Index

ABB 106
adoption 12
Advisory Council for Science and Technology (AWT) 85, 96
aerospace 107, 112, 124, 133
aggregate production function 16
agriculture, co-evolution in 29, 32
Akzo Nobel 106, 112, 124
Alchian, A. 8
alkaline (AFC) fuel cells 104, 106
alternative engine fuels 77
applied research 23, 84
arsenic race 31
artificial life 14
Astro Solar 124
asymptotic equilibria 13
automatic behaviour 11
Automatic Power 134–5
autonomous evolution 49
autonomous transitions 38
backcasting 91
balance 21, 143, 145
see also diversity
balance of System 132
Ballard 107, 109, 112
behaviour, transfer of 8
behavioural change 9, 51
behavioural economics 27–8
biomass fuel 86
BioPartner 84
blueprints 10
bounded rationality 1, 3, 11, 18, 27–8, 33–4, 53–6, 93–5, 113–14, 120–21, 135, 141, 142, 147
see also Girardian economics; imitation; myopia; routines
BP 124
BSIK fund 84
Bureau of Industrial Properties (Netherlands) 81
business community, nuclear fusion development 118
business cycles 7
business routines 14
Buying green, a handbook on environmental public procurement (EU document) 93
carbon dioxide see CO₂ capture; CO₂ emissions
cars, fuel cell technology 106–7, 108–9
catch-up mechanism 17
CENELEC 129
centralized energy supply 50
chain efficiency, sustainable energy 77
chance events 34
changes, in routine 10–11
Chicago economists 13
climate policy, Netherlands 70, 73, 74
cluster policy, technology development 79
CO₂ capture 55
CO₂ emissions 55, 73, 74, 93, 104, 119
co-adaptation 30
co-evolution 29–32, 36, 47, 62, 98–9, 114, 121, 135, 141–2
co-financing 89
co-operation 89–90, 112, 122, 137, 150
Coase negotiation theorem 41
codes, PV market 129
combination 22–3, 34, 87, 91, 112, 133, 144, 150
see also recombination
combinatorial mathematics 14
combined heat and power (CHP) 55, 143
commercial nuclear fusion reactors 119
common property, overexploitation of 44
countries
innovations and asymmetry between 12
limited time horizons 27
stimulating co-operation between see also energy companies
comparative advantages 12
competition 7, 28
competitive advantage 7
competitive selection 13, 26
complexity 5, 11, 15
connections 14–15
consumer behaviour, bounded rationality 27
consumer preferences, environmental policy 54–5
continuous change 4
cost–benefit analyses 38
cost of, sustainable energy alternatives 119, 134
creative destruction 7, 18
cross-fertilization 11, 22, 87–8, 91, 122, 137, 146, 150
cryogenic technologies 121
cultural differences, and innovation 23
cultural mediation 32
Daimler-Benz 106–7, 108
DaimlerChrysler 106–7, 112, 114
decentralized energy supply 50, 51, 60
decision-making, myopia in 55
decree on Energy Programme
Subsidies – Sustainable Energy in the Netherlands 128–9
DEGO 125
Dekker Committee (1987) 78
Delft University of Technology 106
diffusion 12, 45
direct methanol fuel cells (DMFC) 104
discrete mathematics 14–15
disparity 21, 143
see also diversity
diversification 39, 72, 145
diversity 4, 5, 13, 17, 18, 19–21, 27, 28, 29, 33, 38, 141
Dutch energy and innovation policy 85–7
environmental policy and transition management 48, 54, 59–60, 142, 143–4, 145
sustainable development 38–9
sustainable energy (case studies) 111–12, 120, 132–3, 136
domestication, co-evolution and 29, 32
DSM 106, 112
Dutch Polder Model 26
Dutch Polymer Institute (DPI) 125
Dutch Space 124
Dutch State Mines 106
dynamic diversity 38
dynamic innovation system 82
dynamic optimization 43
dynamics of economics 6–7
dynamics of evolution 4–5, 13
economic change 6–7, 8, 9, 14, 43
economic cycles 7
economic equilibrium 13
economic methodology 8–9
