Index

actors within a system 176–7, 190–91, 196–204
and actions 196 economic 191 and locality 191 networking between 199 and not knowing what is unknown 147
Advanced Research Projects Agency (ARPA) see ARPANET; Defense Advanced Research Projects Agency
aeronautics 138, 169 aerospace industry 162 Agence Nationale de la Recherche (ANR, France) 78 Agreement on Trade Related Aspects Intellectual Property Rights (TRIPS agreement) 90, 98, 101
Allen, Paul 257 Alliance of Angels (investor network, US) 263 Arendt, Hannah 26 arguing and bargaining, theoretical dichotomy between 26 ARPANET 121, 122, 123, 124, 125 and US universities 123 Australia, technology parks 229, 232 see also Brisbane Technology Park Australian Institute for Commercialisation (AIC) 245 Austrian Economics 25, 37 AUTODIN II 123
Index

BRITE-EURAM 130
business angels 203–4
business creation and capitalism 209–17
cafeteria, myth of 49
Cambridge Phenomenon 229
Cantillon, Richard 211–12
capitalism and business creation 209–17
dynamics of 209–10
entrepreneurial 210–17
persistence of 214
Schumpeter on 208, 214
self destruction of 208, 214
Marx on 214
in 21st century 214–5
see also entrepreneur
capitalists 211
causation, cumulative circular 21–3
CEA (Commissariat à l’Energie Atomique, France) 58, 62–3
analysis of researchers within 68–76
Centre National de la Recherche Scientifique (CNRS) 43, 44, 48–55
and joint laboratories 48–51
CERN 121, 122, 125
CERNET 122
Chemical Weapons Convention 136
chemical weapons, use of 133
‘clump’ grouping business model 251, 252, 253
problems with 252
see also clusters
clusters analyses of 251–3, 265, 266, 267–8
awareness of independence 251–2
of businesses 251–71
cluster initiatives 252
cluster model 251
cluster strategies 264
cluster studies 252, 265
cluster theory 246–7
competitive 202
factors behind success 252
development of 245
distinction from ‘clumps’ 251, 252, 268
governance 240–47
and innovation 34
interdependencies 251–2
Italian 266
linkages 241
life sciences 270
relationships 242
theory and strategy behind 265–8
see also Brisbane Technology Park;
science and technology parks
clustering organisations 242
COGEMA 118
cognitive apprenticeship 46
cognitive resources 45–6
cognitive science 31
communicated routines and scripts, concept of 28–32
communication analysis of communication 36–7
between actors 36
and clusters 34
cybernetic approach 36
innovative capacities of 14, 28–32, 35–7
mathematical theory 36–7
symbols and 15
communicative action 24–6, 32, 33, 36
Communicative Action, Theory of 24–6
communicative rationality 25
communicative power 268
communicative culture 35
Community Patent Convention (CPC, EEC, 1975) 95, 96
conflicts 17, 22–3
conflict resolution: compromise 18
jurisdiction and conflict resolution 18
means of 17–19, 21
and mediation 18–19
markets as means of conflict resolution 17
reconciliation 18
contingency and structural planning 140
contracts, economic theory of 47
Conventions on patents 94
cooperation networks 233
analysis of company strategies 193–6
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate coherence</td>
<td>181</td>
</tr>
<tr>
<td>Governance</td>
<td>215</td>
</tr>
<tr>
<td>Hegemony, concept of</td>
<td>28</td>
