Index

actors within a system 176–7, 190–91, 196–204
and actions 196
economic 191
and locality 191
networking between 199
and not knowing what is unknown 147
Advanced Research Projects Agency (ARPA) see ARPANET; Defense
Advanced Research Projects Agency
aeronautics 138, 169
aerospace industry 162
Agence Nationale de la Recherche (ANR, France) 78
Agreement on Trade Related Aspects Intellectual Property Rights
(TRIPS agreement) 90, 98, 101
Allen, Paul 257
Alliance of Angels (investor network, US) 263
Arendt, Hannah 26
arguing and bargaining, theoretical dichotomy between 26
ARPANET 121, 122, 123, 124, 125
and US universities 123
Australia, technology parks 229, 232
see also Brisbane Technology Park
Australian Institute for Commercialisation (AIC) 245
Austrian Economics 25, 37
AUTODIN II 123

Bacon, Sir Francis 87
Baecker, Dirk 36–7
Baran, Paul 120
Bayh-Dole Act, US 61, 255, 257, 267
Bell Labs and development of transistors 57
Berne Convention on industrial property (1886) 88–9
Berners-Lee, Tim 121, 124–5
Bill and Melinda Gates Foundation 270
biochemical weapons, distinction between categories 135–6
Biological and Toxin Weapons Convention (BWC, 1972) 133
Biomedical Advanced Research and Development Authority (BARDA) 134, 136
biotechnology and biomedical projects 66, 116, 127, 133–6, 140, 252, 254, 267
analyses of developments 255–6, 264, 267–8
factors in startup 264
in Germany 267–8
global aspects 254
in US 254–5
venture capital and 253, 255, 265–6
see also pharmaceuticals; Prosperity Partnership; Seattle
Biotechnology Industry Organization (BIO) 136
bioweapons 134
Boulding, Kenneth E. 14–21, 23, 31
concept of change 23
on conflict resolution 17–19
Bourdieu, Pierre 220
Bretton Woods institutions 89
Brisbane Technology Park (BTP) 230, 232
access to knowledge 238–9
government sponsorship and 240–41
interactions within 238, 239
lack of cooperation between businesses in 238–9, 240
need for promoting cooperation 241
network linkages 237–40
perceived benefits 239
study of 235–45, 246, 247
weakness of internal linkages 242–3
Index

BRITE-EURAM 130
business angels 203–4
business creation and capitalism
209–17
cafeteria, myth of 49
Cambridge Phenomenon 229
Cantillon, Richard 211–12
capitalism and business creation 209–17
dynamics of 209–10
entrepreneurial 210–17
persistence of 214
Schumpeter on 208, 214
self destruction of 208, 214
Marx on 214
in 21st century 214–5
see also entrepreneur
capitalists 211
causation, cumulative circular 21–3
CEA (Commissariat à l’Energie Atomique, France) 58, 62–3
analysis of researchers within 68–76
Centre National de la Recherche Scientifique (CNRS) 43, 44, 48–55
and joint laboratories 48–51
CERN 121, 122, 125
CERNET 122
Chemical Weapons Convention 136
chemical weapons, use of 133
‘clump’ grouping business model 251, 252, 253
problems with 252
see also clusters
clusters
analyses of 251–3, 265, 266, 267–8
awareness of independence 251–2
of businesses 251–71
cluster initiatives 252
cluster model 251
cluster strategies 264
cluster studies 252, 265
cluster theory 246–7
competitive 202
factors behind success 252
development of 245
distinction from ‘elumps’ 251, 252, 268
governance 240–47
and innovation 34
interdependencies 251–2
Italian 266
linkages 241
life sciences 270
relationships 242
theory and strategy behind 265–8
see also Brisbane Technology Park;
science and technology parks
clustering organisations 242
COGEMA 118
cognitive apprenticeship 46
cognitive resources 45–6
cognitive science 31
communicated routines and scripts,
concept of 28–32
communication
analysis of communication 36–7
between actors 36
and clusters 34
cybernetic approach 36
innovative capacities of 14, 28–32,
35–7
mathematical theory 36–7
symbols and 15
communicative action 24–6, 32, 33, 36
Communicative Action, Theory of
24–6
communicative rationality 25
communicative power 268
communicative culture 35
Community Patent Convention (CPC,
EEC, 1975) 95, 96
conflicts 17, 22–3
conflict resolution:
compromise 18
jurisdiction and conflict resolution
18
means of 17–19, 21
and mediation 18–19
markets as means of conflict
resolution 17
reconciliation 18
contingency and structural planning
140
contracts, economic theory of 47
Convention on the Establishment of a
Community Patent System 94–5
Conventions on patents 94
cooperation networks 233
analysis of company strategies 193–6
corporate coherence 181

