Index

accounting and legal matters, assistance in 59, 60
affective conflict 137, 143, 144, 181
Agarwal, R. 71
Agence de l’Innovation Industrielle (AII) 15
Agence Nationale de la Recherche (ANR) 15
agency risk 157
Alternative Investment Market (AIM) 7, 23, 32, 161
Amanson, A.C. 144
Ambassade de France à Berlin 41
Ambassade de France en République Fédérale d’Allemagne 39
Amit, R. 69
ANVAR 56
appropriability regime 79–80
Archimesdes 47
Argyes, N. 14
Association of University Technology Managers (AUTM) 1, 4, 73, 74
Audretsch, D. 64, 172
Auerswald, P.E. 71
AURIL, see Universities Research and Industrial Liaison officers (AURIL)
Austin University 154
Australia 2
Autio, E. 70, 103

BAAN Company 7, 176
Baker, J. 52
Bank of England 1, 150
bankruptcies 7, 47, 48, 163
Barney, J.B. 67, 68, 114
Bayern Kapital 104
Bayern region 88, 172
Bayh–Dole Patent and Trademark Amendments Act (1980) 1, 17
European country-specific versions of 32, 34, 104
Bayus, B.L. 71
Becker, R.M. 23
Beckman, I. 64, 172
behavioural integration 137
Belgium
academic career progression in 17–18
creating a framework for USOs in 38–9, 40, 42, 43, 46, 47, 48
entrepreneurial activity in 20–21
evaluation of spin-off support policy schemes in 59, 60
financial support to TTOs in 35, 39
growth models in 70
intellectual property (IP) in 17, 33, 34
number of patents by 9, 10, 11
number of university spin-offs (1980–2005) 2
public finance support programmes in 33, 34–5, 46, 47, 48
public pre-seed capital fund in 11–12
R&D expenditure in 8
researchers employed in 10
scientific publications produced by 9, 10, 11
structure of public research sector in 15–16
subsidies to VC-backed companies in 82
successful spin-offs in 2–3, 172
venture capital in 23, 24, 32, 47, 48, 170
Bhide, A. 71
BioM 28, 88, 90, 91, 92, 93, 96, 97, 98, 104, 172
Birley, S. 198
Black, B. 23
Bmb+f 37
BMW 104
capabilities, development of 114, 123, 124
capital resources 68
Boeker, W. 72, 73, 138
career progression of academic entrepreneurs 17–18, 55
Borch, O.J. 68
CDC Enterprises 46
Boston, 86, 112
CEA (Commissariat à l’énergie atomique) 14
boundary-spanning capacity, development of 189–91
centralized model of university management 14
Boerner, D. 69, 70, 71
Centre national de la recherche scientifique (CNRS) 14
Brancomb, L.M. 71
Chalmers Innovation 43, 44–5, 58, 59, 60
bridge-building capacity, development of 189–91
Chalmers University of Technology 13, 39–40, 73, 173
Burgelman, R.A. 29
Chandler, G. 138
business angels 117, 124, 157–8
collateral 155
capacity 69–72, 73, 74, 77, 81, 82, 87, 92, 100, 113, 133, 139, 148, 162, 170, 172, 180, 187, 197
business development managers 115
business plan development 50, 59, 60, 90, 91, 92–3, 95, 173
collaborative assets 79–80
business training for academics 39–40, 49–50, 53, 55–6, 58, 59, 60, 182–3, 185–6, 189–91, 194
business angels 117, 124, 157–8
available in US 6
in entrepreneurial teams 138
mechanisms to stimulate funding from 193
Medici Fellowship Scheme and 190
prospective focusing on 81–2
relative importance of 152, 153, 154, 170
business development managers 115
business model perspective 69–72
typologies of RBSOs based on 75, 77–80
business plan development 50, 59, 60, 90, 91, 92–3, 95, 173
business pull strategy 3
business schools 190–91
business training for academics 39–40, 49–50, 53, 55–6, 58, 59, 60, 182–3, 185–6, 189–91, 194
Canadian Venture Capital Association (BVCA) 30
City of Lyon 97, 154
Canada 2
Clarysse, B. 37, 43, 45, 69, 70, 71, 72, 73, 74, 77, 81, 82, 87, 92, 100, 113, 133, 139, 148, 162, 170, 172, 180, 187, 197
Commission of the European Communities (CEC) 6
competence Deficient model 25, 105, 107, 108–9, 111, 112
competitions 34, 40, 41, 50, 56, 57, 61, 62, 64, 92, 174, 190
Commissariat à l’énergie atomique (CEA) 14
Competition of the European Communities (CEC) 6
Cooper, R. 57, 93, 94, 108, 111, 131
consultants 70, 71, 169, 176, 191
lifestyle companies as 74, 80, 81, 177–8, 179, 184
contract enforcement 19, 21
Index

contract research 19, 71, 93–4, 97, 99, 130, 176, 197
