Index

actors within a system 176–7, 190–91, 196–204
and actions 196
economic 191
and locality 191
networking between 199
and not knowing what is unknown 147
Advanced Research Projects Agency (ARPA) see ARPANET; Defense
Advanced Research Projects Agency
aeronautics 138, 169
aerospace industry 162
Agence Nationale de la Recherche (ANR, France) 78
Agreement on Trade Related Aspects Intellectual Property Rights (TRIPS agreement) 90, 98, 101
Allen, Paul 257
Alliance of Angels (investor network, US) 263
Arendt, Hannah 26
arguing and bargaining, theoretical dichotomy between 26
ARPANET 121, 122, 123, 124, 125
and US universities 123
Australia, technology parks 229, 232
see also Brisbane Technology Park
Australian Institute for Commercialisation (AIC) 245
Austrian Economics 25, 37
AUTODIN II 123
Bacon, Sir Francis 87
Baecker, Dirk 36–7
Baran, Paul 120
Bayh-Dole Act, US 61, 255, 257, 267
Bell Labs and development of transistors 57
Berne Convention on industrial property (1886) 88–9
Berners-Lee, Tim 121, 124–5
Bill and Melinda Gates Foundation 270
biochemical weapons, distinction between categories 135–6
Biological and Toxin Weapons Convention (BWC, 1972) 133
Biomedical Advanced Research and Development Authority (BARDA) 134, 136
biotechnology and biomedical projects 66, 116, 127, 133–6, 140, 252, 254, 267
analyses of developments 255–6, 264, 267–8
factors in startup 264
in Germany 267–8
global aspects 254
in US 254–5
venture capital and 253, 255, 265–6
see also pharmaceuticals; Prosperity Partnership; Seattle
Biotechnology Industry Organization (BIO) 136
bioweapons 134
Boulding, Kenneth E. 14–21, 23, 31
concept of change 23
on conflict resolution 17–19
Bourdieu, Pierre 220
Bretton Woods institutions 89
Brisbane Technology Park (BTP) 230, 232
access to knowledge 238–9
government sponsorship and 240–41
interactions within 238, 239
lack of cooperation between businesses in 238–9, 240
need for promoting cooperation 241
network linkages 237–40
perceived benefits 239
study of 235–45, 246, 247
weakness of internal linkages 242–3

275
Index

BRITE-EURAM 130
business angels 203–4
business creation and capitalism 209–17
cafeteria, myth of 49
Cambridge Phenomenon 229
Cantillon, Richard 211–12
capitalism
and business creation 209–17
dynamics of 209–10
entrepreneurial 210–17
persistence of 214
Schumpeter on 208, 214
self destruction of 208, 214
Marx on 214
in 21st century 214–5
see also entrepreneur
capitalists 211
causation, cumulative circular 21–3
CEA (Commissariat à l'Energie Atomique, France) 58, 62–3
analysis of researchers within 68–76
Centre National de la Recherche Scientifique (CNRS) 43, 44, 48–55
and joint laboratories 48–51
CERN 121, 122, 125
CERNET 122
Chemical Weapons Convention 136
chemical weapons, use of 133
‘clump’ grouping business model 251, 252, 253
problems with 252
see also clusters
clusters
analyses of 251–3, 265, 266, 267–8
awareness of independence 251–2
of businesses 251–71
cluster initiatives 252
cluster model 251
cluster strategies 264
cluster studies 252, 265
cluster theory 246–7
competitive 202
factors behind success 252
development of 245
distinction from ‘clumps’ 251, 252, 268
governance 240–47
and innovation 34
interdependencies 251–2
Italian 266
linkages 241
life sciences 270
relationships 242
theory and strategy behind 265–8
see also Brisbane Technology Park;
science and technology parks
clustering organisations 242
COGEMA 118
cognitive apprenticeship 46
cognitive resources 45–6
cognitive science 31
communicated routines and scripts,
concept of 28–32
communication
analysis of communication 36–7
between actors 36
and clusters 34
cybernetic approach 36
innovative capacities of 14, 28–32,
35–7
mathematical theory 36–7
symbols and 15
communicative action 24–6, 32, 33, 36
Communicative Action, Theory of 24–6
communicative rationality 25
communicative power 268
communicative culture 35
Community Patent Convention (CPC, EEC, 1975) 95, 96
conflicts 17, 22–3
conflict resolution:
compromise 18
jurisdiction and conflict resolution
18
means of 17–19, 21
and mediation 18–19
markets as means of conflict resolution 17
reconciliation 18
contingency and structural planning 140
contracts, economic theory of 47
Conventions on patents 94
cooporation networks 233
analysis of company strategies 193–6
Index

corporate coherence 181
governance 215
hegemony, concept of 28
Council for Scientific Research
(Consejo Superior de
Investigaciones Científicas, CSIC,
Spain) 148, 150
Council of Europe 94
creative destruction, concept of 14,
28
CSNET 121, 124
cybernetics 37
CYCLADES 122

