Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute sustainability 29</td>
<td></td>
</tr>
<tr>
<td>accountability 66, 72, 112</td>
<td></td>
</tr>
<tr>
<td>actor constellation of environmental policy 31–2, 42</td>
<td></td>
</tr>
<tr>
<td>additivity</td>
<td>83</td>
</tr>
<tr>
<td>Agenda 21 (UN 1992) 4, 31, 32, 33, 46</td>
<td></td>
</tr>
<tr>
<td>agent-based evaluation 86</td>
<td></td>
</tr>
<tr>
<td>Agnolucci, P. 204</td>
<td></td>
</tr>
<tr>
<td>alarmism 39</td>
<td></td>
</tr>
<tr>
<td>alternative development paths 67</td>
<td></td>
</tr>
<tr>
<td>analysis function of impact assessment 92</td>
<td></td>
</tr>
<tr>
<td>analytical strategic environmental assessment (ANSEA) 259</td>
<td></td>
</tr>
<tr>
<td>attitudinal and value changes from environmental assessment 114–16</td>
<td></td>
</tr>
<tr>
<td>Australia, impact assessment systems 93, 94</td>
<td></td>
</tr>
<tr>
<td>Bartlett, R.V. 109, 114</td>
<td></td>
</tr>
<tr>
<td>bat conservation 110–11</td>
<td></td>
</tr>
<tr>
<td>behavioural additivity 83</td>
<td></td>
</tr>
<tr>
<td>Belgium, federal sustainability impact assessment 281–92</td>
<td></td>
</tr>
<tr>
<td>development 284–7</td>
<td></td>
</tr>
<tr>
<td>evaluation culture 286, 287, 292</td>
<td></td>
</tr>
<tr>
<td>framework 282–4</td>
<td></td>
</tr>
<tr>
<td>interviews 283–4</td>
<td></td>
</tr>
<tr>
<td>evaluation 285–7, 289–90</td>
<td></td>
</tr>
<tr>
<td>institutionalization 291–2</td>
<td></td>
</tr>
<tr>
<td>methodological issues 288–90</td>
<td></td>
</tr>
<tr>
<td>policy domains 287–8</td>
<td></td>
</tr>
<tr>
<td>Bellagio Principles for Assessment 24–5</td>
<td></td>
</tr>
<tr>
<td>Biffa plc 80</td>
<td></td>
</tr>
<tr>
<td>bird surveys 111</td>
<td></td>
</tr>
<tr>
<td>Böhringer, C. 135–6, 137</td>
<td></td>
</tr>
<tr>
<td>Bond, A.J. 115, 128</td>
<td></td>
</tr>
<tr>
<td>bottom-up evaluation 40, 41</td>
<td></td>
</tr>
<tr>
<td>boundary conditions of sustainability 16</td>
<td></td>
</tr>
<tr>
<td>Brent Spar 35</td>
<td></td>
</tr>
<tr>
<td>Brundtland Report 16, 17, 59, 131</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Commissioner of the Environment and Sustainable Development 27</td>
<td></td>
</tr>
<tr>
<td>impact assessment systems 93, 94, 98–9</td>
<td></td>
</tr>
<tr>
<td>capacity building 15, 37, 289</td>
<td></td>
</tr>
<tr>
<td>capacity needs assessment 37</td>
<td></td>
</tr>
<tr>
<td>capacity saving strategies 37</td>
<td></td>
</tr>
<tr>
<td>Cardiff Process 155</td>
<td></td>
</tr>
<tr>
<td>CBA see cost–benefit analysis</td>
<td></td>
</tr>
<tr>
<td>CEA see cost-effectiveness analysis</td>
<td></td>
</tr>
<tr>
<td>CGE phase-out study 210</td>
<td></td>
</tr>
<tr>
<td>CGE modelling for sustainability impact assessment 142–3</td>
<td></td>
</tr>
<tr>
<td>case for 135–7</td>
<td></td>
</tr>
<tr>
<td>conclusions 142–3</td>
<td></td>
</tr>
<tr>
<td>drawbacks 137–42</td>
<td></td>
</tr>
<tr>
<td>complexity of models 141</td>
<td></td>
</tr>
<tr>
<td>generalization of economies/societies 141–2</td>
<td></td>
</tr>
<tr>
<td>limitations of economic theory 138–40</td>
<td></td>
</tr>
<tr>
<td>problems of dynamic representation 140–41</td>
<td></td>
</tr>
<tr>
<td>problems of quantifying sustainability 138</td>
<td></td>
</tr>
<tr>
<td>problems with social measurement 142</td>
<td></td>
</tr>
<tr>
<td>literature 134–5</td>
<td></td>
</tr>
<tr>
<td>model, extensions to 137</td>
<td></td>
</tr>
<tr>
<td>model, generic 136</td>
<td></td>
</tr>
<tr>
<td>Chelimsky, E. 72</td>
<td></td>
</tr>
<tr>
<td>chemical weapons establishment land remediation see land remediation</td>
<td></td>
</tr>
<tr>
<td>civil initiatives 264</td>
<td></td>
</tr>
<tr>
<td>civil society 46, 47, 54</td>