lifestyle companies carrying out 81, 177–8, 179
Cooper, A.C. 69
Crealy, 88, 89, 90, 91, 96, 97, 100, 109, 110, 154
credibility threshold 120–21, 122–3, 131–2, 179–80
JVSOs versus VC-backed spin-offs and 126–9
credit, ability to raise 19, 20
Cressy, R. 155
critical mass, in scientific departments 191
culture changes 112, 192, 197, 198
Dacin, T. 72
Debackere, K. 72, 73, 97
debt financing 82, 150, 153, 155, 170, 181–2
decentralized model of university management 13–14, 49
Degroof, J. 70, 71, 72, 87
Dell 6
Delmar, F. 38, 42, 43
Denmark 47, 48
Department of Trade and Industry (DTI) 37, 49
development companies 125, 130
Di Gregorio, D. 22, 86
Direction de la technologie 57, 58, 61
Doctorates 186
Druilhe, C. 69, 71, 72, 125, 130, 147, 176, 178
due diligence 169, 187
East Anglia 88
economically profitable spin-offs 88, 89, 91, 101, 102, 109, 111
Edge, Gordon 105
Edinburgh University 162
Edwards, C. 22
EEF-Fund 34
Ehrlich, S. 157
Eisenhardt, K. 145
Elfring, T. 68
employment contracts 18
Ensley, M.D. 134, 135, 137, 144, 146
Enterprise Investment Scheme 48
entrepreneurial activity 18–22
entrepreneurial commitment 119–22, 131, 179
JVSOs versus VC-backed spin-offs and 126–9
entrepreneurial experience heterogeneity 143
entrepreneurial teams 25, 133–49
areas for further research on 194–5
balanced 76, 82–3, 133, 195
conclusions and discussion 145–9, 180–81
defining 134–5, 138–9
drivers of turnover 144–5
dynamics of 137–8, 146–7, 195
policies for developing 182–3
related to growth 142–3
structure of 135–7, 139–45
entrepreneurial training schemes 39–40, 49–50, 53, 55–6, 58, 59, 60, 182–3, 185–6, 189–91, 194
equity gap 160
equity ownership
by academics 17, 49, 55, 172
by entrepreneurial team members 134
by parent organization 4, 45, 63, 163, 165–6
by spin-off service 93
Erasmus European Business and Innovation Centre (EEBIC) 59, 60
Etzkowitz, H. 1
Europe
entrepreneurial activity in 19–22
financial markets in 6–7
intellectual property (IP) in 6, 17, 33, 34, 35, 36, 49, 50, 52, 64, 104, 171, 172
national systems of innovation in 6–7
number of patents by 6, 9–11
policies to support the creation of USOs in 33–65, 171–4
R&D expenditure in 7–8
researchers employed in 8–9, 10
scientific publications produced by 5–6, 9, 10, 11
sources of finance in 153
structure of public research sector in 12–16
venture capital in, see venture capital
see also under names of individual
European countries, e.g.
Germany; United Kingdom
European Association of Business
Angel Networks 158
European Association of Securities
Dealers Automatic Quotation
System (EASDAQ) 7, 23, 32
European Commission (EC) 5, 22, 40,
82, 150, 155
European Innovation Paradox 5–7
European Regional Development
Fund 89, 103
European Report on Science and
Technology Indicators 31
European Social Fund 56, 58, 91, 154
European Venture Capital Association
(EVCA) 156, 159
European Venture Capital Association
(EVCA)/Thompson Venture
Economics 161
Eurostat 27
EXIST programme 34, 37–8, 47, 48
exit, forms of 160, 161–2
exit-orientated spin-offs 82, 88, 89, 93,
102, 109, 111
experiential heterogeneity 137, 139–43,
180
export assistance 60
Fachhochschulen 12
feedback 114
fellowships 34, 189–90, 194
Fiet, J. 157
finance gap 33, 45, 53, 171, 172
financial constraints and access to
finance 150–70
access to finance 152–4
different funding sources 154–70,
181–2
business angels 157–8
debt finance 155
government financing schemes
155–6
industrial partners 156–7
internal funding 154–5
venture capital 158–70
supply and demand issues
surrounding 150–52
TTOs’ views on 150, 151, 152–3,
168–9
see also venture capital
financial markets, European 6–7
financial resources
constraints and access to, see
financial constraints and access
to finance; venture capital
credibility needed to acquire 122–3,
175
in different incubation models 96,
97, 98, 99, 105
in different types of spin-off 76,
81–2, 125
financing mix 68, 82
studies focusing on 69
Finland 47, 70
First Public–Private University Capital
Fund 34
fiscal incentives 46, 47, 48, 193–4
Flanders 16, 39, 46
Flanders Interuniversity Institute for