economics, dynamics of 6
economies of scale 51, 121, 124, 131, 135, 145
education, and innovation 22, 88–9
effectiveness, environmental policy instruments 40
efficiency 40, 74, 145
electric vehicles 107
electricity generation/production 59, 72, 119, 122, 123–4
green 74, 93, 129
prices of photovoltaic 131–2
Elenco 106
emergence 5
endogenous factors, innovation 24
endogenous growth evolutionary growth versus 17–19
models, transitions 41–2
energy carriers 50, 104
energy companies 92, 118, 124, 135
energy conservation 55, 56–9, 72, 73, 143
energy innovations, Netherlands 74–7
energy market, liberalization 73, 74, 91–2
energy policy (Netherlands)
advisory documents 69–71, 119, 130
evolutionary economics 85–99, 145–8
historical overview 71–3
stimulation of energy innovations 70, 74–7
underlying premises of recent 73–4
energy prices 98, 119, 131–2, 145
Energy Research Centre of the Netherlands (ECN) 75, 106, 111, 125
Energy Research Strategy (EOS) 74, 75, 76, 77, 86, 89, 98, 110, 129
Energy and Society in 2050 111
energy source(s) 50
energy supply
selection environment 46
see also global energy supply; sustainable energy supply
enhancement 32
environmental policy
evolutionary economics
analysis of 42–5
case study see sustainable energy supply
concepts 39
conclusions for policy makers 149–50
and design of 1–2
extended level-playing field 45–9
implications 65–6, 142–5
neoclassical economics 39–41
Netherlands 70
see also transition policy
environmental regulation 46
environmental technology 78–9
equality 21
equilibrium 9, 13, 14, 24, 28, 34–6
equilibrium analysis 7
equilibrium selection 9, 13
European Commission (EC) 76, 110–11, 129
European Community for Atomic Energy (Euratom) 116
European paradox 89
European Patent Office (EPO) 81
European Patent Treaty (1973) 81
European PV Technology Platform
130
European Union (EU) 59, 76, 93, 110, 116, 117, 129
evolution 4–5, 48–9, 150
evolutionary computation 5
evolutionary economics
case studies
fuel cells 111–14
implications of findings 136–9
nuclear fusion 120–22, 148
photovoltaic energy 132–6
Dutch energy and innovation policy 85–99, 145–8
environmental policy
analysis of 42–5
applying 149–50
case study see sustainable energy supply
extended level-playing field 45–9
implications 65–6, 142–5
insights into design of 1–2
evolutionary growth theory 15–19
evolutionary thinking 3–6
key concepts 19–32
integration of 33–6
natural resource management 42–5
overview of insights and contributions within 6–15
policy framework offered by 140–42
starting premise 1
transition management
applying 149–50
case study see sustainable energy supply
implications 65–6, 142–5
evolutionary equilibrium 13
evolutionary game theory 4, 13–14
evolutionary growth theory 15–19
evolutionary modeling 5–6, 14, 15–17, 18–19
see also evolutionary computation; multi-agent modelling
evolutionary selection 62
evolutionary stable strategy 14
evolutionary theory 5, 18
exogenous factors, innovation 24
exosomatic development 43
experimentation, Dutch energy transition policy 88, 95
expertise 10
exploitation 43–4
extended level playing field 47–8, 143, 149
external regulation 44
financial markets, selection by 25
financial support, nuclear fusion
research 122
Finnish innovation platform 97
Fisher's theorem 21, 60, 149
fitness 13, 21, 29, 60, 149
flexibility, organizational 11
Follow-up Policy Document on Energy
Conservation (EZ) 131
FOM Institute for Plasma Physics 118
fossil fuels 73, 111, 112, 143
Fourth National Environmental Policy
Plan 69–70
Friedman 8–9
Fuel Cell Task Group 110
fuel cells