<td></td>
</tr>
<tr>
<td>Clemente-Fernández, P.C. 115</td>
<td></td>
</tr>
<tr>
<td>climate change 39, 141</td>
<td></td>
</tr>
</tbody>
</table>
climate protection 41, 42
cogeneration directive 190
collective action 48, 51
Commission on Sustainable Development 16, 135
commitment to impact assessment 99
common goals 49–50
Communication on Impact Assessment 67
communities, sustainable 23
community environmental awareness 109–10
community programmes 23, 25
complex problem mapping 84
compliance cost analysis 249
component level evaluation 84
computable general equilibrium (CGE) modelling 132–4
computable general equilibrium modelling for sustainability impact assessment 142–3
case for 135–7
conclusions 142–3
drawbacks 137–42
complexity of models 141
generalization of economies/societies 141–2
limitations of economic theory 138–40
problems of dynamic representation 140–41
problems of quantifying sustainability 138
problems with social measurement 142
literature 134–5
model, extensions to 137
model, generic 136
consent conditions 119
consent decisions 118, 119
conservation 110–11
contingency evaluations 260
copper pollution 207
corporations, evaluation activities 25
cost–benefit analysis (CBA) 100, 101, 185, 249
cost-effectiveness analysis (CEA) 100, 101, 185–7, 249
ex post and ex ante comparison studies 210
possible applications 211–12
cost-effectiveness analysis, European environmental policy 186–7
case studies 199, 200–203, 204–6
data sources 205–6, 208–9
methodological issues 206, 208
conclusions 211–13
guidance documents 191–9, 209–10
distribution and focus 198–9
summary 193–7
legal requirements 187–91
recommendations 211–13
results interpretation 206–11
Country Guardian 113
Cowell, R. 108
cross-cutting aspects of SD 170, 172
cultural identity of regions 69
data gathering ex post, difficulty of 208–9
decision-making 92, 111, 120, 278
decision outcomes 118
demand reduction 37
Denmark, governance model 35
depletion of environmental resources 18, 25–6
design outcomes, environmental assessment contribution 130
development programmes of SD 22–3
evaluation of 28–9
developmental outcomes of environmental assessment 116–19
DG Regio 67, 68
direct material consumption 79
directives
electricity from renewable sources 189
Large Combustion Plant Directive 206, 208
National Emission Ceilings 190, 213
packaging and packaging waste directive 206, 207
renewable fuels directive 190
Strategic Environmental Assessment 273
Water Framework Directive 188–9, 190, 207, 209, 212
discounting 204, 208
Index

Earth system 16, 18–19, 22
eco-efficiency 39
ecological footprint analysis (EFA) 79–80, 260
ecological interpretation of SD 18–19
ecological modernisation 32, 39
economic and sectoral-oriented evaluation 86
economic appraisals 258
economic features of regions 69
economic impact assessment 239, 244
economic indicators for SD 136
economic modelling 100
economic theory of SD 22, 27
ecosystem 19
EEA (European Environment Agency) 187
EFA (ecological footprint analysis) 79–80, 260
EIA see environmental impact assessment
electricity from renewable sources 189
emission trading 36
English Nature 115
ENSURE network 68, 71
environment and resource-oriented evaluation 86
environmental assessment and SD, conceptual model
case studies
land remediation 110, 114, 116, 117–18, 119, 127
offshore windfarms 110, 111, 115, 117, 119, 127
stakeholder involvement 127
conclusions 121–2
outcomes
attitudinal and value changes 114–16, 128
developmental 116–19, 130
governance 112–14
learning 110–12
practical experience and training 129
stakeholder involvement 112, 113–14, 127
sustainability, implications of definitions 107–8
unrealistic expectations 120–21