governance 215

ehegemony, concept of 28

Council for Scientific Research
(Consejo Superior de Investigaciones Científicas, CSIC, Spain) 148, 150

Council of Europe 94

creative destruction, concept of 14, 28

CSNET 121, 124
cybernetics 37

CYCLADES 122

Danish Council of Technology 34

DATAR 196, 201–2
defence
during Cold War era 162, 165
during post-Cold War era 162, 165
boundaries identified 164–5
defence firms 162
dual technology 165–7
historical context 126–7
industry as an institutional environment 162, 166, 179–81
institutional context and data analysis 169–77
and knowledge structures 177–81
as a particular structure 164–7
and patenting 168–77
as a specific structure 164–7
see also Department of Defence; military; R&D

Defence Diversification Agency (DDA), UK 147, 151–8, 159
establishment 153
brokering services 155, 158
and civilian access to military technology 153, 156
functions and services provided 154–8
and identifying relevant civilian technology 154

Defence Evaluation and Research Agency (DERA, 1995), UK 151–2, 153

Defence Research Agency (1991), UK 151

Defence Technologies Enterprises Ltd, UK 158

Defense Advanced Research Projects Agency (DARPA US: variously ARPA) 120–21, 122, 123, 124, 125

Defense Communications Agency (DCA, now Defense Information Systems Agency, DISA) 121, 123
democracy
derived 22
and discussion 22–3

Denison, E. F. 219

Department of Defence (DoD), US 125, 138, 168
and technological development 117, 118
and biotechnology 116, 127, 136, 139
and development of the internet 120

Department of Health and Human Services (HHS), US 134

Department of Homeland Security (DHS), US
and biotechnology 116, 127, 134
R&D 136, 139

DGA, France 120
dialogue and communication, relationship between 26
discourse
participants in 25
discourse ethics 24–6

Discovery Fund, US 264

Drewell, Bob 251
dual use technology and knowledge see under technology; knowledge

EADS 118
economic arrangements
economic growth and development 215
economic environment and innovation 187
economic system and networks 216–17, 221–2
types of 47
economic development 13
as being local 271
economic cycles 213
economic proximity and innovation 189–92
types of economic proximity 189, 190
economics, neoclassical view 14, 15, 17
and entrepreneurs 215–16
local 198, 199
microeconomic analysis 14, 15
network 202
economy
global 229
and innovation 13, 187–8
knowledge economy 14, 56, 92, 208
and research 59
local economies 198
and security 125
shift from labour-intensive to
knowledge-intensive 229
Elster, Jon 26
e-mail, development of 124
entrepreneur 200, 208, 243–4
as an agent 224
background of 209, 225
and banking 220, 223
Pierre Bourdieu on 220
and capitalism 208, 210, 214
and change 222–3
defined 212
disappearance of with firm size 208, 213
economists’ and other analyses of
13–14, 32–3, 209, 215–16, 220–21, 222, 224
fundraising ability 218
nature of 13–14, 200, 208
transnational 34
resource potential 208, 217–24
and managers 211
and networks 214, 222–4
and risk 211
Schumpeter on 13–14, 208, 209–12
Marx on 213
and networks 214–17
resource potential 217–22, 224, 225
and social capital 219–21
and social relations 220–22
entrepreneurial maturity 224
entrepreneurship 139–40
Boulding and 14–16
entrepreneurial maturity 224
as a function 208–9, 211, 222
key factors of 223–4
‘organic square’ of 222, 223
speculative entrepreneurship 203
Schumpeter on 14, 208, 209–14
see also innovation
ESPRIT 130
ESRP 130
Ethernet 122, 124
Europe
developments in 100–103, 106–7
costs and technical difficulties
(patent issues) 103–4
harmonization in (patent issues)
105–7
European Coal and Steel Community
(1951) 89
European Economic Community
(EEC, 1957)/later European
Community/and then European
Union (EU) 89, 90, 104, 115, 125
Common Political Approach
99–100, 101, 102
Commission Proposals 100
European Commission 127, 129, 132
European Policy 105–6
harmonization 104–6, 107
London Agreement 104–5
Maastricht criteria 106
and outer space 130–32
and patent issues 97
security and defence issues 115, 127, 129–30
security strategy 135
Stability and Growth Pact 106
and trademarks 97
Treaty of Nice 100
see also Galileo; European Patent
Convention
European Patent Convention (EPC)
89, 93, 95, 101
history of EPC 89, 95–7
consultation on Community Patent
101
Proposal described 97–9
translation costs 104–5
European Patent Litigation Agreement
(EPLA) 102, 105
European Patent Office (EPO) 95, 96, 98, 100, 103–4, 105, 168, 172, 179
European Patent Organization 95–6
European space programme 115–6, 130–32
European Space Agency (ESA) 129, 130
European Union see European Economic Community