actors 105–7
applications and niche markets 107
characteristics and related policies 138–9
conclusions 114–15
decline in research into (Netherlands) 86
driving forces and barriers 111–14, 148
futures 110–11
history and current situation 103
and hydrogen 103–5
implications (case study) 136–7
learning curve 107–9
policy and institutional aspects 109–10
types 104
fundamental research 23
funding, Netherlands
education and schooling 88
high-risk investments 94
futures
Dutch energy and innovation policy 90–91
sustainable energy (case studies) 110–11, 119, 130–2, 137
gas, green 77
Gasunie 106
General Electric 106
generic approach, Dutch innovation
policy 78
genetic mediation 32
geographical factors
fuel cell technology 112
innovation 24
photovoltaic energy 134
technical execution of projects 25
Girardian economics 54
global energy supply, share of PV in 132
Göteborg summit (2001) 79
government policy
Dutch energy and innovation 147–8
environmental policy and transition
management 144
sustainable energy (case studies) 109–10, 113, 118, 128–9, 135, 136
government(s)
influence in selection environment 46
intervention, legitimacy of 82
role
in market selection 26
regulatory 92–3
sustainable energy supply 51–3, 61, 125
green energy 74, 77, 90, 129
see also electricity; gas
green procurement 93
Green Revolution 38
Greenpeace 131
grid-connected systems, photovoltaic
energy 126, 134
growth diamond (Porter) 23
heterogeneity 19, 141
High Level Group on Hydrogen and
Fuel Cells (EC) 110–11, 112, 137
Holec 118
Hoogovens 106, 113
hybrid systems, sustainable energy 115
hydrogen 103–5, 111, 112, 113
hyperstructures 14–15
imitation 1, 16, 24, 54, 95, 114
Implementation of climate policy 85
Implementing Agreement on
Advanced Fuel Cells 110
import themes, Dutch energy policy 75
incentives, Dutch energy sector 73, 129
increasing returns 28, 34–6, 48, 114, 141
incremental innovations 12, 22, 34
Index

Industrial Revolution 11, 37, 38
industrial transformation 38
industry equilibrium 9
Industry Letter 88, 93, 97–8
Industry Memorandum (Dutch) 83–4
Innovation in energy policy 92, 98–9
Innovation Letter 80–81, 84, 94
Innovation Platform 82–3, 84, 97
Innovation Policy 95
innovation policy (Netherlands)
contours and instruments of 82–4
development of interrelationships in 80
evolutionary economics 85–99, 145–8
historical overview 77–9
underlying premises of recent 79–81
Innovation Subsidy for Co-operative Projects (IS) 83
Innovation-oriented Research Programmes (IOP) 89
innovation(s) 4, 5, 7, 12, 18, 21–4, 34, 141, 149, 150
Dutch energy and innovation(s)
policy 87–91, 146
environmental policy and transition management 45, 144
sustainable energy (case studies) 112, 120, 133–4, 136
see also energy innovations; routine innovation
innovative entrepreneurship 6–7
innovative strength 87
institutional aspects, sustainable energy (case studies) 109–10, 118, 128–9
institutions
Dutch energy and innovation policy 75, 92–3
fuel cell technology 107
selection factors 26
instruments
environmental policy 40–41, 53, 75, 82–4, 94
see also environmental policy; pricing instruments; transition policy
intellectual property 82
intended transitions 38
interactions 10, 12, 137, 149–50
interactive skills 10
internal diversity (recombination) 5, 11, 22, 34
internal selection factors 25
internalization, of routines 10
International Electrotechnical Commission (IEC) 129
International Energy Agency (IEA)
international institutions, fuel cell technology 107
international organizations, PV technology 125
international positioning 86