see also strategic environmental assessment
environmental awareness 110–11
environmental concerns in integrated impact assessment 98–9
environmental degradation 17, 100
environmental directives 189–90
environmental effectiveness 204
environmental features of regions 69
environmental governance 31–2, 33
environmental impact assessment 41, 258, 261, 284
methodologies 259–60
roles and responsibilities 258–9
scope 257
see also strategic environmental assessment
environmental impact assessment and SD, conceptual model
case studies
land remediation 110, 114, 116, 117–18, 119, 127
offshore windfarms 110, 111, 115, 117, 119, 127
stakeholder involvement 127
conclusions 121–2
outcomes
attitudinal and value changes 114–16, 128
developmental 116–19, 130
governance 112–14
learning 110–12
practical experience and training 129
stakeholder involvement 112, 113–14, 127
sustainability, implications of definitions 107–8
unrealistic expectations 120–21
environmental impacts 100
environmental indicators for SD 136
environmental innovations 39
environmental legislation 187–91, 188–9
environmental policy innovations, global diffusion 34
environmental policy, pioneer countries 37, 39
environmental resources 17–19
collection 22
depletion 25–6
epistemological uncertainty 285
EU-ULYSSES projects 157
EU-VISIONS project 157
EUROCOOP project 83, 84
European Commission
Impact Assessment: Next Steps 250
transparency principle 245, 246
European development funds 286
European Directives 212–13
European Environment Agency (EEA)
187, 204
European environmental policy, ex post cost-effectiveness analysis 186–7
case studies 199, 200–203, 204–6
data sources 205–6, 208–9
methodological issues 206, 208
conclusions 211–13
guidance documents 191–9, 209–10
distribution and focus 198–9
summary 193–7
legal requirements 187–91
recommendations 211–13
results interpretation 206–11
European transport policy (TEN-T)
262
European Union
appraisal procedures 100
Communication on Impact Assessment 67
Directive on Strategic Environmental Assessment 273
impact assessment policy 67–8, 92, 93, 94, 150
Lisbon strategy 39
SD target 154
Sustainable Development Strategy 153, 155, 164
Water Framework Directive 188–9, 190, 207, 209, 212
evaluation 28, 40–42, 66
definition 23–4
linking to sustainability 23–8
for policy integration 70
purposes of 72
of social integration dimensions 60–61
evaluation culture, Belgium 286, 287
evaluation landscape mapping 73–4
evaluation of regional development 65–67
evaluation of regional SD 59–61, 65–6
methods 67
scope 73–4
evaluation process 76
ex ante and ex post analysis
comparison 210–11
ex ante appraisal 40–42, 104, 186
extended impact assessment (ExIA) 150
Fichter, H. 69
finite resources 17, 18
fiscal impact assessment 238, 244
Flanders 286
forecasting 260
French national strategy for SD, monitoring system 216–20
action programmes 218, 219
architecture 217–20
difficulties encountered 228–9
existing indicators review 221–3
impact diagrams 220–21, 222
methodology used to elaborate indicators 220–24
monitoring system 220
new indicators 223
objectives 217–18, 219–20
quality criteria of indicators 223–4
results 224–8
impact indicators 227–8
outcome indicators 226–7
output indicators 225, 226
strategic axes 218–19
fundamental uncertainty 285
future studies and vision-oriented evaluation 86
Germany 45, 52
federal transport infrastructure plan
262
see also Regionen Aktiv
Gibson, R. 112
GIS techniques 260
global environment 19
globalization 37
good regional governance 46, 47–52
governance 45, 47
environmental governance 31–2, 33
good governance 49–50, 52
multi-level 31–2, 33–4, 35, 36–7, 46
of networks 50, 51, 58
outcomes of environmental assessment 112–14
