Index

9/11 11–12, 183
Abadie, Alberto 12, 29
Abt, Clark C. 5, 126, 229
access bridges, ports 265, 269–79, 281, 283–4
action-based substitutions 26–8
active defense 121–3
adaptive resilience 203, 206
agent-based simulations 92–3
aggregate price indexes 157–8, 161–2
air
cargo 238
defense 121–2
tavel 30
airline baggage screening see baggage screening
airport
screening 264
security 129
al-Qaida 16, 25, 26, 31, 121, 126, 196
Alameda Corridor 265, 280, 281, 282
Alexander, Yonah 18
all-hazards warning systems 139
Allen, Kenneth 138, 139
Alston, Julian M. 181
Amin, Massoud 75
An, D. 203, 299
anthrax 18, 125, 126, 127, 129
antibiotics 122, 123, 128, 129
Apt, Jay 4
Arce, M. 15, 23, 25, 31
Arthur Anderson 37, 53
assassinations 16, 28
asymmetric targets 25–6
Atkinson, Scott E. 16, 20
attack
costs 229
perceived risk 152–4, 156, 157–8
predictability 2
probability 20–21, 155–6, 224–5, 230, 232, 237–8

protection strategies 41–2
Automatic Targeting System (CPB) 238, 257
Azam, Jean-Paul 12
Badger Rail Bridge 281
Bae, Chang-Hee Christine 9
baggage screening, airports 29–30, 38–41, 44–5, 46–7, 48–51
ballistic missile defense 119, 121, 124
Baran, P. 196
Barings Bank 37, 53
Barnett, A.I. 238
Bassok, Alon 9
Baton, Jonathan 52
Becker, G. 171
Beenstock, M. 207
behavioral
considerations, investment in
security 52
responses to terrorism 152–4
benefit transfer 181–2
Bental, B. 207
Bernkopf, R.L. 5–6, 140
Bernoulli random process 227
Bertekas, D. 228
bin Laden, Osama 196
biodefense 119–20
active vs. passive 121–3
benefits 127–8
cost-benefit assessment 123–4, 125
effectiveness vs. efficiency 120–21
public health benefits 130–31
resource allocation 124–5
short-term strategies 128–9
bivariate probit model 144–6
blackouts, electricity system 58–9, 66–7
barriers to prevention 61–3
costs of 207–8
public reactions to 59–60
Blain, Larry 9
Boisvert, R. 198