Danish Council of Technology 34
DATAR 196, 201–2
defence
during Cold War era 162, 165
during post-Cold War era 162, 165
boundaries identified 164–5
defence firms 162
dual technology 165–7
historical context 126–7
industry as an institutional
environment 162, 166, 179–81
institutional context and data
analysis 169–77
and knowledge structures 177–81
as a particular structure 164–7
and patenting 168–77
as a specific structure 164–7
see also Department of Defence;
military; R&D
Defence Diversification Agency
(DDA), UK 147, 151–8, 159
establishment 153
brokering services 155, 158
and civilian access to military
technology 153, 156
functions and services provided
154–8
and identifying relevant civilian
technology 154
Defence Evaluation and Research
Agency (DERA, 1995), UK
151–2, 153
Defence Research Agency (1991), UK
151
Defence Technologies Enterprises Ltd,
UK 158

Defense Advanced Research Projects
Agency (DARPA US: variously
ARPA) 120–21, 122, 123, 124, 125
Defense Communications Agency
(DCA, now Defense Information
Systems Agency, DISA) 121, 123
democracy
defined 22
and discussion 22–3
Denison, E.F. 219
Department of Defence (DoD), US
125, 138, 168
and technological development 117,
118
and biotechnology 116, 127, 136,
139
and development of the internet 120
Department of Health and Human
Services (HHS), US 134
Department of Homeland Security
(DHS), US
and biotechnology 116, 127, 134
R&D 136, 139
DGA, France 120
dialogue and communication,
relationship between 26
discourse
participants in 25
discourse ethics 24–6
Discovery Fund, US 264
Drewell, Bob 251
dual use technology and knowledge see
under technology; knowledge
EADS 118
economic arrangements
economic growth and development
215
economic environment and
innovation 187
economic system and networks
216–17, 221–2
types of 47
economic development 13
as being local 271
economic cycles 213
economic proximity and innovation
189–92
types of economic proximity 189,
190
economics, neoclassical view 14, 15, 17 and entrepreneurs 215–16
local 198, 199
microeconomic analysis 14, 15 network 202
economy
global 229
and innovation 13, 187–8
knowledge economy 14, 56, 92, 208 and research 59
local economies 198 and security 125
shift from labour-intensive to knowledge-intensive 229
Elster, Jon 26
email, development of 124
entrepreneur 200, 208, 243–4 as an agent 224
background of 209, 225 and banking 220, 223
Pierre Bourdieu on 220 and capitalism 208, 210, 214 and change 222–3
defined 212
disappearance of with firm size 208, 213
economists’ and other analyses of 13–14, 32–3, 209, 215–16, 220–21, 222, 224 fundraising ability 218
nature of 13–14, 200, 208 transnational 34
resource potential 208, 217–24 and managers 211
and networks 214, 222–4 and risk 211 Schumpeter on 13–14, 208, 209–12 Marx on 213
and networks 214–17
resource potential 217–22, 224, 225 and social capital 219–21
and social relations 220–22 entrepreneurial maturity 224 entrepreneurship 139–40
Boulding and 14–16 entrepreneurial maturity 224 as a function 208–9, 211, 222
key factors of 223–4
organic paradigm of entrepreneurship 223–4, 225
‘organic square’ of 222, 223 speculative entrepreneurship 203
Schumpeter on 14, 208, 209–14
see also innovation ESPRIT 130 ESRP 130 Ethernet 122, 124 Europe
developments in 100–103, 106–7
costs and technical difficulties (patent issues) 103–4
harmonization in (patent issues) 105–7
European Coal and Steel Community (1951) 89
European Economic Community (EEC, 1957)/later European Community/and then European Union (EU) 89, 90, 104, 115, 125
Common Political Approach 99–100, 101, 102
Commission Proposals 100
European Commission 127, 129, 132
European Policy 105–6 harmonization 104–6, 107 London Agreement 104–5
Maastricht criteria 106
and outer space 130–32
and patent issues 97
security and defence issues 115, 127, 129–30
security strategy 135
Stability and Growth Pact 106 and trademarks 97
Treaty of Nice 100
see also Galileo; European Patent Convention
European Patent Convention (EPC) 89, 93, 95, 101
history of EPC 89, 95–7
consultation on Community Patent 101 Proposal described 97–9
translation costs 104–5
European Patent Litigation Agreement (EPLA) 102, 105
European Patent Office (EPO) 95, 96, 98, 100, 103–4, 105, 168, 172, 179
European Patent Organization 95–6
European space programme 115–6, 130–32
European Space Agency (ESA) 129, 130
European Union see European Economic Community