International Thermonuclear Experimental Reactor (ITER) 116, 118
invention 12
investments, Netherlands 82, 94, 129
irreversibility 5, 18, 42–3, 46, 98, 141
Isotópón 124
isolated mutations 22, 34
isolation, and innovation 23, 34, 45, 89, 91, 144, 146
Joint European Torus (JET) 116, 118
k-strategy 31
KEMA 106
key areas approach 84
knowledge 94, 141
knowledge chain 84
knowledge diffusion 63–4
knowledge exchange 83, 120
knowledge growth 14
knowledge transfer 78
The knowledge economy in sight 79
Kyocera 124
Kyoto Protocol 55, 73
Leading Technology Institutes (TTI) 89
learning curves 47, 98, 107–9, 121, 127–8, 136, 143
learning-by-doing 22, 98
level playing field 47, 61, 97–8, 142, 146, 147
levies, environmental policy instruments 40
‘liberal market’ approach, Dutch industry policy 83
liberalization, energy market 73, 74, 91–2
limited time horizon 1, 27, 55–6, 113, 120, 135, 141
Lisbon Strategy 79
lock-in 5, 19, 28–9, 46, 48, 52, 55, 95–7, 114, 115, 121, 135, 141, 143, 144, 147
Logic Electronics 124
long waves 7
long-term energy research, Netherlands 74, 75, 94
3M yellow Post-It® Notes 87–8
major transitions 37, 38
managed evolution 49
managed transitions 38
market failures 82, 92
market growth, PV technology 132
market power, pioneering of PV applications 134–5
market selection 7–9, 25–6, 46, 91–2
market stimuli 136–7
market-based instruments 41
marketable rights 40
markets, fuel cell technology 113
micro-economics 14
micro-electronics industry 124
micro-evolution 9
Ministry of Economic Affairs (Netherlands) 70, 71, 73, 74, 81, 95, 96, 118, 125, 129, 130
Ministry of Education, Culture and Science (Netherlands) 70
Ministry of Education and Science (Netherlands) 78
Ministry of Housing, Spatial Planning and the Environment (Netherlands) 70, 73
minor transitions 37–8
Mobil 124
modelling, and evolutionary theory 5–6
molten carbonate (MCFC) fuel cells 104, 106, 110
moral suasion 54
multi-agent modelling 5, 14
multi-agent systems 4
 multicrystalline solar cell 129
multiple pathways, to sustainable energy system 86
mutations 11, 22, 34
mutual exchange 150
myopia see limited time horizon
Nash equilibria 13, 14
National Research Programme on Fuel Cells 106, 110, 113
National Research Programme for Solar Energy (NOZ) 128
natural resource management, evolutionary-economic analysis 42–5
natural systems, co-evolution in 30–31
Nedstack 106, 107, 112
negative externalities 39–40, 54
Nelson, R. 9, 10, 11, 14, 16
neo-Schumpeterian theories 12, 33
neoclassical economics diversity in 27
economic system as fixed structure 15
environmental policy 39–41
growth theory 16
optimizing behaviour 144
perfect rationality 18
research and development 17–18
Schumpeterian approach 18
transitions 41–2
Netherlands energy policy advisory documents 69–71
historical overview 71–3
stimulation of energy innovations 70, 74–7
underlying premises of recent 73–4
fuel cell technology industry involvement in 106
research institutes 105–6
innovation policy contours and instruments 82–4
development of interrelationships in 80
evolutionary economic analysis 85–99
historical overview 77–9
underlying premises of recent 79–81
nuclear fusion, scientific institutes 118
patent policy 81–2
photovoltaic technology
 actors 124, 125
 expectations for 130
 growth in installed PV power 126
 limited potential 148–9
science and technology policy 77–8
transition to sustainable energy
 system 59
network costs, energy supply 51
network theory 14
niche markets 34, 52, 61, 90, 91, 107,
 112, 115, 118, 120, 122, 125–7,
 133–4, 146, 148
norms, evolution of 44
nuclear energy, Netherlands 72
nuclear fusion
