Index

A-Efficiency scores 138
Acutt, M. 45
Adamowicz, V. 49, 133
Adamowicz, W.L. 2, 3, 45, 49, 106, 109, 135, 150, 156, 163, 169, 178, 180, 198, 207, 209, 220, 258, 277, 278, 282, 284, 320, 321
advising and planning 188–9
Aftab, A. 48
age variable 206, 208–9
Agenda 2000 130
agri-environmental schemes 13–17, 30–35, 318
agri-forestry landscape variable 137, 141, 142
agricultural environmental safety in Italy 44
agriculture 253–4
agro-biodiversity conservation in Hungary 32–3
air traffic disturbance in Sweden 28–9, 52
Akaike Likelihood Ratio Index (\(\hat{\rho}^2\)) 155, 161, 260, 261, 283
alternative specific constant 109, 189–90, 264
forest recreation in United Kingdom 233, 234, 237, 238, 239, 240, 243
river management in Poland 276–7, 278, 282, 283, 284
Alvarez-Farizo, B. 23–4, 26, 47, 48, 51, 133
Andrews, R.L. 155, 156, 260–61
Angelakis, A. 250
animal welfare vs. biotechnology (GM food) issues 19
annoyance level 301, 309, 311, 312
anthropocentric segments 182, 184–5, 189–93
archaeological features 14
archaeological sites 84
Arrow, K. 122, 152, 204, 220, 227
Arsenio, E. 28, 29, 53
Ashok, K. 150
attitudinal variables 94, 320, 321, 322
forest biodiversity conservation in Finland 182
forest recreation in United Kingdom 227
rail noise abatement in Italy 309, 311, 312, 313
Water Framework Directive: Greece 259, 262, 267
Australia 2, 133, 156–7, 168, 202
Austria 133
awareness 95
Azevedo, C. 209
Backer, G.A. 160, 168
badger conservation vs control of bovine tuberculosis in cattle in England and Wales 15, 34–5
Barberán, R. 48
Barbier, E.B. 249, 250
Bardley, M. 139
Barreiro, J. 297
base value 199, 213
Bateman, I.J. 2, 3, 227, 256, 262, 278, 280, 285
Bayes' Rule 69
Bayesian estimation approach 70
Bayesian Information Criterion 72, 73, 155, 161, 260, 261
beef from hormone-treated and/or GM-fed cattle 18
beef production 36
behavioural characteristics 321
Ben-Akiva, M. 148, 150, 151, 152, 154, 169, 198
benefit attribute 1
benefits transfer method 267, 322
Bennett, J. 2, 7, 120, 133, 178, 198–214, 218–19, 254, 256, 271, 280
Bennett, R. 14, 15, 34

325
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benson, J.F.</td>
<td>220</td>
</tr>
<tr>
<td>Bergland, O.</td>
<td>199</td>
</tr>
<tr>
<td>Bergmann, A.</td>
<td>26, 54, 254</td>
</tr>
<tr>
<td>Bergson, A.</td>
<td>122</td>
</tr>
<tr>
<td>Bergstrom, J.C.</td>
<td>200, 201</td>
</tr>
<tr>
<td>Bertoni, G.</td>
<td>147</td>
</tr>
<tr>
<td>Bhat, C.R.</td>
<td>70–71</td>
</tr>
<tr>
<td>Bienabe, E.</td>
<td>2</td>
</tr>
<tr>
<td>binary logit regression</td>
<td>210</td>
</tr>
<tr>
<td>Biodiversity Action Plans</td>
<td>14</td>
</tr>
<tr>
<td>biodiversity attribute:</td>
<td></td>
</tr>
<tr>
<td>river management in Poland</td>
<td>278–89, 319</td>
</tr>
<tr>
<td>Water Framework Directive:</td>
<td>Greece</td>
</tr>
<tr>
<td>biodiversity conservation in England</td>
<td>33–4</td>
</tr>
<tr>
<td>Birds Directive (79/409/EEC)</td>
<td>8, 13, 251, 267, 272</td>
</tr>
<tr>
<td>Bishop, K.D.</td>
<td>220</td>
</tr>
<tr>
<td>Black, A.</td>
<td>48</td>
</tr>
<tr>
<td>Blamey, R.</td>
<td>2, 120, 178, 256, 280</td>
</tr>
<tr>
<td>Bolduc, D.</td>
<td>198</td>
</tr>
<tr>
<td>Bonnieux, F.A.</td>
<td>106</td>
</tr>
<tr>
<td>bootstrapping procedure</td>
<td>209, 211, 212</td>
</tr>
<tr>
<td>Borda rule</td>
<td>124, 125, 321</td>
</tr>
<tr>
<td>Borroni-Feyerabend, G.</td>
<td>179</td>
</tr>
<tr>
<td>Boxall, P.C.</td>
<td>2, 49, 150, 156, 163, 169, 180, 182, 184, 258, 277, 278, 284, 320, 321</td>
</tr>
<tr>
<td>Boyle, K.J.</td>
<td>201</td>
</tr>
<tr>
<td>Bozdogan Akaike Information Criterion</td>
<td>155, 161, 260</td>
</tr>
<tr>
<td>Brakenridge, G.R.</td>
<td>271</td>
</tr>
<tr>
<td>Brander, L.M.</td>
<td>249, 254</td>
</tr>
<tr>
<td>Bristow, A.L.</td>
<td>28, 52, 53, 294, 297</td>
</tr>
<tr>
<td>broadleaved and mixed woodland</td>
<td>83, 84, 86–7, 88, 95, 100</td>
</tr>
<tr>
<td>Brouwer, R.</td>
<td>200, 201, 249, 254, 272</td>
</tr>
<tr>
<td>Brown, G.</td>
<td>69</td>
</tr>
<tr>
<td>Brownstone, D.</td>
<td>68</td>
</tr>
<tr>
<td>Bruno, L.</td>
<td>156</td>
</tr>
<tr>
<td>Bullock, C.H.</td>
<td>30, 84, 85, 100, 102</td>
</tr>
<tr>
<td>Bureau, J.</td>
<td>147</td>
</tr>
<tr>
<td>Burnham, T.A.</td>