Biotechnology (VIB) 16
Flemish Institute for Technology
Research (VITO) 16
Fonds de co-investissement pour les
jeunes entreprises (FCJE) 46
Forbes, D. 140
Fortis Private Equity 98, 154
Foundation for Knowledge and
Competence Development 35
founders, characteristics of 69, 71
founding teams, see entrepreneurial
teams
France
academic career progression in
17–18, 55
complementarity between spin-off
initiatives in 64–5
creating a framework for USOs in
37, 39, 40, 42, 46, 47, 48, 54–7
entrepreneurial activity in 19,
20–21
evaluation of spin-off support policy
schemes in 57, 58, 61–3
financial support to TTOs in 35
growth modes in 70
intellectual property (IP) in 17, 34
invention disclosures in 36
number of patents by 9, 10, 11
number of university spin-offs
(1984–2005) 2
public finance support programmes
in 33, 34, 40, 46, 47, 48, 56–7, 172, 174
R&D expenditure in 8
rationale for spin-off policy in 63, 65
Research and Innovation Act (1999)
37, 54, 56, 57, 62
researchers employed in 9, 10
scientific publications produced by 9, 10, 11
structure of public research sector in
14–15
venture capital in 23, 24, 32, 46, 48
Francis, D.H. 140
Franklin, A. 73, 115, 133, 134, 151, 158
Fraunhofer Gesellschaft zur Förderung
der angewandten Forschung
(FhG) 12
functional heterogeneity 137, 180, 181
Garsney, E. 69, 71, 72, 125, 130, 147, 176, 178
Gartner, W.B. 134
Gate2Growth Programme 40
Gatsby Charitable Foundation 54
Gemeinschaft 140
Gemma Frisius Fond 98, 154
Gent, University of 3, 15
George, G. 180
Georghiou, L. 49, 53
German Research Foundation (DFG)
12–13
Germany
academic career progression in
17–18
creating a framework for USOs in
37–8, 39, 40, 41, 42, 47, 48
entrepreneurial activity in 19, 20–21
evaluation of spin-off support policy
schemes in 59, 60
Federal Higher Education
Framework Law (1998) 38
financial support to TTOs in 35
intellectual property (IP) in 17, 33, 34, 35
invention disclosures in 36
number of patents by 9, 10, 11
number of university spin-offs
(1997–1999 and 2001) 2
public finance support programmes
in 33, 34, 40, 41, 47, 48, 172
R&D expenditure in 8
researchers employed in 10
scientific publications produced by 9, 10, 11
structure of public research sector in
12–13
venture capital in 23–4, 32, 47
Gilson, S. 23
Global Entrepreneurship Monitor
(GEM) 19, 21, 24, 172
Golder, P.N. 71
Goldfarb, B. 13, 17
government-based research
laboratories 16, 52
graduates
companies created by 4–5
positions obtained by 14–15
grandes écoles 14–15
grants 82, 152
green car research 15
Grenoble 58
gross domestic expenditure on R&D
(GERD) 7–8, 27
growth orientation 70, 102, 111
guarantee schemes 46, 47–8
Hambrick, D.C. 135
Harrison, R. 158
HEIF, see Higher Education
Innovation Fund (HEIF)
Heirman, A. 69, 70, 71, 72, 77, 81, 100, 133, 139, 170, 172, 180
Hellman, T.F. 23
Hellsmark, M. 73
Henrekson, M. 13, 17
Hermann von Helmholtz
Gemeinschaft Deutscher
Forschungszentren (HGF) 12
high-value spin-offs 101
Higher Education Funding Councils
(HEFCs) 13
Higher Education Innovation Fund
(HEIF) 35, 49, 50–52, 64, 173
Higher Education Reach-out to
Business and the Community
Fund (HEROBC) 51
human resources
credibility needed to acquire 175
in different incubation models 95, 96, 97, 99, 105
in different types of spin-offs 76, 82–3, 125
meaning of 68
studies focusing on 68–9
of technology transfer offices (TTOs) 196–7
of venture capital firms 160

I&I 93
ICOS 104
Ilog 32
IMEC, see Interuniversity Institute for Microelectronics (IMEC)
Imperial College 50, 54
incubation, definition of 87
incubation facilities, provision of 90, 91, 93, 95, 96, 97, 98, 99, 131
incubation models of spin-offs 24–5, 86–113
areas for further research on 197–8
Competence Deficient model 25, 105, 107, 108–9, 111, 112
performance indicators 109–11
reference models 88–105
activities of each model 89–95
characteristics of reference model PROs 88–9
complementarity of models and objectives 102–3
Incubator model 25, 87, 90, 93–5, 96, 98–9, 102, 104–5, 106, 110, 111, 155, 178, 179, 198
local environment and 103–5, 112