Farnborough Enterprise Hub 155
firms and businesses
benefits of outsourcing and independent units 202–3
and clusters 195–6
company strategies 192–6)
and decentralisation 199–200, 203
decision making in 194
development of 193–5, 214–5
development 200–201
expansion 193–4
external benefits to 195–6
and external investment 203–4
firm defined 192–3
global firms 196
and hierarchies 193
interrelationship between firms of different sizes 215
and innovation 187–8
knowledge structure 177–81
management in 203
and milieu 192, 196
risks faced by 194
and ‘permanent innovation’ 195
scientific and technical activities 195
theory of corporate governance 215
transactional costs 194, 195
see also clusters; entrepreneur;
networks; patents; science and technology parks
foreign direct investment (FDI) 90

Former Soviet Union (FSU) 133
France, research in 61, 196–7, 201
DATAR 196, 201–2
innovation in 201
intersectoral transfers, difficulties with 140
technological development in 118, 119, 120, 139
Fred Hutchinson Cancer Research Centres 256–7
developments 265–8
FSCP 132
fully integrated pharmaceutical companies (FIPCOs) 269

Galbraith, John Kenneth 126, 216, 225
on power 27–8
Galileo programme 130–32
services provided by 131, 132
Gates, Bill 257
General Agreement on Tariffs and Trade (GATT, 1944, replaced by World Trade Organization) 89, 90
Geneva Protocol on chemical and biological material in war (1925) 133, 136
genomics 257
Germany 119
Global Monitoring for Environment and Security (GMES) 130, 132
Global Positioning System (GPS) US 131
global risks 128
globalization 137–8
and harmonization and innovation 88–93
security issues 125, 126–7
triadic nature of 90
Goebbels, R., Minister of the Economy, Luxembourg 90
governments and innovation 200–201
see also defence; Defence Diversification Agency; Defence Evaluation and Research Agency; European Economic Community/European Union; Internet; military, Ministry of Defence
GREMI (University of Neuchâtel, Switzerland) 191

Habermas, J. 24–7, 28, 38
harmonization 91
hermeneutics 32
homeland security industry, US 127, 128
human capital, concept 219–20
human genome mapping 254, 257, 270
Huntsman, Dr Lee 262, 263
Hyper-Text Markup Language (HTML) and Hyper-Text Transfer Protocol (HTTP), establishment of 121, 124
Index

Innovations

analyses of innovation clusters 235
clusters and 34, 201–2, 232, 234–5
dynamic processes of 14
European model 91, 92
nature of 13, 33
and path dependence 191
proximity and innovative milieu 189–96
economic 189–92
cognitive 189, 190
spatial 189, 190
organizational 190
and regionality 191
and transactional costs 190
see also science and technology parks
institutional frameworks 163, 164, 179
and innovation 188
Institutionalism 23
intangible goods 43
ownership of 47
Intellectual Property Court, EU 98
intellectual property rights 52–3, 86, 87, 152
evolution of 88
globalization of 90
interface structures
defined 146, 147
analysed 156–9
intellectual property instruments 61
see also DDA, OTRI
international balance of power 137
International Monetary Fund 89
International Patents Institute, establishment of (1945) 94
Internet 121, 122, 124, 125, 138
inter-sectoral technology transfers 119, 150
investor 13–4
investment 43
Japan Patent Office (JPO) 103, 104
Japan 102, 119
judgment, individual 21–2

