Index

accident investigations 121
actors
 external 9–10
 innovative 26, 35
interactions between 25–6
pooling knowledge 37–8
reconfiguring 36–9
aerospace industry 120, 135
Air Traffic Control (ATC) 127, 130
American Association for the
 Advancement of Science 64
Anthony, R.N. 65
applied psychology 120
Aristotle 72
Arnold, Malcolm 73
Asia, innovation in 45, 46, 245
‘Asian Tigers’ 19, 245, 246, 247, 260,
 261, 262
ASIC manufacturers 52, 53
Austria 35
Automatic Dependent Surveillance
 Broadcast 129
automation 51
 automation solutions 53
automobile industry 47–8, 50, 59
aviation industry 118
 accidents and safety 121, 124–5,
 134
data collection and interpretation
 129–30
and high technology 119
innovations in 118–9, 123
models 132–4
regulation of 119, 122
see also EFB, HILAS, human
 factors

Beijing, China 249, 250
Bell, Daniel 268–9
Bernal, J.D. 64, 65
biotechnology 5, 108, 110, 147
‘blocked societies’ 273
‘Bologna process’ of university reform
 (EU) 274
Boretsky, M.T. 68
Botswana, cellular mobiles in 249
British Association for the
 Advancement of Science 71
Bulgaria 233
Bureau of Census (US) 69
Bureau of Labor Statistics (US) 66
business system standards,
 development of 49
business models 168
‘capabilities’ (term)
 absorptive capacity/capabilities 28,
 34, 39, 47
 capability building 28
 configurational capabilities 29–30,
 34–5
 creation of capabilities 260
 defined 27–8
 dynamic capabilities 28
 reconfiguring 37
 transformational 28, 32–4, 39
Capital (Marx, Das Kapital) 95
capital investment 88, 99
capital productivity 180–82
catching-up countries 256, 261
Cattell, J.M. 65
CEDEFOP (European Centre for the
 Development of Vocational
 Training) 280
Central and Eastern Europe (CEE)
 195
 and EU accession 232–3
 foreign direct investment in 206
 and interdependence 237
 transition from planned to
 market economies 197, 237
Chengdu (Sichuan) China 249
China 16, 245, 246
 complexity of innovation and economic systems in 249, 250–51, 252
disequilibrium phenomenon 250–51
effects of physical size 252
ICT in 246, 247
increase in high-tech trade 246–7, 251
R&D 248–52, 261–2
S&T 246, 248
scientific publishing 247–8
velocity phenomenon 250–51
Chongqing, China 249
classification 72–3
Cleaning in Place (technique) 34
clusters of firms 15
‘Community Innovation Survey’ (CIS, EU) 99
competences
core 28, 29
high quality zero defect competence 28
 technological 107
complexity
characteristics of 253–60
cost efficiency 169
dealing with complexity 144–6
linear model of complexity 260
models 253–5
nature of complexity 258–60
understanding complexity 256–60
CoPS (complex products and systems) 165
‘corporate culture’ 270–71
dyads and triads 72–3
dynamic capability’ concept of 9, 16–17
economics of science 67
of innovation 95
economy
economic development 251–2
giant economies 246
knowledge economy 94–5, 262
learning economy 4, 281
LMT sectors and economic growth 140
mature 188
moral economy 71–5, 76
shift from manufacturing to services 5
see also China
ECTS (European Credit Transfer System) 274
education and jobs 272–8
EFB (electronic flight bag) 125, 127, 128–30, 132, 135
see also aviation industry, human factors
efficiency 142–4
Emilia Romagna region, Italy 13, 273
research project 150–55
employment and innovation 88–9
Erasmus Programme 274
ergonomics 120–21
‘escalator cities’ 273
Ethernet 52
EU Industrial R&D Investment Scoreboard 44–5
Europe 108
aviation in 132–4
balance of payments deficit 67
distribution of LMT firms in 233, 236
Eastern 6, 233
East-West relation 236
European economic landscape 15
industries in 43
industries innovation practices 226–7
markets fields in 44
Middle 6
policy makers in 267
R&D and innovation 45–6
relocation of companies within 237
social policy 280
traditional industrial strengths 50–51
Western 6, 12, 68, 233