Low Selective model 25, 87, 89–91, 95–7, 100, 103–4, 106, 109–10, 111, 154, 177–8, 179, 197
models, strategies and outcomes 100–102, 112
resources required by each model 95–9, 111–12
Supportive model 25, 87, 90, 91–3, 96, 97–8, 100–101, 104, 106, 110, 111, 154, 178–9, 197
Resource Deficient model 25, 105–8, 110–11, 112
summary and conclusions 111–13, 177–9
incubation schemes, in various countries 33, 34, 35, 40–43, 46, 47, 48, 50–53, 56, 58–9
Chalmers Innovation 43, 44–5, 58, 59, 60
effectiveness of 59, 60, 64–5
Incubator model 25, 87, 178, 179, 198
activities undertaken by 90, 93–5
local environment and 104–5
objectives of 102, 111
performance indicators of 110
researchers and TTS staff employed 106
resources required by 96, 98–9
and sources of finance 155
industry, university links with 6, 12, 14–15, 35–6, 37, 39
information and communication technologies 56, 98, 170
information asymmetries 151–2, 155, 159, 160
infrastructure companies 71
initial public offerings (IPOs) 32, 160, 161–2, 198
Innovation Bridge 33, 34
Innovation Fund 34–5
Innovationsmarknaden (IM) 23
Innovationsmiljoer 47, 48
innovativeness, degree of 80
INRA, see Institut national de la recherche agronomique (INRA)
INRIA, see Institut national de la recherche en informatique et automatique (INRIA)
INSERM, see Institut national de la santé et de la recherche (INSERM)
Intstitut national de la recherche agronomique (INRA) 14
Index

Institut national de la recherche en informatique et automatique (INRIA) 14, 43
Institut national de la santé et de la recherche (INSERM) 14
Institute of Broad Band Technology (IBBT) 16
institutional differences 5–24
typologies of RBSOs based on 74–7
Intel 6
Intellectual Property (IP) 3
and access to finance 151, 157, 165–6, 169
created during research phase 115, 120
due diligence 169, 187
expenditure on protection 86
incentives created by ownership of 16–17
incubation models and 90, 91, 92, 94, 97, 98, 101, 104
management in Europe 6, 17, 33, 34, 35, 36, 49, 50, 52, 64, 104, 171, 172
management in US 6, 17
resolving questions of ownership of 187
spin-offs dependent upon licensing or assignment of 4, 72–3
valuation of 199
internal funding 22, 68, 82, 152, 153, 154–5, 170, 176, 181–2
internal rate of return 160–61
internationalization 59
Internet 15
interpersonal conflict 144
Interuniversity Institute for Microelectronics (IMEC) 3, 16, 28, 43, 88, 90, 91, 93–4, 95, 96, 99, 104, 105, 155, 162–3
intrapersonal conflict 144
invention disclosures 36, 49
investment size 60
investor readiness 168–9
investor versus market acceptance 77–9
IP2IPO Limited 161
Italy 37, 39
IZB 93
Jacob, M. 48, 197
Jensen, R. 17
‘Jeune Enterprise Innovante’ status 47, 48
jobs created by spin-offs 100, 109, 110, 111
joint ventures 69, 98, 152, 153, 154, 156–7, 188, 194
compared with VC-backed spin-offs 124–5, 126–9
Jönköping University 13
Jülich TZ 59, 60
Kamm, J.B. 134
Karnebeek, A. 89, 91, 103
Katholieke Universiteit Leuven (KUL) 15, 40, 92, 97, 98, 104, 154, 178
KBC Investment 98, 154
Keasey, K. 155
Kenny, M. 22, 159
King’s College London 161
kinship teams 140, 141
knowledge gap 33, 53, 171, 173
Kreditanstalt für Wiederaufbau 47
KUL (Katholieke Universiteit Leuven) 15, 40, 92, 97, 98, 104, 154, 178
La Porta, R. 3
labour market laws 19
Lambert, R. 2, 51
Länder governments 13, 64, 172
Landstrom, H. 157
Larédo, P. 14
learning process 117–18
Lee, C. 68
Leonard-Barton, D. 192
Lernout & Hauspie 7, 32, 176
Leuven Inc. 104
Leuven R&D 88, 90, 91, 92, 93, 96, 97, 98, 104, 105
Leuven region 93, 101, 104
Leuven University 73, 194
Levinthal, D. 180
licensing of technology
business model and 130
as entrepreneurial indicator 18–19, 20
initiatives to promote 50, 52, 53, 58, 59
international 104, 109, 111
problems associated with 16–17
spin-offs as alternative to 100–101, 102, 111, 116, 188, 197
spin-offs dependent on assignment of IP or 4, 72–3
technology asset oriented mode associated with 70
technology platform built through 94, 187
traditional emphasis on 1
VC-backed model focusing on 178
Lichtenstein, B. 68
Liebeskind, J. 14
