Index

Bansal, P. 11, 43, 44
Carlile, P. 55, 117, 131–2
categorization 1, 138
and culture 7, 8, 51
certified environmental management standards 30, 32
change
designing for 144–6
and issue selling 13–14, 133–7, 142–4, 148
through culture 13–14, 135–7, 142–6
chemical emissions inventories 39
Chipco
and data driven decision making 67–8, 95–6
environmental work within 81–106
and flexibility 5, 6
and goal orientation 18–19, 59, 65, 67, 73–4
interactions within 65–9, 87–94, 125–6
introduction to 16–18
and measurement 19, 58, 67–8, 81–3, 86–7, 91–2
and planning 58, 75–7, 102–104
and problem solving 69–70
process development work within 58–80
and replication 71–3
summary of culture surrounding environmental work 104–5, 140
summary of Tech culture 79–80, 139
and technological change 4, 10, 19, 59–60, 74–5
and time 77–9
chip manufacturing
‘clean rooms’ for 24, 59–63
environmental impacts 23–6
importance of boundaries for 63–4, 5–7

see also Semiconductor manufacturing industry
‘Clean Air’ project 4–6, 32, 128–31
climate change 31, 41–2, 45, 98–9
Coglians, C. 3, 11, 32, 38, 43, 49, 146
‘command and control’ regulatory approach 38
coordination of work 66–7, 91–3
corporate environmental management economic considerations and 39–40
external pressures for 3, 8, 12, 38–43, 146–8
internal factors shaping 3, 6–8, 11–12, 46, 48–50, 139–42, 147–8
regulatory trends and 38–9
scholarly explanations for 2–3, 43–50
social pressures and 39–40, 148
sociological perspectives on 2, 46–8
strategic perspectives on 2, 44–6
corporate social responsibility 33
creative destruction 144–6
Cronon, W. 1, 37
cultural bias 51
culture
and change 2, 3, 8, 12–14, 55–6, 107–8, 148
defined 7, 50
and environmental practices 7–8, 11–12
and issue selling 55–6, 132, 142–4
and managerial interpretations 3
and patterns of interaction 51, 53–4
problems as defined by 6–7, 52–4
see also subcultures
‘Destructor’ project 120–25
Douglas, M. 1, 7, 11, 37, 50–51, 64, 69
Dow Jones Sustainability Index 33
Dutton, J. 13, 14, 55–6, 107, 114, 116–17, 120, 143–4
Index

Ehrenfeld, J. 42, 146
electronics waste
see waste electronics, WEEE, RoHS
embeddedness 47
environmental management
see corporate environmental management
environmental problems
changing nature of 30
formulation of 4–6, 8, 122–4, 140–42
tradeoffs between 99
Environmental Protection Agency (EPA) 31, 48
Environment, Health and Safety (EHS)
group at Chipco 88–91
EnviroTech
origin of group 90–91
participant observation within 20
EPA
see Environmental Protection Agency
ethnography 20
EU–ETS (European Union Emissions Trading Scheme) 41–2
fab (fabrication facility) 21, 24, 28–29, 59–63
environmental controls within 83–4
environmental impacts of 28–9, 33
see also subfab
Feldman, M. 55, 120
Geertz, C. 7, 50
Giddens, A. 7, 54
Gladwin, T. 3, 45, 49, 142
Gunningham, N. 3, 8, 28, 48, 49, 140, 146–7
Hart, S. 3, 45, 145
Hoffman, A. 2, 8, 11–12, 42, 47–8
institutional norms and environmental practices 46–8
interpretation of issues 3, 6–7, 11, 12–13, 49
issue selling 13–14, 36, 55–6, 107–8, 119, 131–2, 142–4
and cultural context 143–4
assets for 119–20
defined 55
learning 107, 112, 119–20, 133–5, 141, 146
lifecycle environmental impacts 30, 42
managerial incentives 11, 49, 140
managerial perceptions 49
Marcus, A. 2, 45, 146
Martin, J. 12, 50, 53–4
Meyerson, D. 12, 14, 53–4, 143–4
moves 108, 109–10, 114
defined 110, 114
made to advance environmental issues at Chipco 114–16
Natural Resource Based View 3, 45–6
nature
contested conceptions of 36–8
negotiated industry–government agreements 31–2, 42
see also PFC emissions, PFOS–based chemicals
organizational change
see change
organizational culture
see culture
participant observation 2, 20
methodology 20–21
see also ethnography
‘Pays to be green’ argument 44–6
see also Porter, M.
PFC emissions 31
voluntary agreement for reduction of 31
PFOS–based chemicals 31
voluntary agreement for reduction of 31
pollution prevention 40
Porter, M. 2, 40, 44, 46, 147
power
and issue selling 119–20
compared between Chipco groups 117–18

of organizational groups 12–13, 54–6
Prakash, A. 3, 8, 49, 140
product stewardship 30, 42
project analysis methodology 108–12
public perception of environmental performance 39–40
‘Recycler’ project 125–8
regulation 31–2, 38–9, 43, 146–8
and competitiveness 44
and flexibility 146–7
see also RoHS, WEEE, Toxics
Release Inventory, chemical emissions inventories
Reinhardt, F. 46, 147
reputation 40, 97
Responsible Care® 43
RoHS (Restriction on Hazardous Substances) directive 29–30
role specialization 65–6, 88–90
Schein, E. 7, 12, 53, 54
Söhn, D. 52–3
Scott, R. 47
semiconductor manufacturing industry
competition in 27–8
economic scale and growth 26–8
ergy consumption by 23, 27
environmental benefits 24–6
environmental impacts 23–6
regulatory and non–regulatory trends in 31–2
secondary material use 24
specialty chemical use 24
social pressures on 32–4
technological innovation in 28–30
water consumption by 23, 27
Sharma, S. 2, 11, 44, 46, 49, 147
Smircich, L. 50
social pressures 32–4
source reduction
see pollution prevention
strategic environmental management 2
see also corporate environmental management
strategies for action 7–8, 52–4
subcultures
and power 12–13, 36, 54–6, 107, 117–18
defined 53
differentiated 53
fragmented 54
interaction of 12–13, 36, 53–4
subfab 83–6
successful environmental projects 4–6, 120, 130–31
Swidler, A. 7, 13, 52, 142
time
and chip manufacturing 77–9
and environmental work at Chipco 102–4
Toxic Release Inventory (TRI) 39
uncertainty
and environmental issues 81–3, 101–3, 147–8
Van Maanen, J. 20, 53, 117
voluntary programs for environmental management 31–2, 43, 146–8
Vredenburg, H. 2
waste electronics 29–30
WEEE (waste electronic and electrical equipment) legislation 29
World Semiconductor Council (WSC) 31