303
bombings 16, 17
Bonner, Robert C. 249
Booz-Allen-Hamilton 218, 229
borders, expansion of 249–52
Bostrom, A. 70
bounded rationality 200
Bowser, G.F. 221, 226
Boyle, Kevin J. 178
Bradford, D. 171
bridges 265, 269–79, 283–4
Lake Washington 288–9
reconstruction 281, 295, 298–9
Brookshire, D.S. 5–6, 140
Brophy-Baermann, Brian 25
Brown, Thomas C. 178
Bruneau, N. 204
building-support infrastructure 85–6
bulk power delivery systems 93–5
Bureau of Public Roads (BPR) 284
Burke, P.J. 228
Bush, George W. 133, 135, 244
business interruption 269, 299–300
membership of C-TPAT 251–2
Business Roundtable 136
Cameron, T.A. 180
Capitol Hill, anthrax clean-up operations 126
car-pools 300
cargo delays, costs 225, 228–9, 230, 232–3, 257
Carnegie Mellon University 66
Carroll, Thomas M. 156
Carsell, Kim 141
casualties 19
catastrophe models 183
Caves, D. 207
Center for Risk and Economic Analysis of Terrorism Events (CREATE) 1
Center for Strategic and International Studies 249
central business districts (CBDs) 159, 166–7
Chalk, Peter 18
Champ, Patricia 178
Chang, S.E. 4, 75, 198, 212, 213, 229, 269, 279, 289–90
Chao, H.P. 205
Cho, S. 75, 203, 229, 269, 279, 299
choice under uncertainty 139–49
choke points 60, 241
city shapes 153
Clark, Lee B. 137
Clauretie, Terrence M. 156
Clemen, Robert T. 80, 81
climate change damages 198
Clinton, Bill 75, 220, 245
coalition building 24–6
Coast Guard and Maritime Transportation Act (2004) 243,
249, 256, 257–8
Coastal Barrier Resource Act (1982) 185
Cobb-Douglas production functions 198
Cochrane, H. 198, 209, 212, 213
Cohen, Linda 50
Cold War 129
Comfort, L. 204, 205
command-and-control communications 123, 128
Commerce Clause, US Constitution 91
Commission on Critical Infrastructure Protection (PCCIP) 75
Complex Interactive Networks/Systems Initiative (CIN/SI) 75
compliance, port security programs 256
computable general equilibrium (CGE) modelling 181, 197–203, 208–10,
212, 213–14
resilience 205–6
computer security 45, 47–8
conceptual frameworks, infrastructure interdependencies 76–9
conjoint surveys 179–80
constant elasticity of substitution (CES) production function 205–6
consumer behavior 152–4, 156
consumer-choice model 26–7
contagion 38–41, 42–3, 44–6, 52–3
societal effects 46–8
solutions 48–51
container design 255
flows 244
losses 252
trade figures 263
container inspections, ports 218–21
cost–benefit analysis 222–34
coverage 256–7
foreign ports 249–51
frequency 264
limitations 235–7
overview 221
policy proposals 221–2
rates 242, 257
research directions 237–8
Container Security Initiative (CSI) 8, 243, 246, 249–51, 256, 257, 258–9
contingent valuation 178–9
continuous variables 158–9
Convention for the Safety of Life at Sea 219
Conybeare, John A. 25
coordinated network power systems 91–2
coordinating mechanisms 50–51
copycat effects, terrorism 18
Cordes, J.J. 184
corporate location decisions 1
cost–benefit analysis
biodefense 123–4, 125
counter-insurgency defense 121
counterterrorist capabilities 24–6
criminal acts 11
Crist, P. 218, 219
Critical Emergency Operations Communications Link (CEOCOMLINK), Business Roundtable 136
Critical Infrastructure Identification (2003) 75
Critical Infrastructure Protection (1998) 75
Critical Infrastructure Protection/Decision Support System (CIP/DSS) 75
‘cry wolf’ hypothesis 147
customs officials, in foreign ports 246
Customs–Trade Partnership Against Terrorism (C-TPAT) 8, 219, 243, 246, 249, 251–2, 256, 257, 259
cyber attacks 45, 64
threats 137
cycles, transnational terrorism 17–20
Dade County 184
dams 60
dangerous cargo, interception of 249–50
data
availability 202
land markets 159–60
transnational terrorism 13–20
DataQuick 159
Davis, Bill 269
decentralized power systems 91–3
decision processes 178–9
defense
active vs. passive 121–3
effectiveness vs. efficiency 120–21
DeKay, M.L. 80
delay costs
cargo 228–9, 230, 232–3
road transport 275–9
demand
deferment 282
models 177
shifts 208
Democratic National Convention (2004) 220
Department of Defense 64, 75, 136
Department of Energy 63
Department of Homeland Security 1, 63, 140, 252, 257–8
Department of Transportation 245
deregulation, electric power system 62, 71, 199
detection capabilities, container, inspection 225
deterrence 20–24
deterrent effects
air defense 121
container scanning 224, 238
differentiated policy, option price 174–5
direct resilience 209–10, 212
‘dirty bombs’ attacks 262–5
economic effects 269–75
transportation effects 275–82
discrete regions of proximity 160, 161–7
disequilibria 208–9
distributed generation (DG) 67–8
distribution hubs 280
domestic facility/vessel security plans 248
Dominion Virginia Power 60
Douglas, J. 207, 210
Drakos, Kostas 29
Duchin, F. 200
dynamic models 51–2

earthquakes
analysis of 76, 289–91
damage 270, 279, 281
eering 72
mitigation 124
simulations 156, 168, 199, 210, 212
eco-terrorism 60
eco