</tr>
<tr>
<td>Council for Scientific Research (Consejo Superior de Investigaciones Científicas, CSIC, Spain)</td>
<td>148, 150</td>
</tr>
<tr>
<td>Council of Europe</td>
<td>94</td>
</tr>
<tr>
<td>Creative destruction, concept of</td>
<td>14, 28</td>
</tr>
<tr>
<td>CSNET</td>
<td>121, 124</td>
</tr>
<tr>
<td>Cybernetics</td>
<td>37</td>
</tr>
<tr>
<td>CYCLADES</td>
<td>122</td>
</tr>
<tr>
<td>Danish Council of Technology</td>
<td>34</td>
</tr>
<tr>
<td>DATAR</td>
<td>196, 201–2</td>
</tr>
<tr>
<td>Defence during Cold War era</td>
<td>162, 165</td>
</tr>
<tr>
<td>Defence during post-Cold War era</td>
<td>162, 165</td>
</tr>
<tr>
<td>Defence firms identified</td>
<td>164–5</td>
</tr>
<tr>
<td>Dual technology</td>
<td>165–7</td>
</tr>
<tr>
<td>Historical context</td>
<td>126–7</td>
</tr>
<tr>
<td>Industry as an institutional environment</td>
<td>162, 166, 179–81</td>
</tr>
<tr>
<td>Institutional context and data analysis</td>
<td>169–77</td>
</tr>
<tr>
<td>and knowledge structures</td>
<td>177–81</td>
</tr>
<tr>
<td>as a particular structure</td>
<td>164–7</td>
</tr>
<tr>
<td>and patenting</td>
<td>168–77</td>
</tr>
<tr>
<td>as a specific structure</td>
<td>164–7</td>
</tr>
<tr>
<td>see also Department of Defence; military; R&D</td>
<td></td>
</tr>
<tr>
<td>Defence Diversification Agency (DDA), UK</td>
<td>147, 151–8, 159</td>
</tr>
<tr>
<td>Establishment</td>
<td>153</td>
</tr>
<tr>
<td>Brokering services</td>
<td>155, 158</td>
</tr>
<tr>
<td>and civilian access to military technology</td>
<td>153, 156</td>
</tr>
<tr>
<td>Functions and services provided</td>
<td>154–8</td>
</tr>
<tr>
<td>and identifying relevant civilian technology</td>
<td>154</td>
</tr>
<tr>
<td>Defence Evaluation and Research Agency (DERA, 1995), UK</td>
<td>151–2, 153</td>
</tr>
<tr>
<td>Defence Research Agency (1991), UK</td>
<td>151</td>
</tr>
<tr>
<td>Defence Technologies Enterprises Ltd, UK</td>
<td>158</td>
</tr>
<tr>
<td>Defense Advanced Research Projects Agency (DARPA US; variously ARPA)</td>
<td>120–21, 122, 123, 124, 125</td>
</tr>
<tr>
<td>Defense Communications Agency (DCA, now Defense Information Systems Agency, DISA)</td>
<td>121, 123</td>
</tr>
<tr>
<td>Democracy defined</td>
<td>22</td>
</tr>
<tr>
<td>and discussion</td>
<td>22–3</td>
</tr>
<tr>
<td>Denison, E.F.</td>
<td>219</td>
</tr>
<tr>
<td>Department of Defence (DoD), US</td>
<td>125, 138, 168</td>
</tr>
<tr>
<td>and technological development</td>
<td>117, 118</td>
</tr>
<tr>
<td>and biotechnology</td>
<td>116, 127, 136, 139</td>
</tr>
<tr>
<td>and development of the internet</td>
<td>120</td>
</tr>
<tr>
<td>Department of Health and Human Services (HHS), US</td>
<td>134</td>
</tr>
<tr>
<td>Department of Homeland Security (DHS), US</td>
<td></td>
</tr>
<tr>
<td>and biotechnology</td>
<td>116, 127, 134</td>
</tr>
<tr>
<td>R&D 136, 139</td>
<td></td>
</tr>
<tr>
<td>DGA, France</td>
<td>120</td>
</tr>
<tr>
<td>Dialogue and communication</td>
<td></td>
</tr>
<tr>
<td>Relationship between</td>
<td>26</td>
</tr>
<tr>
<td>Discourse participants</td>
<td>25</td>
</tr>
<tr>
<td>Discourse ethics</td>
<td>24–6</td>
</tr>
<tr>
<td>Discovery Fund, US</td>
<td>264</td>
</tr>
<tr>
<td>Drewell, Bob</td>
<td>251</td>