lifestyle companies 67, 74–84 passim, 177–8, 179, 184
Linköping University 40
LMS 104
loans 68, 82, 91
local environment, role of 103–5
Lott, J. 22, 159
Low Selective model 25, 87, 177–8, 179, 197
activities undertaken by 89–91
local environment and 103–4
objectives of 100, 111
performance indicators of 109–10
researchers and TTS staff employed 106
resources required by 95–7, 111
and sources of finance 154
Lumme, A. 70
Lundqvist, J.M. 73
MacMillan, I.C. 133
Maisons de l'entrepreneuriat 35, 55–6, 58
Malone, D.E. 3, 86
management systems, changes in 198
managers 83, 143, 148, 169
market failure 150
market research and sales support 59, 60
market size 165
market versus investor acceptance 77–9
Massachusetts Institute of Technology (MIT)
linkages between science-based entrepreneurial firms and 72–3
successful spin-offs from 2, 3
Mason, C. 158
Mason, P.A. 135
matched teams 141
matrix organizational structure 97
Max Planck Gesellschaft zur Förderung der Wissenschaft (MPG) 12
Max Planck Institutes (MPIs) 12, 39, 92
MBA programmes 22, 182–3, 190
McNally, K. 156
Medici Fellowship Scheme 34, 189–90
Melbourne Science Park 99
Meyer, M. 72, 73
microelectronics research 16, 99, 104, 105, 162–3
Microsoft 6
Ministry of Research, France 55, 56, 58, 64, 65, 97, 172
Minshall, T.H.W. 162
Moore, B. 155
Moore, G.A. 71
Moray, N. 72, 73, 74, 77, 87, 92, 162, 170, 197
Morgan, R.P. 11
Mosey, S. 189
Mowery, D.C. 1, 17
Muldur, U. 5
Munich 92, 104
Murray, G. 22, 159
museums 52
Mustar, P. 14, 62, 69, 70, 71, 73
Muzyka, D. 133, 159
NASDAQ, see National Association of Securities Dealers Automated Quotations (NASDAQ)
National Association of Securities Dealers Automated Quotations (NASDAQ) 32
national systems of innovation 6–7
Nerkar, A. 3
Netherlands 2, 47, 48
networking resources 97, 98, 99
Neuer Market 7, 23, 32
New Market 23
new product and/or service
development 59, 60
New York Stock Exchange (NYSE) 7
NHS Trusts 52
niche companies 78–9
Nicolaou, N. 84, 198
non-linear development 114
le Nouveau Marché 7, 23, 32
NUTEK 13, 44

O’Shea, R.P. 2
Objective 5 regions 103
Observatory of Teaching Practices in
Entrepreneurship (OPPE) 55
Office for Science and Technology
(OST) 8, 10, 13, 14, 57, 64, 172
OHM 161
Oost Nederland 88
opportunity-framing phase 116, 120
as iterative process 130, 131
moving to/from 119–22
opportunity recognition 119, 120–21,
131, 179
JVSOs versus VC-backed spin-offs
and 126–9
opportunity-seeking activities 89, 90,
92, 94
organic teams 141–2
organizational culture 72, 112, 113,
131, 181, 197, 198
organizational resources 68, 95, 96, 97,
99
organizational theory 72
Our Competitive Future: Building the
Knowledge Economy (DTI, 1998) 37
Owen-Smith, J. 12
Oxford University 50, 54, 103
parent organization, institutional link
with 66, 72–7, 84, 89, 198
partnerships 68, 76, 83–4; see also joint
ventures: public–private
partnerships
patents
 attorneys 169
 Bayh–Dole Act and 1, 17, 32, 34,
 104
 European system 9, 104
formal transfer of technology
embodied in 72–3, 74–7
Low Selective model emphasizing
90, 91
number in Europe 6, 9–11
number in US 1, 6, 9, 10, 11
regional data on 27
SECs applying for 58
Single European Patent 6
strategy relating to 187
US system 9
pay scales, academic 14, 17–18, 192
Pearce, C.L. 137, 146
pecking-order theory 26, 150, 153, 163,
170, 177
Penrose, E.T. 114
personal funds, see internal funding
Phan, P. 41
phases and models of development 25,
114–32
conclusions 130–32, 179–80
critical junctures 118–24, 179–80
credibility threshold 120–21,
122–3, 126–9, 131–2, 179–80
entrepreneurial commitment
119–22, 126–9, 131, 179
opportunity recognition 119,
120–21, 126–9, 131, 179
sustainability threshold 120–21,
123–4, 126–9, 132, 180
phases of development 115–18
opportunity-framing phase 116,
120
pre-organization phase 116–17,
120
reorientation phase 117–18, 120
research phase 115–16, 120
sustainable returns phase 118
technological sectors and
development 125–30
venture-backed and joint venture
USOs 124–5
physical resources 67–8, 96, 97, 98, 99,
131
Piccaluga, A. 70, 71