economic
disequilibria 201
effects of ‘dirty bomb’ attacks 269–75
impacts, spatial diffusion 201
losses 197, 207–8
methodology 12
resilience 200, 203
economy-wide responses, terrorist threats 208–9
economy, Los Angeles/Long Beach ports 263
effectiveness vs. efficiency, biodefense 120–21
Eguchi, R. 213
Ehrlich, I. 171
Electric Power Research Institute (EPRI) 65, 75
electrical dependencies 71
electricity systems 57
blackouts 58–63, 71–9, 80–88, 209–10
distributed generation 67–8
new vulnerabilities 64–5
primer 93–5
system survivability 66–7
electromagnetic pulse (EMP) 64–5
reonic scanning, containers 220, 225
elated risk condition 133, 134
Elysian Park Fault 229, 279, 299
emergency warning systems 136
empirical insights, terrorist threats 209–13
specifications of resilience 206
strategy, impact of spatial externalities 157–9
Enders, Walter 3, 12, 15, 16, 18, 19, 25, 26, 27, 28, 31
environmental variables 155
equilibrium displacement model 181
schedule of prices 176
equipment
container inspections 236
failure, electricity system 58, 60
ETA (Euskadi ta Askatasuna) 29
expected pay-offs, hostage taking 20–23
expected utility theory 79–80, 147–8, 174–6
exports 263
externality models 154–9
externally transmitted shocks, modelling effects of 107
extreme events 1–2
mitigation of 70–89
facility plans, ports 247–8, 256
Faria, Joao 18
Farrell, Alex 4
fatalities 13, 30
Federal Bureau of Investigation (FBI) 63, 245
Federal Emergency Management Agency (FEMA) 73, 83, 185, 198
Federal Energy Regulatory Commission (FERC) 63, 91, 96–7
federal port security grants 252
financial damages, averted 225
First American Real Estate Solutions 185
Fischbeck, P.S. 80
Fischhoff, B. 80, 152
Fisher, R. 75
Florida ports, identity cards 248–9
Florida Power and Light Co. 115
Florig, H. Keith 80
Flynn, Stephen E. 219, 220, 242
Force Protection Condition 136
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>foreign governments/interests</td>
<td>13, 17</td>
</tr>
<tr>
<td>foreign ports</td>
<td></td>
</tr>
<tr>
<td>membership of CSI</td>
<td>249–51</td>
</tr>
<tr>
<td>security</td>
<td>246, 248, 256</td>
</tr>
<tr>
<td>Fortune 100</td>
<td>228</td>
</tr>
<tr>
<td>fossil fuels</td>
<td>68</td>
</tr>
<tr>
<td>Fourier series theory</td>
<td>19</td>
</tr>
<tr>
<td>Frankle, R.S.</td>
<td>226</td>
</tr>
<tr>
<td>freeway access to ports</td>
<td>262, 275–9</td>
</tr>
<tr>
<td>freight delays</td>
<td>299–300</td>
</tr>
<tr>
<td>French, S.</td>
<td>200</td>
</tr>
<tr>
<td>full information maximum likelihood method</td>
<td>146</td>
</tr>
<tr>
<td>function transfer</td>
<td>182</td>
</tr>
<tr>
<td>funding, port security programs</td>
<td>257–8</td>
</tr>
<tr>
<td>Galbraith, J.K.</td>
<td>196</td>
</tr>
<tr>
<td>Gallagher, R.</td>
<td>228</td>
</tr>
<tr>
<td>game theory, hostage taking</td>
<td>20–23</td>
</tr>
<tr>
<td>government responses</td>
<td>23–4</td>
</tr>
<tr>
<td>gamma-ray scanning</td>
<td>221, 222, 226</td>
</tr>
<tr>
<td>Ganderton, P.T.</td>
<td>5–6, 140</td>
</tr>
<tr>
<td>Gardeazabal, Javier</td>
<td>12, 29</td>
</tr>
<tr>
<td>Garin-Lowry style model</td>
<td>266, 267, 269</td>
</tr>
<tr>
<td>gas transmission system</td>
<td>65</td>
</tr>
<tr>
<td>Gellerson, M.</td>
<td>207</td>
</tr>
<tr>
<td>general equilibrium effects</td>
<td>207–8, 210, 212</td>
</tr>
<tr>
<td>Gerenscer, M.</td>
<td>218</td>
</tr>
<tr>
<td>German war machine</td>
<td>196</td>
</tr>
<tr>
<td>Gilmore Commission</td>
<td>138–9</td>
</tr>
<tr>
<td>Goldin, E.</td>
<td>207</td>
</tr>
<tr>
<td>Gonzalez, D.A.</td>
<td>152</td>
</tr>
<tr>
<td>Gordon, Peter</td>
<td>8–9, 75, 203, 229, 267, 269, 279, 299</td>
</tr>
<tr>
<td>government</td>
<td></td>
</tr>
<tr>
<td>regulations</td>
<td>49–50</td>
</tr>
<tr>
<td>responses, hostage taking</td>
<td>23–4</td>
</tr>
<tr>
<td>safety regulators</td>
<td>63</td>
</tr>
<tr>
<td>Graham, Bob</td>
<td>245</td>
</tr>
<tr>
<td>Great Northeastern Blackout (1965)</td>
<td>59</td>
</tr>
<tr>
<td>Greenberg, M.</td>
<td>154</td>
</tr>
<tr>
<td>Gruntfest, Eve</td>
<td>141</td>
</tr>
<tr>
<td>Guha, G.</td>
<td>199, 200, 205, 209, 210</td>
</tr>
<tr>
<td>Haimes, Y.Y.</td>
<td>75</td>
</tr>
<tr>
<td>Haitobsky, Y.</td>
<td>207</td>
</tr>
<tr>
<td>Hallstrom, Daniel G.</td>
<td>6–7, 171</td>
</tr>
<tr>
<td>hand inspection, containers</td>
<td>221, 225, 226–7, 228, 229–30, 232, 234, 257</td>
</tr>
<tr>
<td>hand-held radiation detectors</td>
<td>264</td>
</tr>
<tr>
<td>Harriges, J.</td>
<td>207</td>
</tr>
<tr>
<td>Hartwig, Robert</td>