<td>160, 168</td>
</tr>
<tr>
<td>Burton, M.</td>
<td>17, 18, 35, 40, 149, 156</td>
</tr>
<tr>
<td>business-as-usual policy scenario</td>
<td>84, 99</td>
</tr>
<tr>
<td>Calatrava-Requena, J.</td>
<td>44</td>
</tr>
<tr>
<td>Campbell, D.</td>
<td>4, 58–79</td>
</tr>
<tr>
<td>Canada</td>
<td>146, 156–7, 182</td>
</tr>
<tr>
<td>carbon dioxide attribute</td>
<td>203, 205, 208–9, 210, 212, 318</td>
</tr>
<tr>
<td>Carlsson, F.</td>
<td>18–19, 20, 22, 28–9, 37, 41, 43, 52, 156, 265, 272</td>
</tr>
<tr>
<td>Carson, R.T.</td>
<td>204</td>
</tr>
<tr>
<td>Carter, C.A.</td>
<td>147, 169</td>
</tr>
<tr>
<td>Caswell, J.A.</td>
<td>169</td>
</tr>
<tr>
<td>cattle production</td>
<td>15</td>
</tr>
<tr>
<td>Chave, P.</td>
<td>249, 250</td>
</tr>
<tr>
<td>Cheimaditida Wetland Management Fund</td>
<td>255–6</td>
</tr>
<tr>
<td>chicken and beef production in Sweden</td>
<td>41–2</td>
</tr>
<tr>
<td>Child, D.</td>
<td>159–60</td>
</tr>
<tr>
<td>Chilton, S.</td>
<td>59</td>
</tr>
<tr>
<td>choice card</td>
<td>88</td>
</tr>
<tr>
<td>choice set</td>
<td>186, 257, 280</td>
</tr>
<tr>
<td>choice task</td>
<td>224–5, 227</td>
</tr>
<tr>
<td>Christie, M.</td>
<td>7–8, 14, 33, 209, 220–46, 272</td>
</tr>
<tr>
<td>Cicia, G.</td>
<td>133</td>
</tr>
<tr>
<td>clam fishing management in Italy</td>
<td>22, 43</td>
</tr>
<tr>
<td>Clark, D.E.</td>
<td>297</td>
</tr>
<tr>
<td>Clawson, M.</td>
<td>220</td>
</tr>
<tr>
<td>CLM</td>
<td>277, 282, 283, 284</td>
</tr>
<tr>
<td>cluster-wise logit model</td>
<td>151</td>
</tr>
<tr>
<td>Colombo, S.</td>
<td>5, 24, 44, 48, 82–104, 254, 322</td>
</tr>
<tr>
<td>Common Agricultural Policy</td>
<td>4, 13, 107, 130</td>
</tr>
<tr>
<td>Mid-Term Review</td>
<td>130–31</td>
</tr>
<tr>
<td>Rural Environment Protection Scheme in Ireland</td>
<td>58, 59, 60, 79</td>
</tr>
<tr>
<td>compensating surplus</td>
<td>98–101, 120–21, 122–3, 264, 265, 321</td>
</tr>
<tr>
<td>Conditional Logit (Multinomial Model</td>
<td>277, 282, 283, 284, 319, 320, 321</td>
</tr>
<tr>
<td>cultural landscapes and rural heritage in Spain</td>
<td>136, 139, 141</td>
</tr>
<tr>
<td>forest biodiversity conservation in Finland</td>
<td>189</td>
</tr>
<tr>
<td>forest recreation in United Kingdom</td>
<td>226, 232</td>
</tr>
<tr>
<td>landscape valuation in France</td>
<td>109, 114</td>
</tr>
</tbody>
</table>
rail noise abatement in Italy 299
river management in Poland 276
Severely Disadvantaged Areas in England 94
value inference and forests in Spain
207, 208, 209
Condorcet rule 124, 125, 321
conservation contract 188
consumer choice models 258, 274
consumer market segmentation 146–50
consumer theory 136
Contingent Valuation Method 1, 3, 322
cultural landscapes and rural heritage in Spain 132, 133
landscape valuation in France 106
rail noise abatement in Italy 296–7
river management in Poland 272
Severely Disadvantaged Areas in England 84
Convention on International Trade in Endangered Species of Wild Fauna and Flora 253
cost attribute 112–13, 203, 208–9, 211
cost and bargain concerns 160, 162
cost-benefit analysis 119, 122, 200, 265–6, 296, 319, 321
Cox, V. 22, 48, 254, 272
Crabtree, B. 30
cultural heritage attribute 61–2, 64, 73, 75, 77, 86–7, 95, 100, 103
cultural landscapes and rural heritage in Spain 130–44, 318
case study area 134–5
data 136–8
empirical specification 139
methodology 135–6
previous studies 132–4
results 139–41
willingness to pay estimation for programme attributes 141–3
Currim, I.S. 155, 260–61
cycling 221, 222, 228–9, 232, 233, 245
D-Efficiency scores 138
Dachary-Bernard, J. 5–6, 106–28
Davis, R. 220
de Blaeij, A. 43
De Civita, P. 200
De Kuizenaar, Y. 296
Del Giudice, T.D. 19–20, 37
demographic variables 94, 227, 259, 281
see also socio-demographic variables
Denmark 45
denomination of origin 134–5
deontological conception 118–19
DeSerbo, W.S. 151
Deshazo, J.R. 321
Desvousges, W.H. 200, 201
DETMAX algorithm 138
Diamandopoulos, E. 250
Diamond, P.A. 204
Dijkstra, B.R. 132
Dillon, W.R. 151
Directive 75/268/EEC 5, 82
Directive 91/440 295
Directive 92/43/EEC 13
Directive 96/62/EC on air pollution 28
Directive 1829/2003 on GM labelling 146
Directive 1830/2003 on GM labelling 146
Directive 1999/31/EC 27
Directive 2001/18/EC 17
Directive 2001/77/EC 26