Keynes, J.M. 209

knowledge
acquisition of 47
as an asset 45, 162
assets 235
capital 93
collective 46
commercialisation of 52
centre of and defence firms 179
dual technological knowledge 134, 162
economy 14, 56, 92, 208
efficiency of knowledge production 170
enclosure of 48
evolution of knowledge base 175
explicit and implicit 33
externalities of knowledge 47
gathering 224
knowledge base 56, 187, 246
knowledge-based firms 247
knowledge-based economies 92
knowledge-based industry 230, 247
nature of knowledge base 177–9
ownership of 47–8
as power 87
production 168
proprietary versus open access 56
scientific 43
sharing of 43
society 43
spillover 268
statistical analysis 177–8
strategy 162
structure 175
tacit 44, 46, 267–8
technological spread and transfer 46, 177
transfer of knowledge 163
types of 45–6
knowledge-intensive communities 35
laboratories, joint research 48–52
control of public researchers 50–51, 52
origins and necessity of joint
laboratories 51–2
potential for conflict within 49–50, 52–3
language
use of 15, 17, 20, 29, 30
speech acts 24–5
leadership, nature of 33
Life Sciences Discovery Fund
(University of Washington), US 262, 268
Life Sciences Discovery Fund
Authority (LSDFA), US 263
life sciences 257
investing in 260
commercialization 260
public sector roles 261–4
life sciences cluster 270
and business development 70, 252–3, 265
see also Seattle
Likert scale variables – descriptive
statistics 71
Lisbon strategy of knowledge
economy 56
London Business Innovation Centre
155
Madrid Agreement Concerning the
International Registration of
Marks 94
Magnuson, Warren 257
Malarkey, Susannah 263
managers and entrepreneurs,
relationship between 211
Manhattan Project 116
market economy and scientific research
65–6, 77
Marshall, Alfred 190, 209, 211, 212
Marx, Karl 209, 212, 213, 214, 217
Massachusetts Institute of Technology
118
matter sciences 70
McCreevy, Charlie 101–2
Metcalf, Robert 122
methodological interactionism 31
microbial manipulations, types
identified 135
Microsoft 257
military procurement
aeronautical industry 138–9
civilian benefits arising 117
civilian contribution to military
technology 119, 120, 153–4
dual technological knowledge 162
failures of technology transfer 117–8
interaction between 70, 74, 115, 137,
153–4, 162, 166, 215
and Internet 120–25
military procurement 139, 153, 154–5
military-industrial complex (MIC) 120,
140
MilNet 121, 123
Ministry of Defence (MoD), UK 152,
154, 155, 159
moral criticism 22
multinational firms 214–5
Myrdal, Gunnar 21–3
nanotechnology 140, 270
national innovation systems (NIS) 137–8
Index

National Institutes of Health, US 254, 256
National Research Plan, Spain 148
National Science Foundation (NSF), US 121, 122, 123–4
NSFNET 124
NATO 125
Nelson, Richard and Sidney Winter 28–30
networks 32, 44–5, 48, 53
analyses of 34–5
and social capital 221–2
as fundamental unit of economic activity 216
and entrepreneur 203, 214–17
individual social networks 44–5
and innovation 34, 163, 188, 204
innovation networks 267
and markets 44, 45
nature of network linkages 237
network density 34
network-based organization 222
and SMEs 233–4
socio-economic networks 44
soft networks 244
see also science and technology parks
NFSNET 121, 122, 124
9/11 terrorist attack, US 133, 140
Nooteboom, Bart 30–32
novel, creation of 16

OECD 59–60, 92, 146, 151, 200, 221
Office of Technology Transfer (OTT), Spain 149, 158
OTRI Network (Office for the Transfer of Research Results), Spain 147, 149–51, 152, 156, 157–8, 158, 159
outsourcing 203

Paris Convention for the Protection of Industrial Property (1883) 88, 94
‘Pasteur’s Quadrant’ 57, 60, 67, 72, 77
Patent Cooperation Treaty (PCT) 89, 93
patent systems 86
costs and other issues 103–4
efficiency of 107
European patent system 91
harmonization and globalization 88–9
harmonization of law 86, 93
historical context 87–8
institutional context and influence 168–9, 179, 181
integrated European patent system 86, 87
military industry/defence context 168
nature of patenting behaviour 175
‘patent thicket’ 66
patenting as a tool 86
patenting of research 61, 168–9
reform of 86
relationship between defence industry and patenting 170
role and characteristics of patents 87–8
in Spain 148
statistical analysis of patent acquisition behaviour 170–77
patent system in Europe:
costs of patents 103–4
emergence of patent system 87–8, 93
patent law 94
patent system in 86, 93–103
political approach to Community Patent 99–103
see also intellectual property rights
PECOS programme, Spain 148
Pentagon 120, 123
performative contradiction 25
Perry, William 119–20
pharmaceutical industry 254, 258
analyses of 255–6
and asymmetric power 256
changing nature of 255
and FIPCOs 269
funding 256
pharmaceutical TNCs 267
and R&D 265, 267, 269
strategies for development 269
planning, democratic 21–3
policy and innovation 198–9
structural policy 198
Porter, Michael 251, 265, 266
power
as forms of social action 29
indirect conditioned 28
integrative 19–21
power relations 26, 27
typologies of universities and applied research 65–6