see also European Union
‘European Employment Strategy’ 274
European Foundation 278
European Manufacturing Survey (EMS) 177
European Research Council 275
European Union 3, 4, 7, 16, 40, 69, 99, 197, 260
Accession Countries 199
Bologna process 274
collaboration rates 205
and education 278–80
enlargement of 225–6, 229, 232–6, 280
EU15 199, 200, 201, 203, 206
EU25 199, 204
European Commission 237
‘Fourth Community Innovation Survey’ (CIS 4) 223, 226
high tech industries 199
Industrial R&D Scoreboard 44–5
innovation policies 40
as knowledge-based economy 5
as knowledge society 3
liberalisation of 199
Lisbon and Barcelona documents 253, 259, 274
‘new’ states 18, 210
‘old’ EU states 198, 207, 208, 212, 213, 233
Poland and 198
protectionism 3
and research budget 274–5
and R&D 5

Federal Aviation Authority, US 132
Federal Ministry of Research and Technology, Germany 52
Federation Aviation Authority Notices to Airmen (Notam) 129
Finland 33, 44, 278
FIP 51
firms
absorbing new technologies 44
becoming service providers 161 165–6
boundaries of firms 141, 142, 144
capital and labour productivity 180–82
challenge of becoming a service provider 166–7
and competitors 165
complex knowledge bases 259
and complex problem handling 145–6, 147
differences between 26
distributed knowledge bases 100–102
external environment of 97, 98–9, 111
firm specific knowledge 27, 99–100
firms and complexity 141, 148
foreign-owned companies (FOCs) 208, 209, 201–12
heterogeneity of firms 26, 27, 151, 175
high tech 12
homogeneity 26
innovation activities 32–3, 184–5, 226–7
and innovation 94, 103
integrators and non-integrators 152–5
integrators 151–3
and knowledge 144–5
knowledge base 100, 257
‘knowledge businesses’ 133–4
and knowledge creation 98–9
knowledge sharing 133
low tech 12
low-, medium- and high-tech firms 178
relative performance of low-, medium- and high-tech firms 178, 191, 199
nature of 26–7
problems of incumbent firms 31
and problem solving 146–7
and provision of complete solutions to customers 190
and R&D 94, 98, 208
relationship between low-, medium- and high-technology firms and sectors 188–9
relations between 12
relevance of services to competitiveness 182–8
research-intensive 12
resource based theory of the firm 260
scale intensive firms 224
and services 160
service innovators 184–5
services as share of turnover 185–8, 189
shifting from goods-focused production to service-orientated 166, 176–7
size and participation in services 182–4
size and productivity 180
supplier-dominated firms 221–2, 224
and systems integration 44–6
tech level and firm size 179
and transformational capabilities 32–4
see also globalization, IEC, industries, mechatronics, problem handling and solving, R&D, service sector, SMEs
Flight Data Monitoring (FDM) 126, 130, 131
Flight Operation Quality Assurance (FOQA) 127, 130
Fliqstein, Neil 49
Florida, Richard 268, 270–71
food-processing and distributed knowledge 108–11
and packaging 111–12
foreign direct investment (FDI) 204, 206
foreign-owned companies (FOCs) 208, 209, 210, 212
and R&D 210–12
see also firms
France 51, 222, 247, 273, 279, 280
Frascati manual 69, 75–6
Fraunhofer Institute for Systems and Innovation Research (ISI) 177
Freeman, C., R. Poignant and I. Svennilson, OECD study 67, 68
generative frameworks 96
German Automobile Manufacturers’ Initiative (AIDA) 53
German Manufacturing Survey 2006 18, 177
Germany 5, 16, 43, 87, 88, 222, 247, 273, 279, 280
industry 262
and innovation 49–50
regulation of labour market 223
and standardization 49–50
Giddens, Anthony 273
‘going global’ 13–16
globalization 13, 255, 268, 269
goods 161
combining goods and services 163–5
Great Depression 66
Gross Expenditure on R&D (GERD) 204, 248, 249
high- and medium-high-tech industries (HMHT) 222, 225, 227, 228, 229, 239