Directive 2002/49/EC on noise pollution 9, 28
Disadvantaged Areas 82
see also Severely Disadvantaged Areas
distance attribute 231, 239–40, 260, 262
Doremus, H. 179
D$_p$-optimality criterion 65–6
Drake, L. 132–3
drive attribute 203, 205, 208–9, 210
Droste-Franke, B. 297
dry stone dykes 14, 84
Duffield, W. 204
eccentric segments 182, 184–5, 189–93
ecovagous factors 254, 265, 267
economic benefits 254
economic costs 271, 274
economic value 277
ecosystem services restoration 14
education 95, 309, 311, 312
GM labelling policy 162, 163, 164
value inference and forests in Spain
205
Water Framework Directive: Greece
260, 262, 319
effects coding 109, 113, 115
Efron, B. 209
Ek, R. van 272
El Jaouhari, A. 297
Emerson, H.J. 59
England:
Environmentally Sensitive Areas 133
landfill waste disposal 27–8, 51
recycling 54
transport mode and cycling facilities 50–51
water company service improvements 45–7
water quality improvements 45
water services vs environment 42–3
see also Severely Disadvantaged Areas
Enneking, U. 20, 36
environmental attitudes 257, 260
environmental concerns 160, 162
environmental consciousness index 258, 260, 262
environmental costs 271
environmental good 3
environmental impacts from wind farm construction in Spain 51
environmental pollution 26–9, 50–54
Environmental Protection Agency 300, 302
environmental variable 137, 141, 142
Environmentally Sensitive Areas 14, 30, 59, 84, 93, 133
erosion attribute 203, 205, 208–9, 210, 212, 318
ethical concerns 159, 162, 163, 164, 167
European Agricultural Guidance and Guarantee Fund 130
European Commission 249–50, 294
European Council (Berlin) 130
Expected Annual Cost 62, 64, 65–6, 72
experimental auctions 148
experimental design techniques 256
extensive policy option 84
farm woodlands 14
farming methods, traditional 16
Farmland Foresting Programme 200
farmyard tidness attribute 61, 62, 64, 73, 75, 76, 77
Fennell, G. 152, 156, 169
Ferrini, S. 62, 64, 67
field boundaries 86–7, 88, 95, 100, 103
Finland 14–15, 16, 133
forest management 25, 272
moose management 16, 31–2
nature conservation 30–35
see also forest biodiversity conservation in Finland
flood risk attribute 278–89
flood risk reduction vs. habitat conservation in Poland 8, 271–89, 319
case study area 273–4
choice experiment method 274–8
policy implications 288–9
results 282–5
survey design and administration 278–82
willingness to pay estimates 285–8
food cautious segment 162, 163, 164, 165, 166, 167, 168, 169
food labelling 4, 17–21, 35–42, 318, 323
see also GM labelling policy
food optimists segment 162, 164, 165, 166, 167, 168, 169
food production systems in England 35–6
food safety concerns 160, 162, 163, 165
Forest Action Plan 7–8, 221, 245–6, 318
forest biodiversity conservation in Finland 6–7, 49–50, 178–95, 318
data collection 181–2
heterogeneity of preferences 182–5
cluster analysis 184–5
factor analysis 182–4
policy implications 193–5
results 186–93
attitude segments 189–91
choice modelling 186–9
welfare impacts 191–3
Forest Biodiversity Programme for Southern Finland (METSO) 179, 187–8
<table>
<thead>
<tr>
<th>Index</th>
<th>329</th>
</tr>
</thead>
<tbody>
<tr>
<td>forest management 25–6</td>
<td>gender variable 206, 208–9, 211</td>
</tr>
<tr>
<td>forest recreation in the United Kingdom 7–8, 49, 220–46, 318</td>
<td>general forest visitors 221, 223, 228–9, 232</td>
</tr>
<tr>
<td>choice experiment method 223–32</td>
<td>Germany 20–21, 36–7</td>
</tr>
<tr>
<td>common attributes 230–31</td>
<td>Giannakas, K. 147</td>
</tr>
<tr>
<td>example of choice task 224–5</td>
<td>Gillmor, D.A. 59</td>
</tr>
<tr>
<td>variable attributes 228–9</td>
<td>GM content attribute 158</td>
</tr>
<tr>
<td>facilities improvement 221–3</td>
<td>GM labelling policy 6, 17–21, 35–42, 146–71, 318, 320</td>
</tr>
<tr>
<td>policy implications 245–6</td>
<td>consumer market segmentation 146–50</td>
</tr>
<tr>
<td>results 232–44</td>
<td>estimation 159–67</td>
</tr>
<tr>
<td>cyclists 233–6</td>
<td>best-fit specification 161–5</td>
</tr>
<tr>
<td>general forest users 242–4</td>
<td>choice attributes 165–7</td>
</tr>
<tr>
<td>horse riders 236–9</td>
<td>latent perceptual and attitudinal variables 159–60</td>
</tr>
<tr>
<td>nature watchers 239–42</td>