Pirnay, F. 70
platform technologies 71, 81, 94
Powell, W.W. 12
Index

pre-organization phase 116–17, 120 as iterative process 130, 131 moving to/from 119–23

Quinn, R.E. 146
Radosevich, R. 73 recruitment academic staff 18 advice on 59, 60 remuneration structures 14, 17–18, 192 Renault, C.S. 18 reorientation phase 117–18, 120 as iterative process 130, 131 moving to/from 120–21, 122–3 research and development expenditure by private and public sectors 8 government-based research laboratories 16, 52 gross domestic expenditure on (GERD) 7–8, 27 researchers employed in EU and US 8–9, 10 structure of public research sector 12–16 Research Assessment Exercise (RAE) 13, 14 Research Council Institutes 52 research councils 13, 14 research phase 115–16, 120 moving from 119, 120–21 reserved profits 68 resource-based perspective 67–9 and phases of development 114 typologies of RBSOs based on 75–6, 80–84 Resource Deficient model 25, 105–8, 110–11, 112 resource dependency theory 72 Reynolds, P.D. 3 Rhône-Alpes region 88, 89, 97, 103, 154 risk, investors’ perception of 167 Robbie, K. 22 Roberts, E.B. 3, 22, 72, 86, 150, 155, 172 Rosenbloom, R.S. 69 Route 128 technology agglomeration 6, 31, 104 Ruhnka, J. 160

Mike Wright, Bart Clarysse, Philippe Mustar and Andy Lockett - 9781847205575
Downloaded from Elgar Online at 04/23/2019 03:37:47PM via free access
Science and Innovation: Excellence and Opportunity (DTI, 2000) 37
Science Enterprise Challenge (SEC) 35, 40, 49–50, 51, 53, 58, 64, 173
scientific density 10, 11
Scientific Generics 88, 90, 93, 94, 95, 96, 99, 104, 105, 108
scientific publications 5–6, 9, 10, 11, 18, 115, 194
screening of proposals 165–8
SEC, see Science Enterprise Challenge (SEC)
Segal, Quince and Wicksteed Limited (SQW) 49, 50, 52, 58, 59–60, 61, 64, 65, 94, 173
self-employed orientated spin-offs 88, 89, 100, 102, 109, 111
service-oriented RBSOs 70, 111, 184
Shane, S.A. 2, 3, 17, 22, 69, 86, 103, 104, 115, 119
shared strategic cognition 146, 147
shareholders, developing regional network of 188–9
Siegel, D.S. 1, 43, 86
Siemens 104
Silicon Valley 6, 31, 86, 104
Single European Treaty 31
small- and medium-sized enterprises (SMEs) 15, 23
Small Business Administration (SBA) 6
Small Business and Innovation Research (SBIR) programme 6
Small Business Investment Companies (SBIC) schemes 46–7
Smilor, R. 154
social resources 68, 76, 83–4
social security payments, exemption from 48
social security systems 19
software companies 71, 125–30
solo entrepreneurs 141, 142
Sölvell, I. 38, 42, 43
Southampton University 161
Spin-off Post-Doctorates 34, 39
spin-offs
areas for further research on 194–9
benefits from 2
conclusions and main findings 171–82
data and methodology for studying 26–30
definition of 4–5
financial constraints and access to finance for 150–70, 181–2
see also venture capital
incubation models of 24–5, 86–113, 177–9, 197–8
institutional differences and 5–24
numbers in various countries 1–2, 88
phases in development of 25, 114–32, 179–80
policy actions relating to 182–94
public policies to foster 31–65, 171–4
strategies for 3
success of 2–3
types of 24, 66–85, 174–7, 195–6
sponsorship-based linkages 68
Stanford University 3
Stankiewicz, R. 70
State of Bavaria 98, 104
Steffensen, M. 73
stock market flotation 32, 160, 161–2, 198
Stockholm Bourse Information (SBI) 23
Stockholm School of Economics 13
Storey, D. 150
strategic management 72
Stuart, T. 2, 3, 69, 103
subsidies 68, 81, 82
Suchman, M.C. 104
Supportive model 25, 87, 178–9, 197
activities undertaken by 90, 91–3
local environment and 104
objectives of 100–101, 111
performance indicators of 110
researchers and TTS staff employed 106
resources required by 96, 97–8
and sources of finance 154
surrogate entrepreneurs
to attract finance 83, 122, 131
business angels as 158
characteristics of 45, 134
data collected from 115
opportunities recognized by 119
<table>
<thead>
<tr>
<th>Issue</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>policies to attract as team members</td>
<td>180</td>
</tr>
<tr>