regional 45–6, 47–52
through networks 50, 51, 52
see also Rio model of governance
government bureaucracy and environmental assessment 129
government role in SD governance 36
greenhouse gas emissions 204, 262, 280

habitat fragmentation 262
Hahn, R.W. 231
Hammitt, James K. 210
Hanf, K. 48
hedonic pricing 260
high-speed rail plan, Slovenia 264–6
highway plan, Slovenia 262–4
HM Treasury Green Book 198, 199, 209
horizontal integration 48
horizontal networks 113
horizontal social integration 46, 49, 59
human-made capital 19
human system 19
Humber estuary, copper pollution 207

IAMS (integrated assessment models) 156–7
IDPs (integrated development plans) 53–4, 55, 58
impact assessment 2, 91, 92–3, 285, 286
consultation 102–3
functions associated with 92
quality assurance 103
timing of 102
tools 279
transparency 103, 245
see also integrated impact assessment
impact assessment systems, comparison 93–8
key features and differences 94
in practice 93–4
procedures 95–7
inclusive wealth 22, 27
indicators of SD 135–6, 137, 156, 157

Indicators of Sustainable Development (UN) 135, 144
indirect assessments 260
innovation 84
innovation-oriented NSDSs 38–9
institutional-oriented evaluation 86
integrated assessment 149–50, 152
environmental concerns 98–103
regulation 256–60
tools 152–3
unintended effects analysis 99–100
integrated assessment models (IAMs) 156–7
integrated development plans (IDPs) 53–4, 55, 58
integrated impact assessment 41
aims and objectives 91–3
comparison of systems 93–4, 95–7
environmental concerns 98–103
key features and differences 94
methodologies 259–60
quality assurance 103
roles and responsibilities 258–9
scope 257
timing 102
transparency 102–3
unintended effects analysis 99–100
see also impact assessment
integrated policy assessment framework 269–70
integrated sustainability assessment 149, 151–4
case studies/scenarios 158–9
dissemination/capacity building 159–60
implementation plan 155–60
methods and framing 157–8
objectives 154
progress 160–61
toolkit 156–7
inter-generational equity 18
international organizations evaluation activities 25
time frames for SD strategies 16–17
ISA see integrated sustainability assessment
Italy, impact assessment system 93, 99
Japan, energy efficiency 36
Jones, C.E. 118
knowledge-based governance see Rio model of governance
Kyoto Protocol 41

land remediation 110, 114, 116, 117–18, 119, 127
Large Combustion Plant Directive 206, 208
LEADER+ 55, 56
learning outcomes of environmental assessment 110–12
legislation for environmental policy analysis 187–91
Lehtilä, A. 204
lifestyles
 evaluation of change 25–6
 and sustainability 17–20
local Agenda 21 process 33, 46
local authorities 46
local policy networks 46
‘Long-range energy analysis programme’ 80
Löschel, A. 135–6
management capacities 51, 56, 57
Mandelkern Report (2001) 246, 249, 254
marginal abatement cost 205, 207
mass balance projects 80, 87
material flow analysis (MFA) 78–80, 81
MATISSE project 153–4, 160–61
 aims structure 156–60
 case studies/applications 158–9
 consortium 162
 dissemination/capacity building 159–60
 implementation plan 155–60
 objective 154
 progress 160–61
 toolkit 156–7
Mayntz, R. 54
meso level of sustainability 23
methodological uncertainty 285
Methods and Tools for Integrated Sustainability Assessment see MATISSE project
MFA (material flow analysis) 78–80, 81
micro level of sustainability 23

Millennium Development Goals programme 17
mines stabilization programme 110–11, 113–14, 116, 117, 118, 127
moral obligations 18
Moss, T. 69
Mulgan, G. 70
multi-actor networks 50, 54
multi-criteria analysis (MCA) 100, 101
multi-level governance 31–2, 33–4, 35, 36–7, 46
see also Rio model of governance