<td>latent segment model estimation 160–61</td>
</tr>
<tr>
<td>forest resources management 49–50</td>
<td>latent segment model 151–7</td>
</tr>
<tr>
<td>Forestry Commission 222</td>
<td>conceptual framework 151–3</td>
</tr>
<tr>
<td>forestry conservation and management 321</td>
<td>econometric model 153–5</td>
</tr>
<tr>
<td>Forestry Strategy 4, 25</td>
<td>for evaluation labelling policies 155–7</td>
</tr>
<tr>
<td>forests in Spain 7, 198–214, 218–19, 318</td>
<td>market segmentation analysis 167–70</td>
</tr>
<tr>
<td>benefit transfer 200–202</td>
<td>study design and implementation 157–9</td>
</tr>
<tr>
<td>equivalence test of models 207–8</td>
<td>GM opponents segment 162, 164, 165, 166, 167, 168</td>
</tr>
<tr>
<td>research design 202–8</td>
<td>GM content attribute 162, 164, 165, 166, 167</td>
</tr>
<tr>
<td>choice experiment method 202–4</td>
<td>GM-free meat products 18–19</td>
</tr>
<tr>
<td>contingent valuation method 204–5</td>
<td>GM zero attribute 162, 164, 165, 166, 167</td>
</tr>
<tr>
<td>sample 205–6</td>
<td>Gonzalez, M. 142</td>
</tr>
<tr>
<td>results 208–12</td>
<td>Gorman, M. 58</td>
</tr>
<tr>
<td>choice experiment results 208–10</td>
<td>Government Office Regions 17–18, 83, 89, 92, 95, 100, 101, 103, 321</td>
</tr>
<tr>
<td>contingent valuation results 210–12</td>
<td>Gray, R. 147</td>
</tr>
<tr>
<td>value inferences 200–202, 212–13</td>
<td>Greece 8</td>
</tr>
<tr>
<td>Formann, A.K. 151</td>
<td>see also Water Framework Directive (EC No. 2000/60): Cheimaditida Wetland</td>
</tr>
<tr>
<td>Foster, V. 119</td>
<td>green energy 26–9, 50–54</td>
</tr>
<tr>
<td>Fox, J.A. 36</td>
<td>Greene, W.H. 3, 59, 67, 69, 70, 71, 73, 109, 136, 151, 155, 156, 258, 276, 277, 299, 320</td>
</tr>
<tr>
<td>France 36, 317</td>
<td>groundwater protection in Denmark 45</td>
</tr>
<tr>
<td>see also landscape valuation in France</td>
<td>Gruère, G.P. 147, 169</td>
</tr>
<tr>
<td>Freeman, A.M. 3, 296</td>
<td></td>
</tr>
</tbody>
</table>
Gumbel distribution 109, 153–4, 226, 259, 299
Gyovai, A. 32

Habitats Directive (92/43/EEC) 4, 8, 13, 25, 272, 319
wetlands in Greece 251, 253, 267
habitats restoration and recreation 14
Haener, M. 198
Halton sequence 70–71
Hamell, M. 60
Hanemann, W.M. 1, 98, 136, 142, 210, 211, 226
Hanley, N. 1, 2, 5, 7–8, 14, 15, 23, 25, 26, 30, 33, 44, 45, 47, 48, 49, 51, 54, 82–104, 111, 114, 133, 180, 202, 220–46, 272, 322
Hänninen, H. 179
Harrison, R.W. 163
Hasler, B. 24, 45
Hatfield, R. 50
Hausman, J.A. 94, 204, 284
health information attribute 158
Hearne, R.R. 2
heather moorland and bog 14, 83, 86–7, 88, 95, 100, 103
hedgerows attribute 61, 62, 64, 65, 72, 73, 75, 77
Hedonic Price models 2, 106, 296, 297
Hensher, D.A. 2, 3, 59, 67, 69, 70, 73, 139, 151, 156, 198, 227, 233, 282, 284, 285
Hensher, J.D. 1
Hess, S. 71
heterogeneity 258, 259, 267, 277–8, 284–5, 319–20, 322
preference 155–6, 168
heteroskedasticity 322
Hill Farm Allowance payments 5, 82–3, 99
Hiselius, L.W. 28, 29, 53
historical-cultural heritage preservation 138
history variable 137, 141, 142
Horne, P. 6, 15–16, 25, 31, 49, 50, 178–95, 272
horse riding 221, 222, 228–9, 232, 245

household recycling behaviour in
United Kingdom 28
Hu, W. 156–7, 168, 263, 286
Huber, J. 67
Hudson, D. 147
Huffman, W.E. 148
humanism 182–5
Hungary 16–17
Hunt, J.D. 296
Hutchinson, W.G. 4, 58–79
Hyde, T. 33
hydropower in Sweden 26, 42

implicit prices 263, 264, 286
forest recreation in the United Kingdom 233, 235, 236, 238, 239, 241, 242, 244
Important Bird Area 253
income 94, 95
GM labelling policy 162, 163, 164
rail noise abatement in Italy 309, 311, 312
value inference and forests in Spain 205, 206, 208–9, 211
Water Framework Directive: Greece 260, 262
Income Tax 62, 64, 113
independence of irrelevant alternatives (iia) assumption 94, 154, 226, 277, 284
independent and identically distributed (iid) error terms 67–8, 226, 259
information attribute 160, 162, 164, 166, 230
inner city road traffic reduction in Portugal 29
Innes, R. 179
integrated impact assessment method 272
Ireland 317
see also Rural Environment Protection Scheme
Italy 19–20, 133
clam fishing management 22–3, 43
extra-virgin olive oil 19, 37
production and labelling of grapes, oil and oranges 40–41