Farnborough Enterprise Hub 155
firms and businesses
benefits of outsourcing and independent units 202–3
and clusters 195–6
company strategies 192–6
and decentralisation 199–200, 203
decision making in 194
development of 193–5, 214–5
development 200–201
expansion 193–4
external benefits to 195–6
and external investment 203–4
firm defined 192–3
global firms 196
and hierarchies 193
interrelationship between firms of different sizes 215
and innovation 187–8
knowledge structure 177–81
management in 203
and milieu 192, 196
risks faced by 194
and ‘permanent innovation’ 195
scientific and technical activities 195
theory of corporate governance 215
transactional costs 194, 195
see also clusters; entrepreneur;
networks; patents; science and technology parks
foreign direct investment (FDI) 90
Former Soviet Union (FSU) 133
France, research in 61, 196–7, 201
DATAR 196, 201–2
innovation in 201
intersectoral transfers, difficulties with 140
technological development in 118, 119, 120, 139
Fred Hutchinson Cancer Research Centres 256–7
developments 265–8
FSCP 132

fully integrated pharmaceutical companies (FIPCOs) 269

Galbraith, John Kenneth 126, 216, 225
on power 27–8
Galileo programme 130–32
services provided by 131, 132
Gates, Bill 257
General Agreement on Tariffs and Trade (GATT, 1944, replaced by World Trade Organization) 89, 90
Geneva Protocol on chemical and biological material in war (1925) 133, 136
genomics 257
Germany 119
Global Monitoring for Environment and Security (GMES) 130, 132
Global Positioning System (GPS) US 131
global risks 128
globalization 137–8
and harmonization and innovation 88–93
security issues 125, 126–7
triadic nature of 90
Goebbels, R., Minister of the Economy, Luxembourg 90
governments and innovation 200–201
see also defence; Defence Diversification Agency; Defence Evaluation and Research Agency; European Economic Community; European Union; Internet; military, Ministry of Defence
GREMI (University of Neuchâtel, Switzerland) 191

Habermas, J. 24–7, 28, 38
harmonization 91
hermeneutics 32
homeland security industry, US 127, 128
human capital, concept 219–20
human genome mapping 254, 257, 270
Huntsman, Dr Lee 262, 263
Hyper-Text Markup Language (HTML) and Hyper-Text Transfer Protocol (HTTP), establishment of 121, 124
explicit and implicit 33
externalities of knowledge 47
gathering 224
knowledge base 56, 187, 246
knowledge-based firms 247
knowledge-based economies 92
knowledge-based industry 230, 247
nature of knowledge base 177–9
ownership of 47–8
as power 87
production 168
proprietary versus open access 56
scientific 43
sharing of 43
society 43
spillover 268
statistical analysis 177–8
strategy 162
structure 175
tacit 44, 46, 267–8
technological spread and transfer 46, 177
transfer of knowledge 163
types of 45–6
knowledge-intensive communities 35