<td>183</td>
</tr>
<tr>
<td>Haveman, Jon D.</td>
<td>8</td>
</tr>
<tr>
<td>hazard events</td>
<td>83</td>
</tr>
<tr>
<td>hazard loss estimation model</td>
<td></td>
</tr>
<tr>
<td>(HAZUS)</td>
<td>83, 198</td>
</tr>
<tr>
<td>Heal, Geoffrey</td>
<td>3–4, 29, 37, 43, 49, 51, 53</td>
</tr>
<tr>
<td>healthcare</td>
<td></td>
</tr>
<tr>
<td>benefits</td>
<td>125, 128, 130–31</td>
</tr>
<tr>
<td>expenditures</td>
<td>121</td>
</tr>
<tr>
<td>issues</td>
<td>86</td>
</tr>
<tr>
<td>Heckman, J.J.</td>
<td>180</td>
</tr>
<tr>
<td>hedonic</td>
<td></td>
</tr>
<tr>
<td>models</td>
<td>176, 187</td>
</tr>
<tr>
<td>pricing</td>
<td>154–5</td>
</tr>
<tr>
<td>regression</td>
<td>157, 162–3</td>
</tr>
<tr>
<td>Henrion, Max</td>
<td>80</td>
</tr>
<tr>
<td>Hensher, David A.</td>
<td>179</td>
</tr>
<tr>
<td>Hershey, John</td>
<td>52</td>
</tr>
<tr>
<td>Hewings, G.</td>
<td>203</td>
</tr>
<tr>
<td>high-hazard facilities</td>
<td>67</td>
</tr>
<tr>
<td>high-profile citizens</td>
<td>173</td>
</tr>
<tr>
<td>high-risk</td>
<td></td>
</tr>
<tr>
<td>areas</td>
<td>184, 188</td>
</tr>
<tr>
<td>containers</td>
<td>257</td>
</tr>
<tr>
<td>high-traffic ports</td>
<td>234, 237–8</td>
</tr>
<tr>
<td>high-value targets</td>
<td>123</td>
</tr>
<tr>
<td>highjackings</td>
<td>26, 27, 30</td>
</tr>
<tr>
<td>highway network, implications of attack</td>
<td>287–8</td>
</tr>
<tr>
<td>issues</td>
<td>296–300</td>
</tr>
<tr>
<td>precursor to research</td>
<td>289–91</td>
</tr>
<tr>
<td>research objectives</td>
<td>288–9</td>
</tr>
<tr>
<td>trip diversion and costs by route</td>
<td>291–7</td>
</tr>
<tr>
<td>hoaxes</td>
<td>17, 19</td>
</tr>
<tr>
<td>Hoffman, Bruce</td>
<td>16</td>
</tr>
<tr>
<td>Holling, C.</td>
<td>203</td>
</tr>
<tr>
<td>Hollings, Ernest F.</td>
<td>245</td>
</tr>
<tr>
<td>Homeland Security Advisory System (HSAS)</td>
<td>5, 133–50</td>
</tr>
<tr>
<td>homeland security policies</td>
<td>170–71</td>
</tr>
<tr>
<td>benefit transfer</td>
<td>181–2</td>
</tr>
<tr>
<td>cost–benefit analysis</td>
<td>171–5</td>
</tr>
<tr>
<td>information/methods of evaluation</td>
<td>175–81</td>
</tr>
</tbody>
</table>
natural hazards as natural experiments 183–90
Homestead Air Force Base 184
Hoover Dam 60
hostage-taking 16, 17, 19–20, 27
game theory 20–23
housing markets see land markets
housing sales data 185
Hughes, J. 154
Hurricane Andrew 229
study of 183–90
Hurricane Ivan 229
Husemann, R.C. 221, 226
Hydro-Quebec 110
Hyogoken-Nanbu earthquake (1995) 72–3, 76
I–O modelling 199–203, 208, 210, 213
ice storms 58–9
identification cards, port workers 248–9
Im, Eric I. 28
impact analysis 180–81
CGE models 199–203
IMPLAN input–output model 266
imports 263
incentives, investment in security 35–54
Independent System Operators (ISO) 91, 92, 96, 98, 102, 110, 115–16, 117
indirect economic loss module (IELM) 198
individual
behavior 200
decision-making under uncertainty 171–2, 174–6
resilience 204–5, 212
influence diagrams 81
information for policy choice 175–81
infrastructure
container inspections 236
electricity system 60
failures 71–2, 84–8
impacts 200
interdependencies 65, 72–5
restoration 298–9
targets 57, 137
infrastructure failure 70–71
conceptual frameworks 72, 76–9
electrical interdependencies 71
issues 72–5
mitigation ranking exercises 79–84
recent disasters 84–8
structure and specific objectives 71–2
infrastructure failure interactions (IFIs) 72, 76–9, 83, 84, 85–6, 87–8
inherent resilience 203, 205–6
institutional structure, power industry 96–7
insurance 30, 48, 50, 54, 167, 173–5, 185
Insurance Information Institute 183
intelligence information 24, 137
inter-industry models 266, 270
interdependent security (IDS) 29–30, 35–54
International Air Transport Association (IATA) 50
international legislation, maritime shipping 243, 246
International Maritime Organization (IMO) 219, 243
International Port Security Program, USCG 248
International Ship and Port Facilities Security Code (ISPS) 219, 246
international shipping systems, security models 254
International Terrorism: Attributes of Terrorist Events (ITERATE) 15–16, 17
international trade 218
contribution of US ports 243–5
impact of port closures 271–5, 283
maintenance 242–3
international vessel security plans 248
Internet security threats 66
Internet-based systems 64
investment in security 35–7
extension of analysis 51–2
multi-agent case 43–8
research on risk management strategies 52–4
risk management solutions 48–51
two-agent problem 38–43
Islam, Muhammad Q. 20
Index