James, S. 35
Japan 147
Index

Johns, H. 5, 82–104
joint probability 260
joint segmentation 160
Jones, J.W. 178
Josien, E. 106
K-means clustering 184
Kahneman, D. 3
Kalaitzandonakes, N. 146, 147, 149
Kamakura, W. 150, 151, 155, 156, 258, 260, 320
Kangas, J. 179
Kanninen, B.J. 2, 67, 136, 142, 204, 211
Karousakis, K. 8, 28, 47, 54, 249–68
Karppinen, H. 179, 182
Kask, S.B. 201
Kay, J. 84, 85, 100, 102
kerbside recycling services in England 54
Kirchhoff, S. 199
Kline, J. 179
Kola, J. 133
Kontoleon, A. 6, 146–71
Koppelman, F.S. 198
Kosz, M. 262
Koundouri, P. 1–9, 12–54, 249–68, 271–89, 317–23
Kountouri, Y. 4, 12–54, 271–89
Kreps, D.M. 123
Krinisky, I. 209, 211, 212
Kriström, B. 178
Krutilla, J.V. 262
Kuhfeld, W.F. 111
Kumar, A. 151
Kuuluvainen, J. 32, 49, 180
Kyoto Protocol 26, 323
labelling and certification systems 19–20
see also food labelling
labelling of packaged liver sausages in Germany 36–7
Lagerkvist, C.J. 19, 37, 41
Laitila, T. 24, 43
Lambert, J. 297
Lampi, E. 52
Lancaster, K.J. 1, 107–8, 136, 258, 274
land acquisition 188
landfill waste disposal in England 27–8, 51
landscape attributes 5–6, 64, 73, 76
Landscape Convention 2000 106
landscape management 321
landscape management in Spain 6
landscape valuation in France 106–28, 318
choice experiment implementation 110–18
case study description 110–13
landscape preferences modelling 113–18
methodology 107–9
characteristics of landscape 107–8
choice experiment method 108–9
public policy making 118–25
aggregated benefits at issue 122–5
context of policy-making processes 118–20
economic surpluses for landscape protection policies 120–22
landscapes 317–18
Langford, I. 152
Langpap, C. 179
Lapan, H. 147
latent attitudes 184
latent class model 180, 320, 321
Water Framework Directive: Greece 258–9, 260, 261, 263, 265, 267
latent segment model see GM labelling policy
latent values 182
Layton, D.F. 69
Lázaro, A. 48
Lehtonen, E. 25, 49
León, C.J. 142
Less Favoured Areas 5, 82, 86
Li, C.-Z. 14, 32, 49
Li, Q. 160
likelihood:
function 155, 259
ratio test 284
see also log-likelihood; maximum likelihood
Likert scale 181, 309, 311
Liljenstolpe, C. 43
LIMDEP 7.0 207
LIMDEP 8.0 114, 139
river management in Poland 282, 284, 286
Water Framework Directive: Greece 260, 263
LIMDEP NLOGIT 3.0 189
linear logistic model 151
living conditions attribute 158, 160, 162, 164, 165, 166
local environment protection 138
log-likelihood 155, 260
log-likelihood function 72, 73, 161, 283
log-likelihood model 234, 237, 240, 243
log-likelihood ratio test 160
forest recreation in United Kingdom 233–4, 236–7, 239–40, 242–4
landscape valuation in France 114–15
rail noise abatement in Italy 311
river management in Poland 284–5
log-likelihood value 160, 207
logit model:
mixed 154, 260, 320
multinomial 154, 155, 156
see also random parameter logit model
lognormal distributions 69–70
Loomis, J.B. 198, 199, 201
López, E. 6, 130–44
Lovett, J.C. 84–5, 100, 102
Luce, D. 258, 276
Lundhede, T. 45
Lusk, J.L. 18, 36, 64, 147, 148, 156
Mac Sharry reforms 1992 130
MacEvoy, J.B. 151
McFadden, D. 67, 68, 94, 108, 136, 150, 151, 152, 208, 258, 276, 284, 298, 299
McFarlane, B.L. 182, 184
McLachlan, G. 151
McMahon, P.L. 42–3
MacMillan, P. 30
McNeill, H. 146
McVittie, A. 109
Maddala, G.S. 136, 276
Madureira, L. 133
Magidson, J. 156
Manning, R. 179
Mannion, J. 58
Manski, C. 108
Manski, J. 1
marginal attribute 213
marginal values 199
Marks, L.A. 150
Marsan, P. 147
Martin, W.E. 124, 321
Martinsen, L. 45
Martinsson, P. 52
Mathieu, N. 108
Mathijs, E. 16, 32
maximum likelihood 184, 208, 211, 277
Merlo, M. 199
Milon, J.W. 178, 182
mistrust and disbelief variables 159, 162, 163, 167
Mitchell, R.C. 204
Mitchell, T.J. 138
mixed logit model 67–73, 154, 260, 320
mixture regression method for metric conjoint analysis data 151
Mogas, J. 7, 198–214, 218–19
monetary attribute 1, 112, 117, 279, 282
Water Framework Directive: Greece 255, 257
Monte Carlo integration 70
moorland attribute 83, 84, 112–17, 119, 121, 124, 126–7
moose management in Finland 16, 31–2
Moran, D. 271
Morrison, M. 2, 199, 202, 209, 254
Moschini, G. 147
Moss, J. 59
motivational characteristics 321
mountain land attribute 61, 62, 64, 73, 74, 76, 77
Mourato, S. 106–28