laboratories, joint research 48–52
control of public researchers 50–51, 52
origins and necessity of joint laboratories 51–2
potential for conflict within 49–50, 52–3
language
use of 15, 17, 20, 29, 30
speech acts 24–5
leadership, nature of 33
Life Sciences Discovery Fund
(University of Washington), US 262, 268
Life Sciences Discovery Fund
Authority (LSDFA), US 263
life sciences 257
investing in 260
commercialization 260
public sector roles 261–4
life sciences cluster 270
and business development 70, 252–3, 265
see also Seattle
Likert scale variables – descriptive
statistics 71
Lisbon strategy of knowledge economy 56
London Business Innovation Centre 155
Madrid Agreement Concerning the
International Registration of Marks 94
Magnuson, Warren 257
Malarkey, Susannah 263
managers and entrepreneurs,
relationship between 211
Manhattan Project 116
market economy and scientific research 65–6, 77
Marshall, Alfred 190, 209, 211, 212
Marx, Karl 209, 212, 213, 214, 217
Massachusetts Institute of Technology 118
matter sciences 70
McCreevy, Charlie 101–2
Metcalf, Robert 122
methodological interactionism 31
microbial manipulations, types
identified 135
Microsoft 257
military procurement
aeronautical industry 138–9
civilian benefits arising 117
civilian contribution to military technology 119, 120, 153–4
dual technological knowledge 162
failures of technology transfer 117–8
interaction between 70, 74, 115, 137, 153–4, 162, 166, 215
and Internet 120–25
military procurement 139, 153, 154–5
military-industrial complex (MIC) 120, 140
MilNet 121, 123
Ministry of Defence (MoD), UK 152, 154, 155, 159
moral criticism 22
multinational firms 214–5
Myrdal, Gunnar 21–3
nanotechnology 140, 270
national innovation systems (NIS) 137–8
Index