multiple transitions 21
nation state, role in multi-level governance 36–7
National Emission Ceilings Directive 190, 213
national governments, evaluation activities 25
national SD strategies (NSDSs) 4–5, 16, 38–9
 principles 10
 weaknesses 38–9
national transport policies 267
natural capitals 18–19, 22
natural resources 17–19
 consumption 22
 depletion 25–6
 needs-oriented decisions 52
 needs satisfaction 17–18
negative coordination 38
Netherlands
 Commission for Environmental Assessment (NCEA) 273, 274
governance model 35
 impact assessment system 93, 94, 95–7, 98
National Strategy for Sustainable Development 273, 277
strategic environmental assessment 273, 274–6
sustainability assessment 276–9
network decisions 51–2
network governance 52–8
network management 50, 51, 58
non-government organizations, evaluation activities 25
non-renewable natural resources, depletion of 18
Index

NSDSs (national SD strategies) 4–5, 16, 38–9
principles 10
weaknesses 38–9

OECD principles of NSDS 4–5, 10
offshore windfarms 109–10, 111, 115, 117, 119
stakeholder involvement 127
onshore windfarms, opposition to 113
O’Toole Jr, L.J. 48
‘Our Common Future’ see Brundtland Report
output indicators 83
overlay techniques 260
Owens, S. 108, 257

packaging and packaging waste
directive 206, 207
partnership networks 53
passive consultation 247, 253
passive information provision 110
Petts, J. 121
pioneer countries in environmental policy 37, 39
policy analysis, CGE modelling 132
see also CGE modelling
policy network governance 52
policy networks 48–9
decisions 51–2
self-regulation 54
policy opportunity evaluation 84, 85
policy termination 37
political commitment to impact assessment 99
political decision-making 48–9
political process of SD 17–18
positive coordination 38
power-based resistance 35
problem mapping 82–4
problem-oriented NSDSs 38–9
PRODCOM database 81
project acceptability 257, 258
public interests 257
public opinion 118
public opposition 113
public participation 274, 275
Radaelli, Claudio M. 231, 240
rational-management 66
REAP model 80–81
REEIO model 78
region, definition 47, 73
Regional and Welsh appraisal of resource productivity and development (REWARD) 78, 79
regional development 65–6
regional economy–environment input–output (REEIO) model 78
regional governance 45–6, 47–52
regional innovation policies 82–3
regional innovation strategy (RIS) 82–3
regional material flow analysis 78–80, 81
regional network governance 46
evaluation of SD 59–61
impacts of see Regionen Aktiv
regional SD 65–6, 68–71
definition 68–9
evaluation
application of models 81–2
definition 73
policy integration 70
problem mapping 82–4
REAP model 80–81
regional material flow analysis 78–80
REWARD programme 78, 79
scope 73–4
technical modelling 77–82
tools 77–84
regional sustainable economic development 85
regional technology transfer scheme (RITTS) 82–3
Regionen Aktiv 52–8, 59–60
integrated development plans 53–4, 55, 58
model regions 52–3
regional network governance, evaluation results 56–8
rules 54–5
REGIONET thematic network project 70, 71
counter-factual questions 75
evaluation tools, problem mapping 82–4
evaluation tools, technical modelling 77–82
 application of models 81–2
 REAP model 80–81
 regional material flow analysis 78–80, 81
 REWARD programme 78, 79
 policy recommendations 75–7
 regional SD evaluation 73–4
regions 45, 69
‘Regions – cornerstones of sustainable development’ 68
regulatory impact assessment 90, 91, 282, 286
 comparison of procedures 95–7
 see also impact assessment
remediation of land see land remediation
renewable fuels directive 190
renewable natural resources, depletion 18–19
resistance, power-based 35
resource and energy analysis