multi-collinearity 3
multinomial logit model 154, 155, 156
multinomial probit model 299
municipal solid waste 27
Murphy, K. 33
Index

mushrooms attribute 203, 205, 208–9, 210
mysticism 182–5

Naidoo, R. 2
National Cycling Strategy 28
National Oceanic and Atmospheric Administration 152
blue ribbon panel 204
National Park 85, 87
Natura 2000 13, 25
Nature Conservation Programme 14
Nature Conservation in Finland 30–35
nature conservation schemes 13–17
navre, S. 296, 297
Nellthorpe, J. 297
Netherlands 272
Ney, S. 45
Nicholls, R.J. 271
Nielsen, A.B. 113
Nielsen, C.P. 147
Niemeläinen, P. 179
Nijkamp, P. 24, 44
NLOGIT 3.0 71, 139, 232
river management in Poland 282, 284, 286
Water Framework Directive: Greece 260, 263
noise reduction attribute 299, 300, 304
noise reduction in Portugal 53
Nomenclature of Territorial Units for Statistics 63
non-market valuation techniques 288
non-parametric indicator 212
normal distributions 69–70
North America 2, 168
see also Canada, United States
Norwood, F.B. 64
Nousair, C. 148, 149, 160, 169
Novak, T.P. 151
Nunes, P.A.L.D. 8–9, 22–3, 43, 292–323
Oksanen, M. 184
O’Leary, T. 76
open water surface area attribute 254, 255, 257, 262, 264, 266
orthogonalisation procedure 279
Othman, J. 2, 254
Owen, K. 148, 156–7, 160, 168, 169
Ozdemiroglu, E. 5, 82–104
p-value 234, 237, 240, 243
Page, M. 50
paired comparisons model 151
Parsisson, D. 30
part-worth values 165, 166, 263, 286
pastures attribute 61, 62, 64, 65, 72, 73, 75, 77
Patterson, D. 204
Patterson, I. 31
Paulrud, A. 24, 43
Pearce, D.W. 271, 321
Pearson’s χ^2 test 185
Peel, D. 151
percentile method 209
pesticides attribute 158, 160, 162, 164, 165, 166
Petäjistö, L. 15–16, 31, 272
Philippidis, G. 40–41
Phillips, P.W.B. 146
picnic attribute 203, 205, 208–9, 210
Pietarinen, J. 182, 184
Poe, G.L. 119, 211, 212, 286–7
Polak, J. 71
Poland 8
see also flood risk reduction vs. habitat conservation in Poland
Polasky, S. 179
Pommerehne, W.W. 292–323
Pope, C.A. III 178
pork production in Sweden 41
Portney, P.R. 254
Portugal 29, 53, 133
Position Paper on the European Strategies and Priorities for Railways Noise Abatement 294, 300
Pouata, E. 32, 49
Powe, N.A. 42–3
predictability test 212
price attribute 158, 162, 165, 166, 309
price of the programme attribute 299, 304
price variable 137, 141
primitivism 182, 183–5
proc optex 138
product choice process 160
Protected Designation of Origin 17, 19–20, 135, 144, 318, 323
Protected Geographical Indication 17, 19, 323
Pruckner, G.J. 133
pseudo-Rho2 measure of goodness-of-fit 72, 73
forest recreation in United Kingdom 233, 234, 236, 237, 239, 240, 242, 243, 244
psychometric data 321
psychometric measures 182
psychometric variables 150, 164
Psychoudakis, A. 254
quality assurance schemes in Germany 20–21
Ragkos, A. 272
rail noise abatement in Italy 8–9, 292–323
empirical findings 310–12
valuation results 310–11
welfare analysis and policy discussions 311–12
measurement of external costs of rail noise 296–7
models and results 305–10
descriptive statistics 305–7
indirect utility model specifications 307–10
political context 294–6
rail noise annoyance 308
rail noise exposure 308
rail noise perception 308
rail noise and vibrations 308
survey 298–305
choice experiment questions 303–5
instruments 301–3
modelling respondents’ behaviour 298–9
statement of noise management problem 299–301
Rambonilaza, M. 106
Randall, A. 59
random coefficients 68–9
random parameter logit model 94–5, 154, 155–6, 180, 320
mixed 151
river management in Poland 277–8, 283, 284–5, 286, 287
random parameters 68–9
random utility approach 258
random utility maximization theory 207, 226
random utility models 258, 298
random utility theory 108, 136, 274, 276
rare and unfamiliar species of wildlife 14
re-training of farmers attribute 255, 257, 262, 264, 266
realism 223
recreational benefits 318, 319
Region of Origin 19–20
Regulation:
1829/2003 17
1946/2003 17
2078/92 4–5, 13, 60, 107, 130
2080/1992 200
2081/92 17, 135
2082/92 17
Rekola, M. 32, 49
related choice model 299
relative factor score 165
renewable energy investments in Scotland 26–7, 54
research and education attribute 254, 255, 257, 262, 264, 266, 319
Revealed Preference Methods 2, 3, 296
Revelt, D. 69, 71, 284