National Institutes of Health, US 254, 256
National Research Plan, Spain 148
National Science Foundation (NSF), US 121, 122, 123–4
NSFNET 124
NATO 125
Nelson, Richard and Sidney Winter 28–30
networks 32, 44–5, 48, 53
analyses of 34–5
and social capital 221–2
as fundamental unit of economic activity 216
and entrepreneur 203, 214–17
individual social networks 44–5
and innovation 34, 163, 188, 204
innovation networks 267
and markets 44, 45
nature of network linkages 237
network density 34
network-based organization 222
and SMEs 233–4
socio-economic networks 44
soft networks 244
see also science and technology parks
NFSNET 121, 122, 124
9/11 terrorist attack, US 133, 140
Nooteboom, Bart 30–32
novel, creation of 16
OECD 59–60, 92, 146, 151, 200, 221
Office of Technology Transfer (OTT), Spain 149, 158
OTRI Network (Office for the Transfer of Research Results), Spain 147, 149–51, 152, 156, 157–8, 158, 159
outsourcing 203
Paris Convention for the Protection of Industrial Property (1883) 88, 94
‘Pasteur’s Quadrant’ 57, 60, 67, 72, 77
Patent Cooperation Treaty (PCT) 89, 93
patent systems 86
costs and other issues 103–4
efficiency of 107
European patent system 91
harmonization and globalization 88–9
harmonization of law 86, 93
historical context 87–8
institutional context and influence 168–9, 179, 181
integrated European patent system 86, 87
military industry/defence context 168
nature of patenting behaviour 175
‘patent thicket’ 66
patenting as a tool 86
patenting of research 61, 168–9
reform of 86
relationship between defence industry and patenting 170
role and characteristics of patents 87–8
in Spain 148
statistical analysis of patent acquisition behaviour 170–77
patent system in Europe:
costs of patents 103–4
emergence of patent system 87–8, 93
patent law 94
patent system in 86, 93–103
political approach to Community Patent 99–103
see also intellectual property rights
PECOS programme, Spain 148
Pentagon 120, 123
performative contradiction 25
Perry, William 119–20
pharmaceutical industry 254, 258
analyses of 255–6
and asymmetric power 256
changing nature of 255
and FIPCOs 269
funding 256
pharmaceutical TNCs 267
and R&D 265, 267, 269
strategies for development 269
planning, democratic 21–3
policy and innovation 198–9
structural policy 198
Porter, Michael 251, 265, 266
power
as forms of social action 29
indirect conditioned 28
integrative 19–21
power relations 26, 27
types of 19–20, 28
private sector companies and research
46
Procurement Agency, France 168
Prodi, Romano 129
production and organization 203
Project BioShield (US) 134, 136
Prosperity Partnership (Seattle, US)
261–2, 267, 268, 270
cluster strategy 262, 263–4
research strategy 270
Public Choice School 209
Public Regulated Services (PRS)
131
public research organizations (PROs)
56, 61, 65, 67–8
public research systems 56
Puget Sound Regional Council (PSRC)
261
Puget Sound, US 251, 259, 266
QinetiQ 152
Queensland, Australia 230, 235
R&D 47, 119, 137, 175, 195
biotechnology 138, 139, 264, 265,
267
decentralised 199
and defence industry 139, 140, 163,
164, 165, 179
and dual use technology 119, 166
expenditure and innovation 187
in Europe 92, 93, 106
in France 118, 201
and innovation 187, 195
investment in 43, 50, 92, 93
knowledge base 177, 187
knowledge transfer 163
and military 117, 133
patenting patterns 177
and pharmaceutical sciences 265,
266, 267, 269
provisions for 77
and science and technology parks
229, 243, 245, 247
in Spain 148, 149, 150, 151, 159
state and 197, 263
in US 93, 122, 127, 136, 138
see also DATAR; entrepreneur;
innovation, patenting
R&T 129
RAND 120, 122
‘Realm of Technology’ 62
Regional Development Authority 159
regional milieu 187, 188, 191
regional dynamics 189
regional development 269
‘Republic of Science’ 57, 62
Research Triangle Park, US 229, 231
research 46
2D analysis of 57, 60–61, 63
3D analysis 57, 62–4, 69, 78
analysis of research 57, 59, 65–6
applied research 59–60, 64, 65, 72,
74
basic research 59, 60, 72
characterising 58–64
collaborative research, appropriation
of 47
commercialising research 201
curiosity driven research 57, 58, 63,
70, 75, 76, 77
definitions and taxonomies of 59–66
degree of exogeneity 59
distinctions between pure and
applied 58, 59–61, 63–4, 76
financing of 59, 77
and ‘fundamental knowledge’ 62, 63,
64, 74, 76, 77–8
goals and outcomes 57
idealistic 63–4
interaction between pure and
applied 63, 72–5, 77–8
open-access research 61, 74, 76
patenting of research 61, 136
proprietary research 77
and proximity of research units
49–50
public 56, 57, 61
publishing 67
reform of public research, US, 1980
61
and publication 57, 62
relevance of 57, 60, 64–8
secrecy issue 60, 67–8
skewing problem 64–6
taxonomies of 58, 59–60, 62–4, 72,
78, 82
technological 60, 62–4
terminology used 59
typologies of universities and applied research 65–6