and EU enlargement 232, 233, 236
interdependences between 236
high-technology

high tech (HT) sector of industry 98, 118, 119, 199, 210, 217, 222, 249
focus on 4
ratio of high tech to economic development 6–7
relationship with LMT firms 12–13, 15–16, 118, 221, 236, 241
high throughput experimentation (HTE) 48
higher education and jobs mismatch 272–3
HILAS (Human Integration into the Lifecycle of Aviation) project 120–34, 135
aims 123
Flight Operations 122, 128
innovation 128–32
as knowledge-innovation project 132
and reporting 129
as a R&D consortium 123
tools 125–7, 130–31, 132–3, 135
see also human factors
Hoffmeyer, E. 67
human error and accidents 121
human factors (HF)
 concept 120
 HF improvements 122–4
 HF knowledge 135
 HF tools 125–7, 130–31, 132–3, 135
human-factors studies 121
 see also HILAS
human resource management (HRM)
 278–9
IMF 245
incumbent countries 260–61
 India 245, 270
industrial complementarities 221
 concept of 222–3
 between firms 221
 between industries 223–4
 between sectors 223–6
 industrial development 255
 institutional 223
Industrial Development Agency (ARP), Poland 238
industries
 ‘servicizing’ manufacturing industries 176–7, 188
 high tech (HT) industries 44, 199,
 210, 212, 213, 214, 215, 216,
 217, 218
 high, medium and low tech defined
 5, 175, 176, 178–82
 interdependencies between different sectors 224–5
 intra-sectoral heterogeneity 175
 involvement in innovation of different categories 212–16
 low tech (LT) 199–200, 210, 213,
 214, 215, 216, 217, 218
 mature industries 6
 medium high tech (MHT) 16, 199,
 200, 210, 212, 213, 214, 215,
 217, 218
 medium low tech (MLT) 199, 212,
 213, 214, 215, 216, 217, 218
 medium-tech industries (MT) 43
 relationship with economic growth 6–7
 shift between categories 210
 technological basis 43, 44
 technologically intensive 68
traded and untraded
 interdependencies 225, 226–32
 see also firms, knowledge intensive industries, LMT
Information and Communications Technology (ICT) 5, 248–52, 258
 ICT complex 102
 ICT development 258
information economy 75
information networks 104–5, 131
innovation enabling capabilities (IEC)
 17, 26–39, 40, 51, 52, 54
innovations
 basis of innovative organization 26
 comparison of forms 56
 contexts of innovation 77
 diffusion and innovation 87–8, 93
 dynamics of open innovation 45
 high performance in innovation 32
 high-tech innovation 245
 innovation analysis 100
 innovation and employment 88–9
 innovation in usage 120
 innovation quality 87
 innovation resources in new EU states 198
 innovation studies 77, 93, 278
 innovation systems 104
 innovation without R&D 76, 221
 innovative activity by sector 230–31, 232
 input to innovation 85
 linear model of innovation studies 25
 and LMT industries 93
 and ‘newness’ 172
 non-incremental 245
 non-technological innovative activities 99
 open, semi-open and closed forms 54–8
 practical problems for innovators 30–31
 proximity and innovation 133
 science-based innovation 40
 spending on innovation 45
 stages of innovation 86
 technical-scientific basis of 14
 types of innovative activities 227
Intel 48
intellectual property rights (IPR) 54, 56, 123, 124
inter-agent and inter-industry flows 102–3
disembodied flows 102
embodied flows 102–3
International Ergonomics Association (IEA) Council 120–21
international trade fairs 49
Ireland 233, 248, 272, 275, 279
ISA/ANSI (standards) 51
Italy 43, 222, 233, 248, 273
Japan 5, 60, 69, 108, 140, 243

knowledge
ability to utilize knowledge 9
acquisition and use of knowledge 7–8
analytical-synthetic knowledge 256–8
application of generally applicable knowledge 29
barriers to knowledge transmission 104
configuring and reconfiguring distributed knowledge 34–9
defining and failure to define term 96–7
differentiation of 102