Riera, P. 7, 198–214, 218–19
Rigby, D. 18, 40, 156
Rigby, M. 35
Rio Convention 179
river access attribute 279–89
river management attribute 23
rivers and lakes attribute 61, 62, 64, 65, 72, 73, 74, 76, 77, 79
Robb, L.A. 209, 211, 212
Rogers, M.F. 178
Rojas, E. 199
Rolfe, J. 2, 178, 199, 207, 209, 286
Romania 16, 32
Roosen, J. 36
Rosenberger, R.S. 198, 201
Rossetto, L. 43
rough grassland 86–7, 88, 95, 100, 103
Royal Decree 152/1996 200
Index

Ruffell, R. 220
Ruijgrok, E.C.M. 201
Rural Environment Protection Scheme in Ireland 4–5, 58–79, 318
mixed logit model specification 67–71
bounding of taste intensities 69–70
estimation procedure 70–71
individual-specific conditional estimates of landscape values 69
policy implications 77–9
results 71–7
 calibration of landscape benefits 73–7
mixed logit model results 71–3
survey design 61–7
attributes used 61–2
discrete choice experiments 63–4
experimental design 64–7
sampling method 63
rural landscape management 4
rural variable 206, 208–9, 211
Russell, G. 151
Sagoff, M. 118
Sándor, Z. 64, 66–7
Santos, J.M.L. 133
SAS software 111, 138
Scarpa, R. 2, 4, 19–20, 37, 40–41, 45, 58–79, 133, 286, 322–3
Schoi, J.S. 45
Schoeder, T.C. 148
Scotland 15
Environmentally Sensitive Areas 14, 84, 133
renewable energy investments 26–7, 54
rock climbing 272
surface water quality and quantity 23
traffic-related noise levels and air quality 28, 52–3
water quality improvements 47–8
wild goose conservation 15, 30–31
Scrogin, D. 178, 182
scrub 83
Seferlis, M. 254
segment function 261
segment membership 260
segment parsimony 155
sensitivity analysis 311
sensitivity value 306–7
sequestration 318
Severely Disadvantaged Areas in England 5, 82–104, 318
landscape valuation studies 83–5
methodology 85–92
attributes selection and their levels 85–7
experimental design 88–9
questionnaire design and implementation 89–92
results 92–100
construct validity 94–8
content validity 92–3
convergent validity 98–100
experiences, perceptions and attitudes 92
Shaw, W.D. 154
Sheldon, I. 146, 147
Shogren, J.F. 201
Shonkwiler, J.S. 154
Siikamäki, J. 180
Simons, R.A. 297
Simpson, I. 30
Sinden, J.A. 178
Single Payment Scheme 82
Smale, M. 32
Smith, V.K. 201
social choice theory 123–4
social costs 271, 274
socio-demographic variables 205–6, 208–9, 309, 311
socio-economic variables 90–91, 94, 320, 322
forest biodiversity conservation in Finland 180, 181, 182, 186, 187
forest recreation in United Kingdom 227
landscape valuation in France 114
rail noise abatement in Italy 305–6, 312, 313
river management in Poland 272, 281, 285
Severely Disadvantaged Areas in England 95, 96–7
Ekin Birol and Phoebe Koundouri - 9781848441255
Downloaded from Elgar Online at 03/27/2019 07:07:33AM
via free access
Choice experiments informing environmental policy

Soguel, N. 297
soil conservation in Spain 44–5
Sonnier, G. 70
Spain 6, 23–4, 26, 44–5, 48, 317
see also cultural landscapes and rural heritage in Spain
Spalatro, F. 40–41
SPM studies 297
sport fishing management in Sweden 43–4
SPSS software 182, 256
stated preference methods 296
Stewart, L. 59
stonewalls attribute 61, 62, 64, 73, 74, 76, 77
Strand, J. 297
Street, D.J. 89, 227
Sunqvist, T. 26, 42
surface water quality and quantity in Scotland 23
surroundings attribute 231
Swait, J.R. 135, 151, 154, 155, 160, 207, 284, 285, 322
Sweden 18–19, 22, 132
hydropower 26, 42
production of chicken and ground beef; pork chops and eggs; and milk and grain 37–9, 41–2
sport fishing management 43–4
transportation of hazardous material by rail 29, 53
wetland management 43

Tahvonen, O. 32
theoretical advancements 319–22
Thurstone, L. 1, 108
Tibshirani, R.J. 209
Tinch, D. 48
Toma, L. 16, 32
Tonsor, G.T. 156
tourist tax 112
trackside barrier height attribute 299, 300, 302–5, 307–8, 310, 312–13
traditional agro-forestry landscape protection 138
traditional customs, food products and rural settlements preservation attribute 137, 138, 141, 142
Traditional Speciality Guaranteed 17
traffic-related noise levels and air quality in Scotland 28, 52–3
Train, K.E. 59, 67, 68, 69, 70, 71, 180, 277, 284, 320
train and track technology attribute 299, 303–5, 310, 313
transferring 200
transport mode and cycling facilities in England 50–51