see also clusters, patenting researchers, career patterns 46

resource potential 217–22, theoretical roots 219–22

Ricardo, David 212

riot control agents (RCA) 136

Rosenfeld, Stuart 251

Say, Jean-Baptiste 209, 211, 212

Schulz, T.W. 219

Schumpeter, Joseph Alois 13–14, 19, 37, 91, 225

approach to capitalism 209–11

on economy 213–14

on entrepreneurship 13–14, 208, 212, 213–14, 218, 223

science and technology parks (STPs) 229, 236, 247

Australia 230, 231–2

background 230–32

building networks 244–5

and cluster governance 240

conceptual framework 232

developing ties within 243–4

development of 231–2

failure to deliver 230

need for development and potential for networking 242, 243, 247

science parks defined 230

science parks 203, 231

strength of relationships within 242–4

theory of 246

United States 231

see also Brisbane Technology Park, SMEs

science and technology, relationship between 117

Science, Big 116–7

open and closed science 43

science/industry collaborations – ideal modes 52–3

scientific commons 57, 75

scientific system, function of 56

scripts, development of 30–31

Seattle, development of biotechnology industries in 254, 256

secrecy problem 67–8

sectoral systems of innovation (SSI) 138

defence industry as sectoral system 164–7

sectoral systems 163

security agenda 115–16

security economy 125, 127

historical context 126–7

SEMATECH (US) 118

Shannon, Claude E 36–7

Silicon Valley model 201, 229, 252

export of model 201

skewing problem 64–6

Small Business Association (SBA), USA 202

SME 92, 136, 155, 156, 200, 202, 248

in Australia 230, 244, 245, 246, 248

and Brisbane Technology Park 236, 239

and cluster governance 240

development of 233–4

high-tech 230, 246

and innovation clusters 234–5, 245

and networks 233

potential of 233

and science parks 230, 232–5, 244, 246

in US 139

Smith, Adam 43, 50, 211, 214, 217, 219

social capital 34, 219, 220–22

analyses of 220–21

society 15–16

knowledge based 230

Spain

innovation in 147–51

research and innovation in 148

transition to democracy 147–8

spin-off and spin-in 115, 116, 136

Stanford Research Park, US 229, 231

STAR 21 Report (Strategic Aerospace Review for the 21st Century) 129

state

and economy 197–8

and investment 199

structural policy 198–9

role in innovation 196–9

State Science and Technology Institute (SSTI), US 256, 257, 269

Stokes, Donald 57, 61, 72
Index

Strategic Computing Initiative (US) 118
Strategic National Stockpile (SNS) 134
streamlining, industrial 203
Sweden 119
systems, barriers within 146
TCP/IP, development of 122, 123, 124
team building, nature of 33
technical change, study of 137
technical interchange 234
technology
 barriers to technology transfer 146–7
 military technology in civilian contexts 117
 technological innovation 167
 ‘technological spillovers’ 119
 technology and contingency 140
 use of technology in several domains 166
Technology Alliance 263, 267
Technology Diversification Managers (TDM), UK 154
technology, dual use (DUT) 115, 116, 119, 165–7
 analyses of 119, 165–7
data and theoretical expectations 167–9
 and social needs 140
Technology Reinvestment Program (TRP, US) 120
tragedy of the anti-commons 66
transnational companies (TNC) 215, 270
 analyses of 267–8
TRANSPORT 130
Trump, Donald 13

UK
 and biochemical weapons 133
 and defence 147
 technological development in 119, 122, 139
United Kingdom Science Park Association 230
United Nations 89
United States Patent and Trademark Office (USPTO) 103, 104
universities and business operation 253

University of Washington 256–7
UNIX, development of 122, 124
USA 92, 102, 115, 117
 and biochemical weapons 133–5
 and biotechnology business 253
 patents in 105, 107
 security in 116, 125, 127, 128, 135
 technological development in 117–8, 119–20, 122, 131, 139–40
see also ARPA N ET; Bayh-Dole Act;
 Defense Advanced Research Projects Agency;
 Defense Communications Agency;
 Department of Defence;
 Department of Health and Human Services;
 Department of Homeland Security;
 National Institutes of Health;
 Seattle; Silicon Valley

value structure, changes in 16
venture capital 253, 265
 and biotechnology 253, 255, 264
 investment 260–61
 venture capital societies 203

Walras, Léon 210, 213
war and technological progress, relationship between 115, 116, 133
Washington Biotechnology and Biomedical Association (WBBA), US 257, 258, 267, 2668
Washington Learns” project, US 263
weapons, lethal and non-lethal 135–6
Weber, Max 220
Welsh Knowledge Employment Fund 155–6
Witt, U. 32–3
World Bank 89, 221
World Intellectual Property Organization (WIPO, 1967) 89
World Trade Organization (WTO, 1995, replaced General Agreement on Tariffs and Trade) 90
World Wide Web (WWW) 121, 125
Xerox PARC 122