 actors 116–18
 applications and niche markets 118
 characteristics and related policies
 138–9
 conclusions 121–2
 driving forces and barriers 120–22,
 148
 futures 119
 history and current situation 115–16
 implications (case study) 136–7
 policy and institutional aspects
 118
Nuclear Research and Consultancy
 Group 118
off-grid systems, photovoltaic energy
 125–6
offshore wind energy 86
oil companies 124, 135
On Integrated Product Policy (EU
document) 93
opposition 32
optimizing behaviour 8, 140–41, 144
order 14–15
Organisation for Applied Technical
 Research (TNO) 105–6
organizational characteristics, and
 selection 25
organizational memory 10
organizational routines 9–10
overconnection 15
overcorrecting of prices 47
ownership rights 41
patent policy, Netherlands 81–2
Patents Act (Netherlands) 81
path dependence 5, 15, 18, 28–9, 34,
 46, 95–7, 114, 121, 135, 141, 142,
 147
peer review 26
PEMFCs see solid polymer (SPFC)
 fuel cells
perfect rationality 18
Philips Solar Energy 124
Phillips curve 17
phosphoric acid (PAFC) fuel cells 104
PHOTEX project 128
photovoltaic energy (PV)
 actors 124–5
 applications and niche markets
 125–7
 characteristics and related policies
 138–9
 driving forces and barriers 132–6,
 148
 futures 130–32
 history and current situation 122–4
 implications (case study) 136–7
 learning curve 127–8
 overview of technologies 123
 policy and institutional aspects
 128–9
photovoltaic Power Systems
 Programme 126
Photovoltaics Technology Research
 Advisory Council (PV-TRAC)
 129, 130, 137
physics, selection environment 25
Pigouvian tax 40
Polder Model 26
Policy document on innovation
 (Netherlands) 78
population approach 4, 18, 19, 141
Porter hypothesis 7
positive feedback 31
positive lock-in 29
price corrections, environmental
 damage 46–7
prices
 energy 98, 119, 131–2, 145
 extended level playing field 47

C.J.M. van den Bergh, Albert Faber, Annemarth M. Idenburg and Frans H. Oosterhuis - 9781847205568
Downloaded from Elgar Online at 03/28/2019 03:00:19AM
via free access
pricing instruments 53, 144
priority topics, Dutch energy research 75, 110
probability distribution, productivity of companies 16–17
producers, selection pressure 25
profit maximization, through market selection 7–9
public authorities, support for nuclear fusion 120–21
public externalities, technological innovation 18
public funding, applied scientific research 84
public policy 26, 34, 92–3
punctuated equilibrium theory 24
r-strategy 30–31
radical innovations 12, 22, 23, 34, 144
raw materials, green 77
recombination 5, 11, 22, 34, see also combination
reductionism 33
‘remembering by doing’ 10
renewable energy 56–9, 97
replication 11
replicator dynamics 13
representative agents 4, 18
research and development (R&D) 17, 25
diversity in 111–12
innovative combinations 22
neoclassical economics 17–18
Netherlands 73, 74–7, 82, 86, 90, 110
photovoltaic energy 129
selection mechanisms 26
research institutes 75, 89, 105–6, 125
resource management 42–5
Rijn–Schelde–Verolme (RSV), failure 78
risk-seeking behaviour, and innovation 45
routine innovations 11
routines 1, 9–10, 10–11, 14, 54, 94–5, 113–14
RWE 124
satisficing 53, 54
scenarios 22, 37, 50, 91, 137
Schumpeter, Joseph 6
Schumpeterian competition 7
Science Budget (Netherlands, 2004) 84, 89, 94
science and technology policy, Netherlands 70, 77–8
scientific community, co-operation within 89–90
scientific institutes, nuclear fusion 118
scientific research 52–3, 61, 84
search behaviour 9, 10–11, 16
selection 4, 5, 8, 21, 33, 62, 141, 150