transportation of hazardous material by rail in Sweden 29, 53
Travel Cost Method 2
Travisi, C.M. 8–9, 24, 44, 292–323
triangular distributions 69–70
two-segment model 260–61
uniform distributions 69
United Kingdom 14, 15, 149, 150, 157, 159
beef production 36
forest management 25
household recycling behaviour 28
rivers 202
wetland management 21–2, 48–9
see also England; Scotland
United States 18, 36, 146, 297
utilitarianism 118–19, 182–5
utility function 261
indirect 109, 201, 278, 298
unobservable 139, 141

Vågnes, M. 297
Vainio, M. 297
Value Added Tax 62, 64
value inference method 213, 267, 322
values 182
Van Buuren, M. 133
varimax rotation 184
Veisten, K. 178
visitation variable 206, 208–9, 211
Viske, D. 41
Vriens, M. 150
Wald procedure (Delta method) 263, 286–7
Wardman, M. 28, 50, 52, 53, 294, 297
Warren, J. 33
waste management 26–9, 50–54
water company service improvements in England 45–7
Index

Water Framework Directive (EC No. 2000/60) 4, 8, 21, 23, 272, 319, 323
choice experiment data collection 256–8
choice experiment design 254–6
location map 252
policy implications 266–7
results 260–66
cost-benefit analysis 265–6
willingness to pay estimation 262–5
theoretical framework 258–60
water pollution 16, 32
water quality improvements 45, 47–8
water resources in Cheimaditida Wetland 8
water resources management 8, 21–5, 42–9
water services vs environment in England 42–3
Watkins, P. 292
Wedel, M. 64, 66–7, 150, 151, 155, 156, 258, 260, 320
Weeks, M. 59, 70
Weibull distribution 276
Weinberger, M. 297
welfare analysis 193–4
welfare impacts 185
welfare measures 117
wet grasslands 14
wetland management 83, 84, 321
in Sweden 43
in United Kingdom 21–2, 48–9
see also Water Framework Directive (EC No. 2000/60):
Cheimaditida in Greece
White, P.C.L. 84–5, 100, 102
Whitehead, J.C. 256
Whitten, S. 133
wild goose conservation in Scotland 15, 30–31
wildlife habitats attribute 61, 62, 64, 65, 72, 74, 77
wildlife schemes 13–17, 30–35
willingness to accept 1, 3
agri-environmental, wildlife and nature conservation schemes 14, 15
forest management 25
GM labelling policy 165
landscape valuation in France 119, 120
value inference and forests in Spain 204
willingness to pay 1, 3
agri-environmental, wildlife and nature conservation schemes 14, 15
air traffic disturbance in Sweden 29
cultural landscapes and rural heritage in Spain 133, 141–3
flood risk reduction vs. habitat conservation in Poland 8, 285–8
forest biodiversity conservation in Finland 191
Forestry 99
GM labelling policy 165
GM-free meat products 19
Government Office Regions in United Kingdom 17–18
household recycling behaviour 28
landfill waste disposal facility in United Kingdom 27
landscape management in Spain 6
landscape valuation in France 117, 119, 120, 123
marginal 119, 120, 202, 287
noise abatement in Italy 9
private and public attributes in Sweden 20–21
quality assurance schemes in Germany 20
rail noise abatement in Italy 297, 310, 312
Rural Environment Protection Scheme in Ireland 5, 74–5, 78
Severely Disadvantaged Areas in England 84–5, 89, 92, 93, 94, 100, 102, 103
value inference and forests in Spain 201, 204, 209, 210, 211, 212
<table>
<thead>
<tr>
<th>Topic/Author/Institution</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water improvements in United Kingdom</td>
<td>23</td>
</tr>
<tr>
<td>Wetland management in United Kingdom</td>
<td>22</td>
</tr>
<tr>
<td>Willis, K.G.</td>
<td>14, 15, 21–2, 23, 27, 34, 42–3, 45, 51, 84, 85, 100, 102, 220</td>
</tr>
<tr>
<td>Wind farms in Spain</td>
<td>26</td>
</tr>
<tr>
<td>Windle, J.</td>
<td>286</td>
</tr>
<tr>
<td>Woodward, R.T.</td>
<td>249</td>
</tr>
<tr>
<td>Woodworth, G.</td>
<td>1</td>
</tr>
<tr>
<td>World Health Organization</td>
<td>294</td>
</tr>
<tr>
<td>World Trade Organization</td>
<td>146</td>
</tr>
<tr>
<td>Wright, R.E.</td>
<td>30, 33, 45, 47, 49, 54, 133</td>
</tr>
<tr>
<td>Wui, Y.S.</td>
<td>249</td>
</tr>
<tr>
<td>Xu, X.</td>
<td>198</td>
</tr>
<tr>
<td>Yabe, M.</td>
<td>6, 146–71</td>
</tr>
<tr>
<td>Yiannaka, A.</td>
<td>147</td>
</tr>
<tr>
<td>Young, T.</td>
<td>35</td>
</tr>
<tr>
<td>Yrjölä, T.</td>
<td>133</td>
</tr>
<tr>
<td>Zwerina, K.</td>
<td>67, 111</td>
</tr>
</tbody>
</table>