Jang, S. 203
Jenni, K.E. 80
Jensen, Jeff 156
Jerry Desmond Bridge 282
Jiang, P. 75
Johnson, E. 221, 226
journey-to-services matrix 266
Jun, Myung-Jin 267
Kahn, H. 121
Kahn, Matthew E. 154
Kamar, Daniel 52
Kame, Hiroyuki 76, 82
Kauffman, S. 103, 108
Kearns, Michael 37, 45
Keeney, R.L. 79, 80, 84
Kelly, T.K. 72, 76
Khrushchev, Nikita 196
Kim, Moon-Hyun 267
Kim, T.J. 203
Kobe earthquake 76
Koloski, M. 198
Krikorian, G. 221
Kunreuther, Howard 3–4, 29, 30, 37, 43, 49, 50, 51, 52, 70
Kupperman, Richard N. 24
Kutan, Ali M. 29

La Cienega Boulevard bridge 270
labor relations, ports 258
Lakdawalls, D. 172, 173, 183
Lake Washington, bridges 288–9
land markets 152–4
data 159–60
results 160–67
terrorism and models of externalities 154–9
Landes, William M. 26, 27
Lange, G. 200
Lapan, Harvey E. 15, 23
Larson, R.C. 228
Lave, Lester B. 4
LED traffic lights 66–7
Lee County, Florida 184–5, 188
Lee, Dwight R. 25
Lee, J.S. 203
legislation, maritime shipping 243, 244–55
Lerner, J.S. 152
Lerner-Lam, A. 70