</tr>
<tr>
<td>Dual use technology and knowledge see under technology; knowledge</td>
<td></td>
</tr>
<tr>
<td>EADS 118</td>
<td></td>
</tr>
<tr>
<td>Economic arrangements</td>
<td></td>
</tr>
<tr>
<td>Economic growth and development</td>
<td>215</td>
</tr>
<tr>
<td>Economic environment and innovation</td>
<td>187</td>
</tr>
<tr>
<td>Economic system and networks</td>
<td>216–17, 221–2</td>
</tr>
<tr>
<td>Types of 47</td>
<td></td>
</tr>
<tr>
<td>Economic development</td>
<td>13</td>
</tr>
<tr>
<td>As being local</td>
<td>271</td>
</tr>
<tr>
<td>Economic cycles</td>
<td>213</td>
</tr>
<tr>
<td>Economic proximity and innovation</td>
<td>189–92</td>
</tr>
<tr>
<td>Types of economic proximity</td>
<td>189, 190</td>
</tr>
</tbody>
</table>
economics, neoclassical view 14, 15, 17
and entrepreneurs 215–16
local 198, 199
microeconomic analysis 14, 15
network 202
economy
global 229
and innovation 13, 187–8
knowledge economy 14, 56, 92, 208
and research 59
local economies 198
and security 125
shift from labour-intensive to
knowledge-intensive 229
Elster, Jon 26
email, development of 124
entrepreneur 200, 208, 243–4
as an agent 224
background of 209, 225
and banking 220, 223
Pierre Bourdieu on 220
and capitalism 208, 210, 214
and change 222–3
defined 212
disappearance of with firm size 208, 213
economists’ and other analyses of 13–14, 32–3, 209, 215–16, 220–21, 222, 224
fundraising ability 218
nature of 13–14, 200, 208
transnational 34
resource potential 208, 217–24
and managers 211
and networks 214, 222–4
and risk 211
Schumpeter on 13–14, 208, 209–12
Marx on 213
and networks 214–17
resource potential 217–22, 224, 225
and social capital 219–21
and social relations 220–22
entrepreneurial maturity 224
entrepreneurship 139–40
Boulding and 14–16
entrepreneurial maturity 224
as a function 208–9, 211, 222
key factors of 223–4
organic paradigm of
entrepreneurship 223–4, 225
‘organic square’ of 222, 223
speculative entrepreneurship 203
Schumpeter on 14, 208, 209–14
see also innovation
ESPRIT 130
ESRP 130
Ethernet 122, 124
Europe
developments in 100–103, 106–7
costs and technical difficulties
(patent issues) 103–4
harmonization in (patent issues) 105–7
European Coal and Steel Community
(1951) 89
European Economic Community
(EEC, 1957)/later European Community/and then European Union (EU) 89, 90, 104, 115, 125
Common Political Approach
99–100, 101, 102
Commission Proposals 100
European Commission 127, 129, 132
European Policy 105–6
harmonization 104–6, 107
London Agreement 104–5
Maastricht criteria 106
and outer space 130–32
and patent issues 97
security and defence issues 115, 127, 129–30
security strategy 135
Stability and Growth Pact 106
and trademarks 97
Treaty of Nice 100
see also Galileo; European Patent Convention
European Patent Convention (EPC)
89, 93, 95, 101
history of EPC 89, 95–7
consultation on Community Patent 101
Proposal described 97–9
translation costs 104–5
European Patent Litigation Agreement (EPLA) 102, 105
European Patent Office (EPO) 95, 96, 98, 100, 103–4, 105, 168, 172, 179
European Patent Organization 95–6
European space programme 115–6, 130–32
European Space Agency (ESA) 129, 130
European Union see European Economic Community