 programme (REAP) model 80–81
resources 17–19
 consumption 22
 depletion 25–6
Resources for the Future 210
REWARD programme 78, 79
Rio Conference 4, 45–6
Rio model of governance 31
 achievements 33–4
 actors, complexity 31–3, 42
 capacity-needs assessment 37
 dimensions of environmental governance 33
 evaluation 41–2
 global diffusion of policy innovations 34
 government role 36
 nation state role 36–7
 national SD strategy 38–9
 and power-based governance 35
 strengths of 34–9
 three pillars approach restriction 37–8
RIS (regional innovation strategy) 82–3
 risk analysis 100, 157, 260
RITTS (regional technology transfer scheme) 82–3
RIVM (2000) 206
road mapping for sustainable economic development 84–5
Rotmans, J. 21, 151
RSD see regional SD
Sadler, B. 122
scenario development 67, 260
scientific learning, potential for 111
scientific process of SD 17, 18–19
SCP-net 78, 85, 87
SEA see strategic environmental assessment
self-regulation 36, 54
shadow prices 22
SIA see sustainability impact assessment
Slovakia, quality of impact assessment 230–31, 233–5
 conclusions 250–52
 organization of study 233–5
 research results 235–50
 consultations 246–8
 evidence based research 245–6
 formal framework to impact assessment 235–9
 government sessions requirements 236–7
 impact assessment information 240, 243–4
 normative contents analysis 239–40, 241–2
 substantial IA, quality of information 248–50
 study design and methodology 231–4
Slovenia
 Act on Environmental Protection 261
 assessment theory 260–61
 environmental impact assessment 261
 impact assessment regulation 259
 spatial planning 261, 262, 267, 269
 strategic environmental assessment 261
 transport policy assessment, case study 260–66, 267–9
high-speed rail plan 264–6
highway plan 262–4
policy measures 267, 268
SEIA framework 265–6
social acceptability 263–4
social benefits of policy action 257
social/cultural-oriented evaluation 86
social equity 18
social indicators 136
social integration 59, 60–61
social learning 112
Söderbaum, P. 139
spatial boundaries 16
spatial planning 261, 262, 267
spatial scale 16
stakeholder involvement 112, 113–14, 127
stakeholder networks 46
Stockholm Environment Institute 80
strategic environmental assessment 110–11, 258, 279, 284
 key elements 275
 methodologies 259–60
 Netherlands 274–6
 roles and responsibilities 258–9
 scope 257
 tools 260
 unrealistic expectations 120–21
strong sustainability 19, 26
structural funds 67, 68, 286
substitutability 19
substitution 19
substitution prices 22
sustainability 15–17
 defining conditions for 107–8
 definitions 23
 in development programmes 22–3
 in economic theory 22
 in lifestyles 17–20
 strong 19, 26
 in transition 20–21
 weak 19–20, 26
Sustainability A-Test project 164, 179–80
 evaluation framework 167–74
 operational aspects 171–2, 173
 policy processes 167, 169–70
 preliminary tool evaluation 172–4
 SD aspects 170–71
 terminology 165–6
tools 165–7, 168
web-book 174–9
 functionality 175–7
 tool search 177–9
 users 174–5
sustainability assessment 273, 276–9
sustainability evaluation
 in development programmes 28–9
 economic theory 27
 guiding principles 24–5
 of lifestyle changes 25–6
 of transitions 26–7
sustainability governance 151
sustainability impact assessment 281–2, 291
development 284–7
institutional organization of 291
methodologies 131–2, 288–90
tools 164
see also Sustainability A-Test
 project
sustainability impact assessment, CGE
modelling 142–3
case for 135–7
conclusions 142–3
drawbacks 137–42
 complexity of models 141
 generalization of economies/societies 141–2
 limitations of economic theory 138–40
 problems of dynamic representation 140–41
 problems of quantifying sustainability 138