Levitan, B. 103, 107
liability 48–9
Liao, S. 199, 202, 205, 210, 212
Libya 28
life line interactions 72, 76
Likert scales 179
Lim, D. 199, 209, 210, 212, 213
Lobo, J. 103, 107
local electricity distribution system 58
local impacts, port closure 271–5
locational advantage of terrorists 25
logistic support, biodefense 124, 128
logistically complex attacks 19–20
Loma Prieta earthquake (1991) 156
Long Beach see Los Angeles
Looney, R. 229
Los Angeles International Airport 262
Los Angeles/Long Beach
electricity blackouts 199
housing market 153–4, 159–60, 163–7
Los Angeles/Long Beach ports 262
effects of ‘dirty bomb’ attack 264–5, 269–79
identification cards 248–9
local economy 263
port disruption studies 265
strikes 126
Louviere, Jordan J. 179
low risk condition 133
macroeconomic
repercussions 201
resilience 204
Malta Airlines 39
manifest screening 221
manufacturing supply chains 228
marginal analysis, container
inspections 236–7
maritime
domain awareness 255
security plans 247–8, 255–6
shipping, legislation 243
Maritime Administration 228
Maritime Transportation Security Act
(2002) 8, 219, 243, 244, 245–9, 252, 254–5, 256, 257, 258
market
behavior 200
failures theory 12
resilience 212–13
Martonosi, S.E. 7–8, 224, 238
McDaniel, B. 226
McDaniels, Timothy L. 4
McFadden, Daniel 178
media 15, 17, 87–8, 174
Memphis, Texas 199, 210
mesoeconomic resilience 204
meta-analysis 182
metal detectors 26, 27
Metropolitan Planning Organization (MPO), Seattle 287
microeconomic resilience 204
Mileti, D. 203
military defense 121
Military Traffic Management Command (MTMC) 252
Minnesota Planning Group 266
mitigation
‘dirty bomb’ attacks 283
literature 184
port closures 275
ranking exercises 79–84
terrorist activity 202, 203, 204
monopoly franchise system 61
Monte Carlo simulation model 290
Moore II, J.E. 8–9, 75, 203, 269, 299
Morgan, K.M. 80
Morgan, M. Granger 4
motivations of terrorism 11, 16–17
multi-agent IDS case 43–4
characterization of solutions 44–5
multi-period models 51–2
multi-sector modelling approaches 199–203
Munasinghe, M. 207
Murdock, James C. 156
Murrah Federal Building 229
Nash equilibrium 3, 46, 49, 175
nation-specific benefits of retaliation 25–6
National Electric Reliability Council (NERC) 96–7
National Flood Insurance Program 185
National Interstate Economic Model (NIEMO) 267, 283
National Laboratories 75
National Opinion Research Center 59
National Science Foundation 70
National Transportation Safety Board 65
natural
epidemics 129
experiments 178
natural disasters
costs 229
economics 1–2
infrastructure failure
interdependencies 84–8
natural hazards
CGE modelling 198–9
electricity system 58–9
as natural experiments 183–90
as parallel events 183
Navarro-Lozana, S. 180
Navrud, Stale 182
‘near-miss’ natural hazards 183, 184, 188
negative externalities 154, 173
negotiations, hostage takers 20–23
Neil, Roger 50
Netherlands, distributed generation 68
networking advantage of terrorists 24
New York Power Authority 110
New York, electricity system 94–5
Nojima, Nobuoto 72, 76
non-market
goods/services 175–6
impacts 200
non-terrorist actions 28
North American Electricity Reliability Council (NERC) 58, 59, 63, 75
Northridge earthquake (1994) 199, 270, 281
Norton, George W. 181
nuclear
materials, container inspection
policies 220
power stations 60–61, 67, 249
reactor meltdown 42–3
Nuclear Regulatory Commission (NRC) 61
numerical simulations, power industry 103–14
potential inferences 114–17
Odoni, A.R. 228
Office of Critical Infrastructure
Index

Protection and Emergency Preparedness, Canada 73
Office of Domestic Preparedness (ODP) 252
port security grants 254
Office of Technology Assessment 60
Onculer, Ayse 52
Operation Safe Commerce (OSC) 246, 253–4
operational control, power systems 97–100
costs, container inspections 236
operator error, electricity system 58
organizational performance model 104–7
Ortiz, D. 7–8, 218, 219
Overgaard, Per B. 23