Farnborough Enterprise Hub 155
firms and businesses
benefits of outsourcing and independent units 202–3
and clusters 195–6
company strategies 192–6)
and decentralisation 199–200, 203
decision making in 194
development of 193–5, 214–5
development 200–201
expansion 193–4
external benefits to 195–6
and external investment 203–4
firm defined 192–3
global firms 196
and hierarchies 193
interrelationship between firms of different sizes 215
and innovation 187–8
knowledge structure 177–81
management in 203
and milieu 192, 196
risks faced by 194
and ‘permanent innovation’ 195
scientific and technical activities 195
theory of corporate governance 215
transactional costs 194, 195
see also clusters; entrepreneur;
networks; patents; science and technology parks
foreign direct investment (FDI) 90
Former Soviet Union (FSU) 133
France, research in 61, 196–7, 201
DATAR 196, 201–2
innovation in 201
intersectoral transfers, difficulties with 140
technological development in 118, 119, 120, 139
Fred Hutchinson Cancer Research Centres 256–7
developments 265–8
FSCP 132
fully integrated pharmaceutical companies (FIPCOs) 269

Galbraith, John Kenneth 126, 216, 225
on power 27–8
Galileo programme 130–32
services provided by 131, 132
Gates, Bill 257
General Agreement on Tariffs and Trade (GATT, 1944, replaced by World Trade Organization) 89, 90
Geneva Protocol on chemical and biological material in war (1925) 133, 136
genomics 257
Germany 119
Global Monitoring for Environment and Security (GMES) 130, 132
Global Positioning System (GPS) US 131
global risks 128
globalization 137–8
and harmonization and innovation 88–93
security issues 125, 126–7
triadic nature of 90
Goebbels, R., Minister of the Economy, Luxembourg 90
governments and innovation 200–201
see also defence; Defence Diversification Agency; Defence Evaluation and Research Agency; European Economic Community/European Union; Internet; military, Ministry of Defence
GREMI (University of Neuchâtel, Switzerland) 191