see also competitive selection; market selection
selection environment 24–7, 45–6, 48, 91–3, 98, 112–13, 120, 134–5, 137, 143, 144, 147
selection pressure 8, 25, 34, 46
self-organization 5
self-organizing systems 10
Senternovem 125, 129
serendipity 22, 34, 87, 91, 133, 141, 146
Sharp 124
Shell 124
short-term energy research 74
sickle-cell anaemia 32
Siemens 106
silicon wafers 123
Sixth Environmental Action Plan (EU) 93
skills 10
‘smart mix’ 84
social preferences, consumer behaviour 27–8
social transitions 37
docio-economic systems, co-evolution 30, 32
Solar Energy 125
solar PV 86, 130, 133
solid oxide (SOFC) fuel cells 103, 104, 106, 107, 110, 112
solid polymer (SPFC) fuel cells 103, 104, 106, 107, 108, 109, 110
sorting 24
spatial interpretation, of innovation 23
spatial isolation, innovation 23, 144
stability 14
standards 40, 129
steering 21
Index

stochastic character, of selection 26–7
strategic design, Dutch innovation policy 78
structure, through evolution 5
sub-systems, co-evolution 29–32, 36
subsidy instruments, Dutch research 83, 129
Sugarscape model 5–6
superconductivity 118
sustainable development 38–9, 42, 54, 86
Sustainable energy, a look at the future 130
sustainable energy supply
bounded rationality 53–9
as a complex evolving system 49–51
diversity and scale combined 59–60
Dutch energy policy 73–4, 77, 86
policy implications, evolutionary economics 67–8
transition management 51–3, 62–4
case studies see fuel cells; nuclear fusion; photovoltaic energy
system failure 82–3
system integration, energy provision 50–51
systematic approach, to a sustainable energy system 63
systematic search, innovative combinations 22
systems perspective, economic evolution 43
Taskforce Energy Transition 86
techno-economic paradigm changes 12
technological change (development) 3, 6–7, 12, 16, 137, 146
technological diversity 85–6
technological possibilities, sustainable energy (case studies) 112, 134
technology system changes 12
technology(ies)
extended level playing field 47–8
selection environment 25
sustainable energy supply 50
TEXTOR fusion experiment 118
thermodynamic efficiency 25
thin film PV technology 123, 129, 133
Third Policy Document on Energy 85–6
third-generation fuel cells 103
time horizons 48, 93–4
see also limited time horizons
tokamak 116
torus 116
total factor productivity (TFP) 16
Thematic Strategy on the prevention and recycling of waste (EU document) 93
Thematic Strategy on the sustainable use of natural resources (EU document) 93
transferability 8
transition management
evolutionary economics 65–6, 142–5, 149–50
sustainable energy see sustainable energy supply
transition policy
adaptation to changing circumstances 53
care in early phase 142
Netherlands 69–101
purposeless evolution 48–9
stimulation/management of learning processes 38
see also environmental policy,
extended level playing field
transitions 37–8
neoclassical economic view 41–2
scientific research into 52
to sustainable energy 59–60, 62–4
transmission mechanisms, optimizing behaviour 8
transportation, fuel cell technology 107
triple product, nuclear fusion 116
TRIPS Treaty 82
ultimate micro approach 4
uncertainty 8, 12, 18, 23, 54
underconnection 15
United Kingdom, renewable energy sector 97
United States, fuel cell research 106
variability 149, 150
variation 20–21, 22, 143
see also diversity
Veblen, T. 6
venture capital 23, 90, 91, 120

waste/wastage 21, 22
weak competition, selection pressure 8
Westinghouse 106

windmill, invention of 22
Winter, S.G. 9, 10, 11, 14, 16

zero energy tax rate, Netherlands 129
zero-emission vehicles 107, 112, 115