Pacific Northwest
region 80–89
effects of storms 72, 73
Pacific Northwest Economic Region (PNWER) 73
Pan Am 39, 49
Pan, Qisheng 8–9
Panama Canal 281–2
Pardey, Philip G. 181
Pareto improvements 171
Parise, Gerald F. 15, 19, 29
partial equilibrium 207
Partnership for Public Warning (PPW) 138
Partridge, M. 197
passenger car equivalent (PCE) 294, 301
passive defense 121–3
peacetime defense 121
peak commuting periods 291–3
Peerenboom, J.P. 72, 73, 75, 76
Pelosi, Nancy 220
Pena, Charles V. 134, 138
performance, container inspection 226–7
perishable cargo 228
Perrings, C. 203, 204
Persian Gulf 26
personnel requirements, containing inspections 236
Petak, W. 204
Pizam, Abraham 156
Plamondon, Marie-Eve P. 76
Pluchinsky, Dennis 18
pneumonic plague 125, 129
Poisson process 227, 235
policy initiatives 245–6
container inspection 221–2, 225, 229–30
disruption 264–5, 269–75
diversions of trade 281–2
lock-outs 218
political objectives of terrorism 11
port attacks
research needs 282
strategic questions 279
port security 242–3
evaluation of policies 255–8
focus of 219
issues 243–5
measures 245–55
Port Security: A National Planning Guide 245
Porter, M. 206
Portland, Oregon 199, 210, 212
positive externalities 154
power systems, connectivity 91–3
electrical systems primer 93–5
numerical simulation insights 103–14
operation control/reliability 97–100
principles for improvements 114–17
regulatory and institutional structure 96–7
terrorist assaults 100–102
primary inspection, containers 220, 221
prisoners’ dilemma paradigm 15, 25,
36, 41–2, 47–8
private protection 172–4
private sector infrastructure 137
production interruption 196–7, 199, 200
property damage 196, 199, 200
values 183–90
protection policies 172–3
provision points 179
public education 123, 124
pressure 18
protection 172–3
Reactions, electricity blackouts	59–60
Transport	300
Utility commissions	62
Warning systems	174
Public-private risk management partnerships	54
Puget Sound Region Transportation Model	289
Puget Sound Regional Council	287
Puurdum, Todd S.	136
Pure information effect	184–5, 188
Queuing models	225, 235–6
Radiological dispersal devices (RDDs)	see ‘dirty bombs’
Rail network, California	280–81
Random utility models	142–3, 177–8
Rational choice representations of terrorists	26–30
Rational model of behavior	12, 52, 147–8
Reagan, Ronald	26
Recovery processes	201
Recreation demand model	177
Red Cross	133, 140, 144, 149
Redfearn, Christian L.	6
Reed, Dorothy	4
Regional economic impacts analysis	197–8
Measurement of	266–9
Regional Transmission Organizations (RTO)	91, 92, 96, 98, 102, 115–16, 117
Regulatory structure, electricity industry	96–7
Reliability institutions	61–2, 63
Philosophy, power systems	97–100
Religious-based fundamentalist groups	16–17
Repeat sales model	187–90
Research and development (R&D)	123, 124
Biodefense	123, 124
Electricity industry	63
Grants	254–5
Research directions, container inspections	237–8
Resilience	203–6, 209–10, 212–13
Resources	120–21, 124–5
Misallocation of	139
Port security	255–6
Terrorists	27–8
Revealed preference methods	176–8
Joint estimation of	180
Revolutionary Organization	17
November, Greece	13, 17
Richardson, Harry W.	8–9, 75, 203, 229, 267, 269, 279, 299
Rickman, D.	197
Ridge, Tom	133, 138
Rinaldi, S.M.	72, 73, 76
Risk assessment	137, 156
Aversion	20–21
Information	139–42
Perception	184
Reduction	170–71
Risk management, IDS problem	48–51
Future research	52–4
Risk-taking culture	37
Riverside distribution hub	280–81
Road congestion index	287–8
Robert, Benoit	76
Rose, A.	7, 198, 199, 200, 202, 205, 209, 210, 212, 213
Route changes, costs	291–6
Sabourin, Jean-Pierre	76
San Bernardino County distribution hub	280–81
San Francisco, housing market	156
Sandler, Todd	3, 12, 15, 16, 18, 19, 20, 23, 25, 26, 27, 28, 31
Scanning, containers	221, 222, 226, 227–8
Cost–benefit analysis	229–30, 230–34
Research directions	237–8
Scenario-building	2–3
Schelling, Thomas C.	37, 121
Schiesel, S.	221, 226
Schuler, R.	4–5, 103, 107
Scott, John L.	20
Screening, airports	264
Seattle Fault 83
Seattle highway network see highway network
secondary inspection, containers 220, 222
security
electricity system 62
failures 38–9
grants 252–4
perceptions 170
planning 247–8
vulnerabilities 242–3
security policies see homeland security policies
Seligson, H. 213
Senay, Marie-Helene 76
service flows 155–6
severe risk condition 133, 134
Shahin, Wassim N. 20
Shatz, Howard J. 8
Sheffi, Y. 284
Shinozuka, Masanbou 75, 203, 229, 279, 299
Shoven, J. 197
simulated randomness 12
simulation exercises 124
Singh, Harinder 156
single-occupant vehicles (SOVs) 293
Siqueira, Kevin 15, 23
Sloboda, Brian W. 156
Slovic, Paul 52
Small, D.A. 152
smallpox 125, 126–7, 129
Smart and Secure Tradelanes consortium 219
Smith, Ginger 156
Smith, Vernon 6–7, 171, 177
social insurance programs 48
societal effects of contagion 46–8
socio-economic groups, distribution of impacts 201
Software Engineering Institute, Carnegie Mellon University 66
Sohn, J. 203
solar-electric technologies 67–8
Southern California Association of Governments (SCAG) 266
Southern California Planning Model (SCPM) 266–9, 283
Soviet Union 196
Spain, tourist industry 29
spatial
economic impact models 270
externalities 154–9
Special Flood Hazard Area (SFHA) 185, 187, 188
specific targets/threats 136, 137, 138–9, 149, 152, 199–200
Spencer, C. 228–9
spillover effects, natural disasters 72–3, 83
Stana, R.M. 218, 238
Standard Market Design, electricity industry 96–7
State of the Union address (2004) 220
stated preference methods 178–80
joint estimation of 180
Stewart, T.R. 70
strategic ports 252–3
strikes, ports 126, 265
subsidized insurance 173–4, 185
substitution, terrorist attacks 26–9
Suez Canal 281–2
supervisory control and data acquisition (SCADA) systems 64, 65, 68
supply and demand 209
supply chain security 251–2, 253–4, 258–9
survivability of systems 66–7
Sveklar, W.D. 75
symbolic targets 57, 200
system
planners, electricity supply 64–5
resilience 203
survivability, electricity supply 66–7
Taliban 25, 31
taxation 49
technology
barriers 28
container scanning 221–2, 230, 233–4, 237–8
development 254–5
testing 246, 253–4
wish-lists 249
Terminal Island 265, 281, 282
terrorism
motivations 11, 16–17
networks 24
terrorist threats 196–7
computable general equilibrium modelling 197–203
economy-wide
responses/disequilibria 208–9
empirical insights 209–13
general equilibrium effects 207–8
resilience to 203–6
terrorist-related screening 219–20
terrorists, rational choice representations 26–30
Texas Transportation Institute 287–8
Thatcher, Margaret 174
Thayer, Mark 156
third-party inspections 49–50, 54
Thorp, J. 102
threat communication analysis 133–5
background 135–9
data, analysis and results 141–9
experiments 139–41
threats
levels 133–7, 138–9
perceptions 139–49
responses to 147
trends/cycles 17, 19
Tierney, Kathleen 137, 204, 205, 210
time-to-failure model 16, 31
‘tipping’ phenomenon 30, 37, 44, 45–6, 51
Top Officials Exercise of Response to
Terrorist Attack (TOPOFF) 124
tourism 29, 156
trade diversion 281–2
trade-offs 175–6
traffic
congestion 86, 289–91
flows 267–9, 288–9
mitigation measures 300
signals 66–7, 73, 84, 92
traffic analysis zones (TAZs) 290
training, system operators 67
transference externality 23–4
transmission system, electricity 62
transnational terrorism 11–13
cost-benefit analysis of terrorist-thwarting policies 30–31
data 13–20
game theory/government responses 23–4
game theory/hostage taking 20–23
rational choice representations of
terrorists 26–30
transportation
access, ports 269–75, 284–5
infrastructure 287–8
network models 280
security initiatives, goal of 219
transportation impacts of ‘dirty bomb’
attacks 275–9, 283
qualifications to 280–82
Transportation Security
Administration (TSA) 248
port security grants 252–3
Transportation Worker Identification
Credential (TWIC) 248–9
tavel
costs 284–5
risks 29, 30
times 289–96
Trester, J.B. 229
trends, transnational terrorism 17–20
trip
deterrence 298
diversion 291–7
truckways 280–81
Tschirhart, John T. 16, 20
Tversky, Amos 52
two-agent problem 38–43
unbounded systems 66
uncertainly
choice under 139–49
container inspection model 224
unilateral action 25
unit value transfer 182
Urban Areas Security Initiative (UASI) 254
urban population centres 125
US Bank Tower 262
US Census 159, 167, 293
US Coast Guard (USCG) 243, 246,
247–8, 249, 256, 257
International Port Security Program 248
US Constitution 91
US Customs and Border Protection
(CBP) 8, 219, 221, 224, 238, 243, 249, 256–7
US Embassies 13, 16, 17, 27, 28, 30
Index