Habermas, J. 24–7, 28, 38
harmonization 91
hermeneutics 32
homeland security industry, US 127, 128
human capital, concept 219–20
human genome mapping 254, 257, 270
Huntsman, Dr Lee 262, 263
Hyper-Text Markup Language (HTML) and Hyper-Text Transfer Protocol (HTTP), establishment of 121, 124
analyses of 15
and innovation 17
public 15–16, 21, 23
role of 14, 15–16
of subcultures 21
individual social networks 44–5
industrial organization, features of 164–5
industrialists 50, 51
information and communication technologies (ICTs) 215, 216
‘information arbitrage’ 35
information, asymmetry of 4
as a weapon 194
information exchange, scientific 67
infrastructure, research and industrial 146
innovation 13, 32–5, 91
analyses of 33–4
clusters 233
and context 163
and economic growth and development 91, 187, 229
environments and enterprises 199–204
European system 92
and firm size 208
innovative milieu 187–96, 204
management 194
and networks 163
networks 204
‘permanent innovation’ process 195
policy 146, 197
sectoral systems of 163
and the state 196–9
strategies 92–3
system 188
trade-offs in systems 163
see also entrepreneurs
innovations
analyses of innovation clusters 235
clusters and 34, 201–2, 232, 234–5
dynamic processes of 14
European model 91, 92
nature of 13, 33
and path dependence 191
proximity and innovative milieu 189–96
economic 189–92
cognitive 189, 190
spatial 189, 190
organizational 190
and regionality 191
and transactional costs 190
see also science and technology parks
institutional frameworks 163, 164, 179
and innovation 188
Institutionalism 23
intangible goods 43
ownership of 47
Intellectual Property Court, EU 98
intellectual property rights 52–3, 86, 87, 152
evolution of 88
globalization of 90
interface structures defined 146, 147
analysed 156–9
intellectual property instruments 61
see also DDA, OTRI
international balance of power 137
International Monetary Fund 89
International Patent Institute, establishment of (1945) 94
Internet 121, 122, 124, 125, 138
inter-sectoral technology transfers 119, 150
investor 13–4
investment 43
Japan Patent Office (JPO) 103, 104
Japan 102, 119
judgment, individual 21–2
Keynes, J.M. 209
knowledge acquisition of 47
as an asset 45, 162
assets 235
capital 93
collective 46
commercialisation of 52
concentration and defence firms 179
dual technological knowledge 134, 162
economy 14, 56, 92, 208
efficiency of knowledge production 170
enclosure of 48
evolution of knowledge base 175
explicit and implicit 33
externalities of knowledge 47
gathering 224
knowledge base 56, 187, 246
knowledge-based firms 247
knowledge-based economies 92
knowledge-based industry 230, 247
nature of knowledge base 177–9
ownership of 47–8
as power 87
production 168
proprietary versus open access 56
scientific 43
sharing of 43
society 43
spillover 268
statistical analysis 177–8
strategy 162
structure 175
tacit 44, 46, 267–8
technological spread and transfer 46, 177
transfer of knowledge 163
types of 45–6
knowledge-intensive communities 35
laboratories, joint research 48–52
control of public researchers 50–51, 52
origins and necessity of joint
laboratories 51–2
potential for conflict within 49–50, 52–3
language
use of 15, 17, 20, 29, 30
speech acts 24–5
leadership, nature of 33
Life Sciences Discovery Fund
(University of Washington), US 262, 268
Life Sciences Discovery Fund
Authority (LSDFA), US 263
life sciences 257
investing in 260
commercialization 260
public sector roles 261–4
life sciences cluster 270
and business development 70, 252–3, 265
see also Seattle
Likert scale variables – descriptive
statistics 71
Lisbon strategy of knowledge
economy 56
London Business Innovation Centre 155
Madrid Agreement Concerning the
International Registration of
Marks 94
Magnuson, Warren 257
Malarkey, Susannah 263
managers and entrepreneurs,
relationship between 211
Manhattan Project 116
market economy and scientific research 65–6, 77
Marshall, Alfred 190, 209, 211, 212
Marx, Karl 209, 212, 213, 214, 217
Massachusetts Institute of Technology 118
matter sciences 70
McCreevy, Charlie 101–2
