>
<tr>
<td>working conditions</td>
<td></td>
</tr>
<tr>
<td>working practices</td>
<td></td>
</tr>
<tr>
<td>Woexenius, Johan</td>
<td>2–3, 14, 16, 25</td>
</tr>
<tr>
<td>Yannis, G.</td>
<td>28</td>
</tr>
<tr>
<td>Yano, C.A.</td>
<td>210</td>
</tr>
<tr>
<td>Yates, J.</td>
<td>256, 257</td>
</tr>
<tr>
<td>Zapp, K.</td>
<td>14</td>
</tr>
<tr>
<td>Zeithaml, V.A.</td>
<td>89, 94</td>
</tr>
<tr>
<td>Zeta-Tech Inc.</td>
<td>247</td>
</tr>
<tr>
<td>Zimmermann, C.</td>
<td>218</td>
</tr>
<tr>
<td>Zlotkin, G.</td>
<td>256</td>
</tr>
</tbody>
</table>