US Maritime Administration (MARAD) 252
US Senate Bill 1214 245
utility
 monopolies, regulation 62
 service disruption, CGE modelling 198, 199, 209, 210–12

vaccines 122, 123, 124, 125, 128, 129
van der Linde, C. 206
vector autoregression (VAR) analysis 27–8, 29
Vehicle and Cargo Inspection System (VACIS) 227
vessel plans 247–8, 256
video surveillance 283
Vilchis, Ernesto 8
Vincent Thomas Bridge 265, 281, 282
Vincent, D. 218
von Winterfeldt, D. 80
vulnerabilities 242–3
 assessments 249
 electricity system 60, 64–5

Waddington, Margaret 156
Wang, H. 102
Wardrop, J.G. 284
warnings, responses 134, 136, 139, 149
Washington Heights, electricity blackout 101–2

water
 supply 92
 systems 75, 86
weakest-link countries 24
wealth 146, 148
weapons arsenals, use of ports 244
web-based experiments 149–50
Weinberg, J. 218
welfare economics 79–80
Whalley, J. 197
Whitfield, R. 75
Wilhelmsson, Mats 154
Wilkinson, Paul 15, 16
willingness-to-pay/willingness-to-sell 79–80
Willis, H. 218, 219
Willis, Henry H. 7–8
Wilson, R. 205
Windle, R. 207
Woo, Gordon 174, 185
World Trade Centre 11, 92, 183, 229

x-ray scanning 221, 222, 226, 264

Y2K 64
Yezer, A.M.J. 184

Zanjani, G.H. 172, 173, 183