Metcalfe, Robert 122
methodological interactionism 31
microbial manipulations, types
identified 135
Microsoft 257
military procurement
aeronautical industry 138–9
civilian benefits arising 117
civilian contribution to military
technology 119, 120, 153–4
dual technological knowledge 162
failures of technology transfer 117–8
interaction between 70, 74, 115, 137, 153–4, 162, 166, 215
and Internet 120–25
military procurement 139, 153, 154–5
military-industrial complex (MIC) 120, 140
MilNet 121, 123
Ministry of Defence (MoD), UK 152, 154, 155, 159
moral criticism 22
multinational firms 214–5
Myrdal, Gunnar 21–3
nanotechnology 140, 270
national innovation systems (NIS) 137–8
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Institutes of Health, US</td>
<td>254, 256</td>
</tr>
<tr>
<td>National Research Plan, Spain</td>
<td>148</td>
</tr>
<tr>
<td>National Science Foundation (NSF), US</td>
<td>121, 122, 123–4</td>
</tr>
<tr>
<td>NSFNET</td>
<td>124</td>
</tr>
<tr>
<td>NATO</td>
<td>125</td>
</tr>
<tr>
<td>Nelson, Richard and Sidney Winter</td>
<td>28–30</td>
</tr>
<tr>
<td>networks</td>
<td>32, 44–5, 48, 53</td>
</tr>
<tr>
<td>analyses of 34–5</td>
<td></td>
</tr>
<tr>
<td>and social capital 221–2</td>
<td></td>
</tr>
<tr>
<td>as fundamental unit of economic activity</td>
<td>216</td>
</tr>
<tr>
<td>and entrepreneur 203, 214–17</td>
<td></td>
</tr>
<tr>
<td>individual social networks 44–5</td>
<td></td>
</tr>
<tr>
<td>and innovation 34, 163, 188, 204</td>
<td></td>
</tr>
<tr>
<td>innovation networks 267</td>
<td></td>
</tr>
<tr>
<td>and markets 44, 45</td>
<td></td>
</tr>
<tr>
<td>nature of network linkages 237</td>
<td></td>
</tr>
<tr>
<td>network density 34</td>
<td></td>
</tr>
<tr>
<td>network-based organization 222</td>
<td></td>
</tr>
<tr>
<td>and SMEs 233–4</td>
<td></td>
</tr>
<tr>
<td>socio-economic networks 44</td>
<td></td>
</tr>
<tr>
<td>soft networks 244</td>
<td></td>
</tr>
<tr>
<td>see also science and technology parks</td>
<td></td>
</tr>
<tr>
<td>NFSNET</td>
<td>121, 122, 124</td>
</tr>
<tr>
<td>9/11 terrorist attack, US</td>
<td>133, 140</td>
</tr>
<tr>
<td>Nooteboom, Bart</td>
<td>30–32</td>
</tr>
<tr>
<td>novel, creation of 16</td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>59–60, 92, 146, 151, 200, 221</td>
</tr>
<tr>
<td>Office of Technology Transfer (OTT),</td>
<td>Spain 149, 158</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>OTRI Network (Office for the Transfer</td>
<td></td>
</tr>
<tr>
<td>of Research Results), Spain</td>
<td>147, 149–51, 152, 156, 157–8, 158, 159</td>
</tr>
<tr>
<td>outsourcing 203</td>
<td></td>
</tr>
<tr>
<td>Paris Convention for the Protection of</td>
<td></td>
</tr>
<tr>
<td>Industrial Property (1883)</td>
<td>88, 94</td>
</tr>
<tr>
<td>‘Pasteur’s Quadrant’ 57, 60, 67, 72, 77</td>
<td></td>
</tr>
<tr>
<td>Patent Cooperation Treaty (PCT)</td>
<td>89, 93</td>
</tr>
<tr>
<td>patent systems 86</td>
<td></td>
</tr>
<tr>
<td>costs and other issues 103–4</td>
<td></td>
</tr>
<tr>
<td>efficiency of 107</td>
<td></td>
</tr>
<tr>
<td>European patent system 91</td>
<td></td>
</tr>
<tr>
<td>harmonization and globalization</td>
<td></td>
</tr>
<tr>
<td>88–9</td>
<td></td>
</tr>
<tr>
<td>harmonization of law 86, 93</td>
<td></td>
</tr>
<tr>
<td>historical context 87–8</td>
<td></td>
</tr>
<tr>
<td>institutional context and influence</td>
<td>168–9, 179, 181</td>
</tr>
<tr>
<td>integrated European patent system</td>
<td>86, 87</td>
</tr>
<tr>
<td>military industry/defence context</td>
<td>168</td>
</tr>
<tr>
<td>nature of patenting behaviour 175</td>
<td></td>
</tr>
<tr>
<td>‘patent thicket’ 66</td>
<td></td>
</tr>
<tr>
<td>patenting as a tool 86</td>
<td></td>
</tr>
<tr>
<td>patenting of research 61, 168–9</td>
<td></td>
</tr>
<tr>
<td>reform of 86</td>
<td></td>
</tr>
<tr>
<td>relationship between defence industry</td>
<td></td>
</tr>
<tr>
<td>and patenting 170</td>
<td></td>
</tr>
<tr>
<td>role and characteristics of patents</td>
<td>87–8</td>
</tr>
<tr>
<td>in Spain 148</td>
<td></td>
</tr>
<tr>