<td>universities’ attitudes to using</td>
<td>73</td>
</tr>
<tr>
<td>sustainability threshold</td>
<td>120–21, 123–4, 132, 180</td>
</tr>
<tr>
<td>JVSOS versus VC-backed spin-offs and</td>
<td>126–9</td>
</tr>
<tr>
<td>sustainable returns phase</td>
<td>118</td>
</tr>
<tr>
<td>moving to 120–21, 123–4</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>academic career progression in</td>
<td>17–18</td>
</tr>
<tr>
<td>business angels in</td>
<td>157</td>
</tr>
<tr>
<td>creating a framework for USOs in</td>
<td>38, 40, 42, 43, 44–5, 47, 48</td>
</tr>
<tr>
<td>entrepreneurial activity in</td>
<td>20–21</td>
</tr>
<tr>
<td>evaluation of spin-off support policy schemes in</td>
<td>58–9, 60</td>
</tr>
<tr>
<td>financial support to TTOs in</td>
<td>33, 35–6</td>
</tr>
<tr>
<td>intellectual property (IP) in</td>
<td>17, 33, 34, 36</td>
</tr>
<tr>
<td>invention disclosures in</td>
<td>36</td>
</tr>
<tr>
<td>number of patents by 9, 10, 11</td>
<td></td>
</tr>
<tr>
<td>number of university spin-offs (up to 1990s) 2</td>
<td>2</td>
</tr>
<tr>
<td>public finance support programmes</td>
<td>33, 44, 45, 47, 48</td>
</tr>
<tr>
<td>R&D expenditure in</td>
<td>8</td>
</tr>
<tr>
<td>researchers employed in</td>
<td>9, 10</td>
</tr>
<tr>
<td>scientific publications produced by 9, 10, 11</td>
<td></td>
</tr>
<tr>
<td>structure of public research sector in</td>
<td>13</td>
</tr>
<tr>
<td>venture capital in</td>
<td>23, 24, 59</td>
</tr>
<tr>
<td>Synairgen 161</td>
<td></td>
</tr>
<tr>
<td>target rate of return</td>
<td>159, 160–61</td>
</tr>
<tr>
<td>tax incentives 46, 47, 48, 193–4</td>
<td></td>
</tr>
<tr>
<td>Tbg, see Technologie</td>
<td></td>
</tr>
<tr>
<td>Beteiligungsgesellschaft (Tbg)</td>
<td></td>
</tr>
<tr>
<td>teams, see entrepreneurial teams</td>
<td></td>
</tr>
<tr>
<td>technical universities 12</td>
<td></td>
</tr>
<tr>
<td>technological density 10, 11</td>
<td></td>
</tr>
<tr>
<td>Technologie Beteiligungsgesellschaft (Tbg) 98, 104</td>
<td></td>
</tr>
<tr>
<td>technology asset oriented mode</td>
<td>70</td>
</tr>
<tr>
<td>technology clusters</td>
<td>6, 31, 86, 104</td>
</tr>
<tr>
<td>technology gap</td>
<td>6</td>
</tr>
<tr>
<td>The Technology Partnership (TTP)</td>
<td>28, 88, 90, 93, 94, 95, 96, 99</td>
</tr>
<tr>
<td>technology push strategy</td>
<td>3</td>
</tr>
<tr>
<td>technology reserves</td>
<td>68, 69, 75, 80–81, 96, 97, 98, 99</td>
</tr>
<tr>
<td>technology transfer, degree of</td>
<td>72–7</td>
</tr>
<tr>
<td>technology transfer offices/officers (TTOs)</td>
<td></td>
</tr>
<tr>
<td>areas for further research on</td>
<td>196–7</td>
</tr>
<tr>
<td>contacts with 29</td>
<td></td>
</tr>
<tr>
<td>data collected from</td>
<td>26, 28, 115</td>
</tr>
<tr>
<td>financial support to 33, 35–6, 39, 40, 51, 172, 187</td>
<td></td>
</tr>
<tr>
<td>policy implications for</td>
<td>184–91</td>
</tr>
<tr>
<td>role in teams 25, 134, 135, 138, 144, 145, 180–81, 182</td>
<td></td>
</tr>
<tr>
<td>views on access to finance</td>
<td>150–53, 168–9</td>
</tr>
<tr>
<td>Teece, D.J. 79</td>
<td></td>
</tr>
<tr>
<td>Teknikbro stiftelserna (Foundation for technology transfer) 38</td>
<td></td>
</tr>
<tr>
<td>telecommunications research</td>
<td>15</td>
</tr>
<tr>
<td>Tellis, G.J. 71, 78, 175</td>
<td></td>
</tr>
<tr>
<td>3 per cent norm 7, 11</td>
<td></td>
</tr>
<tr>
<td>Thursby, J. 1</td>
<td></td>
</tr>
<tr>
<td>Thursby, M. 1, 17</td>
<td></td>
</tr>
<tr>
<td>Tiler, C. 70</td>
<td></td>
</tr>
<tr>
<td>TOP (Tijdelijke Ondernemers Plantsen) 89</td>
<td></td>
</tr>
<tr>
<td>trade organizations 12</td>
<td></td>
</tr>
<tr>
<td>trade sales 78–9, 80, 160, 161, 162–3, 175, 198</td>
<td></td>
</tr>
<tr>
<td>transport 15</td>
<td></td>
</tr>
<tr>
<td>TTOs, see technology transfer offices/officers (TTOs)</td>
<td></td>
</tr>
<tr>
<td>TTP, see The Technology Partnership (TTP)</td>
<td></td>
</tr>
<tr>
<td>Twente region 101, 103</td>
<td></td>
</tr>
<tr>
<td>Twente University 5, 88, 89, 90, 91, 96, 100, 103, 109, 110, 154</td>
<td></td>
</tr>
<tr>
<td>types of spin-off 24, 66–85</td>
<td></td>
</tr>
<tr>