see also clusters, patenting researchers, career patterns 46
resource potential 217–22, theoretical roots 219–22
Ricardo, David 212
riot control agents (RCA) 136
Rosenfeld, Stuart 251
Say, Jean-Baptiste 209, 211, 212
Schulz, T.W. 219
Schumpeter, Joseph Alois 13–14, 19, 37, 91, 225
approach to capitalism 209–11
on economy 213–14
on entrepreneurship 13–14, 208, 212, 213–14, 218, 223
science and technology parks (STPs) 229, 236, 247
Australia 230, 231–2
background 230–32
building networks 244–5
and cluster governance 240
conceptual framework 232
developing ties within 243–4
development of 231–2
failure to deliver 230
need for development and potential for networking 242, 243, 247
science parks defined 230
science parks 203, 231
strength of relationships within 242–4
theory of 246
United States 231
see also Brisbane Technology Park, SMEs
science and technology, relationship between 117
Science, Big 116–7
open and closed science 43
science/industry collaborations – ideal modes 52–3
scientific commons 57, 75
scientific system, function of 56
scripts, development of 30–31
Seattle, development of biotechnology industries in 254, 256

secretion problem 67–8
sectoral systems of innovation (SSI) 138
defence industry as sectoral system 164–7
sectoral systems 163
security agenda 115–16
security economy 125, 127
historical context 126–7
SEMATECH (US) 118
Shannon, Claude E 36–7
Silicon Valley model 201, 229, 252
export of model 201
skewing problem 64–6
Small Business Association (SBA), USA 202
SME 92, 136, 155, 156, 200, 202, 248
in Australia 230, 244, 245, 246, 248
and Brisbane Technology Park 236, 239
and cluster governance 240
development of 233–4
high-tech 230, 246
and innovation clusters 234–5, 245
and networks 233
potential of 233
and science parks 230, 232–5, 244, 246
in US 139
Smith, Adam 43, 50, 211, 214, 217, 219
social capital 34, 219, 220–22
analyses of 220–21
society 15–16
knowledge based 230
Spain
innovation in 147–51
research and innovation in 148
transition to democracy 147–8
spin-off and spin-in 115, 116, 136
Stanford Research Park, US 229, 231
STAR 21 Report (Strategic Aerospace Review for the 21st Century) 129
state
and economy 197–8
and investment 199
structural policy 198–9
role in innovation 196–9
State Science and Technology Institute (SSTI), US 256, 257, 269
Stokes, Donald 57, 61, 72
Index

Strategic Computing Initiative (US) 118
Strategic National Stockpile (SNS) 134
streamlining, industrial 203
Sweden 119
systems, barriers within 146
TCP/IP, development of 122, 123, 124
team building, nature of 33
technical change, study of 137
technical interchange 234
technology
barriers to technology transfer 146–7
military technology in civilian contexts 117
technological innovation 167
‘technological spillovers’ 119
technology and contingency 140
use of technology in several domains 166
Technology Alliance 263, 267
Technology Diversification Managers (TDM), UK 154
technology, dual use (DUT) 115, 116, 119, 165–7
analyses of 119, 165–7
data and theoretical expectations 167–9
and social needs 140
Technology Reinvestment Program (TRP, US) 120
tragedy of the anti-commons 66
transnational companies (TNC) 215, 270
analyses of 267–8
TRANSPORT 130
Trump, Donald 13
UK
and biochemical weapons 133
and defence 147
technological development in 119, 122, 139
United Kingdom Science Park Association 230
United Nations 89
United States Patent and Trademark Office (USPTO) 103, 104
universities and business operation 253
University of Washington 256–7
UNIX, development of 122, 124
USA 92, 102, 115, 117
and biochemical weapons 133–5
and biotechnology business 253
patents in 105, 107
security in 116, 125, 127, 128, 135
technological development in 117–8, 119–20, 122, 131, 139–40
see also ARPANET; Bayh-Dole Act;
Defense Advanced Research Projects Agency; Defense Communications Agency;
Department of Defence;
Department of Health and Human Services; Department of Homeland Security;
National Institutes of Health;
Seattle; Silicon Valley
value structure, changes in 16
venture capital 253, 265
and biotechnology 253, 255, 264
investment 260–61
venture capital societies 203
Walras, Léon 210, 213
war and technological progress,
relationship between 115, 116, 133
Washington Biotechnology and
Biomedical Association (WBBA), US 257, 258, 267, 2668
Washington Learns” project, US 263
weapons, lethal and non-lethal 135–6
Weber, Max 220
Welsh Knowledge Employment Fund 155–6
Witt, U. 32–3
World Bank 89, 221
World Intellectual Property Organization (WIPO, 1967) 89
World Trade Organization (WTO, 1995, replaced General Agreement on Tariffs and Trade) 90
World Wide Web (WWW) 121, 125
Xerox PARC 122