<td>statistical analysis of patent acquisition behaviour 170–77</td>
<td></td>
</tr>
<tr>
<td>patent system in Europe:</td>
<td></td>
</tr>
<tr>
<td>costs of patents 103–4</td>
<td></td>
</tr>
<tr>
<td>emergence of patent system 87–8, 93</td>
<td></td>
</tr>
<tr>
<td>patent law 94</td>
<td></td>
</tr>
<tr>
<td>patent system in 86, 93–103</td>
<td></td>
</tr>
<tr>
<td>political approach to Community Patent</td>
<td>99–103</td>
</tr>
<tr>
<td>see also intellectual property rights</td>
<td></td>
</tr>
<tr>
<td>PECOS programme, Spain 148</td>
<td></td>
</tr>
<tr>
<td>Pentagon 120, 123</td>
<td></td>
</tr>
<tr>
<td>performative contradiction 25</td>
<td></td>
</tr>
<tr>
<td>Perry, William 119–20</td>
<td></td>
</tr>
<tr>
<td>pharmaceutical industry 254, 258</td>
<td></td>
</tr>
<tr>
<td>analyses of 255–6</td>
<td></td>
</tr>
<tr>
<td>and asymmetric power 256</td>
<td></td>
</tr>
<tr>
<td>changing nature of 255</td>
<td></td>
</tr>
<tr>
<td>and FIPCOs 269</td>
<td></td>
</tr>
<tr>
<td>funding 256</td>
<td></td>
</tr>
<tr>
<td>pharmaceutical TNCs 267, 269</td>
<td></td>
</tr>
<tr>
<td>and R&D 265, 267, 269</td>
<td></td>
</tr>
<tr>
<td>strategies for development 269</td>
<td></td>
</tr>
<tr>
<td>planning, democratic 21–3</td>
<td></td>
</tr>
<tr>
<td>policy and innovation 198–9</td>
<td></td>
</tr>
<tr>
<td>structural policy 198</td>
<td></td>
</tr>
<tr>
<td>Porter, Michael 251, 265, 266</td>
<td></td>
</tr>
<tr>
<td>power</td>
<td></td>
</tr>
<tr>
<td>as forms of social action 29</td>
<td></td>
</tr>
<tr>
<td>indirect conditioned 28</td>
<td></td>
</tr>
<tr>
<td>integrative 19–21</td>
<td></td>
</tr>
<tr>
<td>power relations 26, 27</td>
<td></td>
</tr>
</tbody>
</table>
types of 19–20, 28
private sector companies and research 46
Procurement Agency, France 168
Prodi, Romano 129
production and organization 203
Project BioShield (US) 134, 136
Prosperity Partnership (Seattle, US) 261–2, 267, 268, 270
ccluster strategy 262, 263–4
research strategy 270
Public Choice School 209
Public Regulated Services (PRS) 131
public research organizations (PROs) 56, 61, 65, 67–8
public research systems 56
Puget Sound Regional Council (PSRC) 261
Puget Sound, US 251, 259, 266
QinetiQ 152
Queensland, Australia 230, 235
R&D 47, 119, 137, 175, 195
biotechnology 138, 139, 264, 265, 267
decentralised 199
and defence industry 139, 140, 163, 164, 165, 179
and dual use technology 119, 166
expenditure and innovation 187
in Europe 92, 93, 106
in France 118, 201
and innovation 187, 195
investment in 43, 50, 92, 93
knowledge base 177, 187
knowledge transfer 163
and military 117, 133
patenting patterns 177
and pharmaceutical sciences 265, 266, 267, 269
provisions for 77
and science and technology parks 229, 243, 245, 247
in Spain 148, 149, 150, 151, 159
state and 197, 263
in US 93, 122, 127, 136, 138
see also DATAR; entrepreneur; innovation, patenting
R&T 129
RAND 120, 122
‘Realm of Technology’ 62
Regional Development Authority 159
regional milieux 187, 188, 191
regional dynamics 189
regional development 269
‘Republic of Science’ 57, 62
Research Triangle Park, US 229, 231
research 46
2D analysis of 57, 60–61, 63
3D analysis 57, 62–4, 69, 78
analysis of research 57, 59, 65–6
applied research 59–60, 64, 65, 72, 74
basic research 59, 60, 72
characterising 58–64
collaborative research, appropriation of 47
commercialising research 201
curiosity driven research 57, 58, 63, 70, 75, 76, 77
definitions and taxonomies of 59–66
degree of exogeneity 59
distinctions between pure and applied research 58, 59–61, 63–4, 76
financing of 59, 77
and ‘fundamental knowledge’ 62, 63, 64, 74, 76, 77–8
goals and outcomes 57
idealistic 63–4
interaction between pure and applied research 63, 72–5, 77–8
open-access research 61, 74, 76
patenting of research 61, 136
proprietary research 77
and proximity of research units 49–50
public 56, 57, 61
publishing 67
reform of public research, US, 1980 61
and publication 57, 62
relevance of 57, 60, 64–8
secrecy issue 60, 67–8
skewing problem 64–6
taxonomies of 58, 59–60, 62–4, 72, 78, 82
technological 60, 62–4
terminology used 59
Index