<td>areas for further research on</td>
<td>195–6</td>
</tr>
<tr>
<td>based on business model 75, 77–80</td>
<td></td>
</tr>
<tr>
<td>based on institutional link</td>
<td>74–7</td>
</tr>
<tr>
<td>based on resources 75–6, 80–84</td>
<td></td>
</tr>
<tr>
<td>conceptual perspectives 67–74</td>
<td></td>
</tr>
<tr>
<td>business model perspective</td>
<td>69–72</td>
</tr>
</tbody>
</table>
institutional perspective 72–4
resource-based perspective 67–9
conclusions 84–5, 174–7

Ucbasaran, D. 119, 134, 137
unemployment rate 103
UNICO, see Universities’ Companies Association (UNICO)

United Kingdom
academic career progression in 17–18
business angels in 157
complementarity between spin-off initiatives in 64
creating a framework for USOs in 37, 40, 42, 46, 47, 48, 49–54
t h e r e n t u r i o n a l a c t i v i t y i n 19, 20–21
evaluation of spin-off support policy schemes in 58, 59–61
financial support to TTOs in 35
intellectual property (IP) in 17, 33, 34, 49, 50, 52
invention disclosures in 36, 49
number of patents by 9, 10, 11
number of university spin-offs (1981–2003) 2
public finance support programmes in 33, 34, 40, 46, 47, 48, 49, 50–53, 172, 173
R&D expenditure in 8
rationale for spin-off policy in 63, 65
researchers employed in 9, 10
scientific publications produced by 9, 10, 11
structure of public research sector in 13–14
successful spin-offs in 2
venture capital in 22–3, 24, 32, 48, 53–4, 60, 158–9

United States
academic career progression in 17–18
entrepreneurial activity in 19, 20–21
innovation system in 6
intellectual property (IP) in 6, 17
number of patents by 1, 6, 9, 10, 11
number of university spin-offs (1980–2004) 1, 2
R&D expenditure in 7–8
researchers employed in 8–9, 10
scientific publications produced by 6, 9, 10
Small Business Investment
Companies (SBIC) scheme 46–7
structure of public research sector in 12, 13–14
successful spin-offs in 2, 3
venture capital in 6, 22, 23, 24, 31, 46–7
Universiteit Gent (UG) 3, 15
universities
areas for further research on 197–8
strategies towards spin-offs 191–3
Universities’ Companies Association (UNICO) 2, 26
Universities Research and Industrial Liaison officers (AURIL) 26
University Challenge Funds 33, 34, 49, 50, 53–4
complementarity with other programmes 51, 64
evaluation of impact of 59, 193
management of 60–61
public capital in 46, 47, 53–4
recommendations for improving 155–6, 194
relative importance of 152, 153, 154, 173, 181
total value of 35, 53–4
University Seed Funds 46
university spin-offs, see spin-offs
upper echelon perspective 135, 137, 145–6
US Patent and Trademark Office 9
value capturing, mode of 79–80
Van Looy, B. 194
Van Muijen, J.J. 29, 135, 136, 146
Vanaelst, I. 134, 135, 137
VC Trusts 48
venture capital
entrepreneurial teams and 124, 133, 139, 145
in Europe 22–4, 31–2, 46–8, 58–9, 158–70
areas for further research 198–9
compared with joint ventures 124–5, 126–9
developing links with venture capitalists 188–9
with different incubation models 90, 91, 93, 95, 96, 98–9, 102, 103, 104, 108, 111
investor readiness 168–9
proposals and investments 163–5
relative importance 152–4, 181–2
University Challenge Fund and 46, 53–4, 60
venture capital investing 158–63
venture capitalists’ experience 169–70
resource-based perspective and 69
taxonomy of venture capital-backed
spin-offs 66, 75–84, 174–6, 178
in United States 6, 22, 23, 24, 31, 46–7
VINNOF, see Vlaams Innovatiefonds (VINNOF)
VINNOVA 13, 34, 38, 44
Vlaams Gewest region 88
Vlaams Innovatiefonds (VINNOF) 33, 46
Vohora, A. 132
von Burg, U. 22, 159
Wallonia 39
Warwick University 103

Watson, R. 150, 155
Wellcome Trust 13, 54
Westhead, P. 150
Wicksteed, W. 162
WIFI technology 80
Wiklund, J. 133, 135, 137
Williams, E. 2
Wilson, H. 22
Wilson, N. 150
Wilson Committee 33
Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL) 12
Wolfson Electronics 161–2
World Bank 21
Worms, G. 6
Wright, M. 2, 11, 22, 23, 84, 86, 154, 159, 161, 170, 187, 190, 191, 192, 195
Witterwulghe, R. 70
Yencken, J. 69
Yli-Renko, H. 103
Zahra, S. 133, 135, 137, 180
Zeitlyn, M. 185
Zott, C. 69