 problems with social measurement 142
 literature 134–5
 model, extensions to 137
 model, generic 136
sustainability indicators 135–6, 137, 156, 157
sustainability principles 107, 121
sustainable communities 23
sustainable development 46, 59, 108, 112, 152
 commonalities 149
 cross-cutting aspects 170, 172
 definitions 107–8, 276
 interpretations 15–17
Index

in development programmes 22–3, 28–9
economic theory 22, 27
and evaluation 23–8
lifestyles 17–20, 25–6
political process 17–18
scientific process 18–19
strong sustainability 19, 26
system boundary issues 16–17
weak sustainability 19–20, 26
three pillars 37–8, 59, 135, 170–71
sustainable development cells 282, 286
sustainable development evaluation in development programmes 28–9
economic theory 27
guiding principles 24–5
of lifestyle changes 25–6
of transitions 26–7
see also Rio model of governance
sustainable economic development, road mapping 84–5
sustainable regional development 69
Sweden, governance model 35
system boundary issues 16–17
systematic uncertainty 157

target dimension of social integration 60
technical learning 111
technical modelling for evaluation 77–82
application of models 81–2
REAP model 80–81
regional material flow analysis 78–80, 81
REWARD programme 78, 79
technical uncertainty 285
temporal boundaries 16
TEN-T (European Transport Policy) 262
territorial dimension of social integration 60–61
‘Thematic evaluation of the contribution of structural funds to sustainable development’ 67–8
thermodynamic systems approach to SD 18–19, 22
three pillars of SD 37–8, 59, 135, 170
main categories 171
time dimension of social integration 60
time frames for SD strategies 16–17
top-down evaluation 40, 41–2
total material consumption 79
trade-offs between sustainability dimensions 132, 277
transition, phases of 21
transition to sustainable society 20–21, 26–7
transparency 102–3, 274
function of impact assessment 92
in impact assessment process 245
transport policy 267
Tuhkanen, S. 204
ultimate ends 20, 26
ultimate means 20
uncertainties, types of, integrated impact assessments 285
unintended effects of impact assessment 99–100
United Kingdom
appraisal procedures 100, 101, 212
environmental assessment,
institutional consequences 128
HM Treasury Green Book 198, 199, 209
impact assessment system 93, 94, 98–9
Landfill Tax Credit Scheme 80
SD strategy 77
United Nations
Brundtland Report 16, 17, 59, 131
Commission on Sustainable Development 16, 135
NSDS principles 5, 10
United States 35
appraisal procedures 100, 101
CFC phase-out study 207
EPA Guidelines for Preparing Economic Analyses 209–10
impact assessment system 93, 94
unwanted side-effects in sustainability assessment 278
unwanted transfer of effects 277
value judgments 20
value transformation 114, 115
Varey, W. 151
<table>
<thead>
<tr>
<th>Term / Entity</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertical integration</td>
<td>46</td>
</tr>
<tr>
<td>vertical social integration</td>
<td>49, 59</td>
</tr>
<tr>
<td>Virani, S.</td>
<td>212</td>
</tr>
<tr>
<td>von Schomberg, R.</td>
<td>259</td>
</tr>
<tr>
<td>Walloon Region, Belgium</td>
<td>286</td>
</tr>
<tr>
<td>waste mapping round table</td>
<td>82</td>
</tr>
<tr>
<td>Water Framework Directive</td>
<td>188–9, 190, 207, 209, 212</td>
</tr>
<tr>
<td>weak sustainability</td>
<td>19–20, 26</td>
</tr>
<tr>
<td>Weaver, P.M.</td>
<td>151</td>
</tr>
<tr>
<td>windfarms</td>
<td>109–10, 111, 115, 117, 119</td>
</tr>
<tr>
<td>onshore, opposition to</td>
<td>113</td>
</tr>
<tr>
<td>stakeholder involvement</td>
<td>127</td>
</tr>
<tr>
<td>Wood, C.</td>
<td>118</td>
</tr>
<tr>
<td>World Bank</td>
<td>17, 23, 116</td>
</tr>
</tbody>
</table>