typescript of 58
universities and applied research 65–6

see also clusters, patenting
researchers, career patterns 46
resource potential 217–22, theoretical roots 219–22
Ricardo, David 212
riot control agents (RCA) 136
Rosenfeld, Stuart 251

Say, Jean-Baptiste 209, 211, 212
Schulz, T.W. 219
Schumpeter, Joseph Alois 13–14, 19, 37, 91, 225
approach to capitalism 209–11
on economy 213–14
on entrepreneurship 13–14, 208, 212, 213–14, 218, 223

science and technology parks (STPs) 229, 236, 247
Australia 230, 231–2
background 230–32
building networks 244–5
and cluster governance 240
conceptual framework 232
developing ties within 243–4
development of 231–2
failure to deliver 230
need for development and potential for networking 242, 243, 247
science parks defined 230
science parks 203, 231
strength of relationships within 242–4
theory of 246
United States 231
see also Brisbane Technology Park, SMEs
science and technology, relationship between 117
Science, Big 116–7
open and closed science 43
science/industry collaborations – ideal modes 52–3
scientific commons 57, 75
scientific system, function of 56
scripts, development of 30–31
Seattle, development of biotechnology industries in 254, 256

secrecy problem 67–8
sectoral systems of innovation (SSI) 138
defence industry as sectoral system 164–7
sectoral systems 163
security agenda 115–16
security economy 125, 127
historical context 126–7
SEMATECH (US) 118
Shannon, Claude E 36–7
Silicon Valley model 201, 229, 252
export of model 201
skewing problem 64–6
Small Business Association (SBA), USA 202
SME 92, 136, 155, 156, 200, 202, 248
in Australia 230, 244, 245, 246, 248
and Brisbane Technology Park 236, 239
and cluster governance 240
development of 233–4
high-tech 230, 246
and innovation clusters 234–5, 245
and networks 233
potential of 233
and science parks 230, 232–5, 244, 246
in US 139
Smith, Adam 43, 50, 211, 214, 217, 219
social capital 34, 219, 220–22
analyses of 220–21
society 15–16

knowledge based 230
Spain
innovation in 147–51
research and innovation in 148
transition to democracy 147–8
spin-off and spin-in 115, 116, 136
Stanford Research Park, US 229, 231
STAR 21 Report (Strategic Aerospace
Review for the 21st Century) 129
state
and economy 197–8
and investment 199
structural policy 198–9
role in innovation 196–9
State Science and Technology Institute (SSTI), US 256, 257, 269
Stokes, Donald 57, 61, 72
Index 285

Strategic Computing Initiative (US) 118
Strategic National Stockpile (SNS) 134
streamlining, industrial 203
Sweden 119
systems, barriers within 146

TCP/IP, development of 122, 123, 124
team building, nature of 33
technical change, study of 137
technical interchange 234
technology
barriers to technology transfer 146–7
military technology in civilian contexts 117
technological innovation 167
‘technological spillovers’ 119
technology and contingency 140
use of technology in several domains 166

Technology Alliance 263, 267
Technology Diversification Managers (TDM), UK 154
technology, dual use (DUT) 115, 116, 119, 165–7
analyses of 119, 165–7
data and theoretical expectations 167–9
and social needs 140

Technology Reinvestment Program (TRP, US) 120
tragedy of the anti-commons 66
transnational companies (TNC) 215, 270
analyses of 267–8
TRANSPORT 130
Trump, Donald 13

UK
and biochemical weapons 133
and defence 147
technological development in 119, 122, 139

United Kingdom Science Park Association 230
United Nations 89
United States Patent and Trademark Office (USPTO) 103, 104
universities and business operation 253

University of Washington 256–7
UNIX, development of 122, 124
USA 92, 102, 115, 117
and biochemical weapons 133–5
and biotechnology business 253
patents in 105, 107
security in 116, 125, 127, 128, 135
technological development in 117–8, 119–20, 122, 131, 139–40
see also ARPA, Defense Advanced Research Projects Agency; Defense Communications Agency; Department of Defence; Department of Health and Human Services; Department of Homeland Security; National Institutes of Health; Seattle; Silicon Valley

value structure, changes in 16
venture capital 253, 265
and biotechnology 253, 255, 264
investment 260–61
venture capital societies 203

Walras, Léon 210, 213
war and technological progress, relationship between 115, 116, 133

Washington Biotechnology and Biomedical Association (WBBB), US 257, 258, 267, 2668
Washington Learns” project, US 263
weapons, lethal and non-lethal 135–6
Weber, Max 220
Welsh Knowledge Employment Fund 155–6

Witt, U. 32–3

World Bank 89, 221
World Intellectual Property Organization (WIPO, 1967) 89
World Trade Organization (WTO, 1995, replaced General Agreement on Tariffs and Trade) 90
World Wide Web (WWW) 121, 125

Xerox PARC 122