diffusion of knowledge 258
distinction between types of knowledge 257–8
distributed knowledge 34, 35–6, 38, 100, 101–2, 103, 112
distributed knowledge base 8, 38, 100–101
empirical evidence of content 106
external knowledge sources 8, 102, 227, 228, 229, 238
firm specific 27
generation of knowledge 38, 93
globally available knowledge 28, 29
global transfer of knowledge 258–60
innovative knowledge 7–8
integration of dispersed knowledge 29–30
knowledge intensity 5
internal knowledge sources 227, 229
knowledge as productive force 4

knowledge base 104, 113
complexity of 256–62
knowledge R&D activities 261
knowledge sharing 123–4
local knowledge 29
management and organization of knowledge 8–10
mapping distributed knowledge 103–6, 113
nature of knowledge 95–7, 267
outsourcing of knowledge acquisition 103
pooling knowledge 37
‘practical knowledge’ 7, 8
protected knowledge 98–9
relationship between knowledge and occupation 268
repositories of knowledge 36–9
as a resource 4
scientifically generated knowledge 7, 8
specialization in knowledge production 103
synthetic knowledge 256–8
and technology 144
technological knowledge 145
transition between global and local knowledge 29
types of knowledge 7, 28–9
sources of knowledge 94, 104
and trust 133
use of knowledge 282
vocational knowledge 279–80
workplace knowledge 278–9
‘knowledge society’ 3, 4, 94, 280
knowledge-based society (KBS)/ knowledge-based economy 5, 19,
75, 94–5, 267, 281–2
term defined 95–6, 267
‘catch up’ 19
centrality of knowledge to 274
knowledge and innovation 221, US 278
social structure of KBS 268–73
and use of knowledge 278
Knowledge Based Economy (OECD document) 98
knowledge-intensive business services (KIBS) 171
knowledge-intensive industry 94, 97–8
knowledge workers 269, 270, 272
see also symbolic analysts
Korea, South 245, 248
labour force 88
market 10, 11, 279
productivity 180–82
Latvia 233
Lean Flight Initiative 120
‘Learning Economy’ 4, 281
Levi, L. 64–5
life-cycle concept 167–8
linear model of innovation 25
Lisbon Strategy and Process 5, 253, 280
Lithuania 233
low- and medium-technology (LMT) industries 3, 4, 99, 111
in California 6
capabilities 32
and complementarities 224–5, 229–30
configurational capabilities 34–9
contribution to industrial innovation 16
distributed knowledge and 11, 35–6, 101–2
and economic growth 7
and educational qualifications 9, 10
employees of LMT firms 9
enlargement and dynamics 232–6
expansion of links 13
and EU enlargement 232–6
European LMT 46, 233
firms and vocational education 10–11
and HT firms 12–13, 15–16, 118, 221, 236, 241
and human factors 121
improvements in innovation 198
and industrial regions 221
industries and innovation 7–10, 11, 12, 25, 31, 135, 221
industries and standard setting 47–50
influence on high-tech innovation 12–13, 110
knowledge base of LMT firms 7, 9, 11–12, 14
LMT countries 6
LMT enterprises and knowledge management 8–10
LMT firms and their environment 112
LMT innovation 122–4, 134
LMT sectors 95, 102, 118, 140
low level of R&D 7, 95
as market for high-tech products 12, 15–16, 224–5
mature industries 6
mode of innovation 7–10
as part of advanced industrial regions 221
perceived impact 197
place in economic and industrial context 11–12
in Poland 198
productivity 180–81
and policy-regulatory context 11
proximity to markets and customers 14
and regional ties 13–14
relations with developers and manufacturers of production technologies 12
role in economy 101, 176
role of in economic growth 140
role of information sources 228, 229
role of standard setting in 47–53
role of 198
shift of LMT industries in Europe 226, 241
significant relationships 241
societal and institutional conditions 10–14
as supplier-dominated 221–2, 229
working in network 11–12, 104
case studies 108–12
see also PILOT, Poland, service sectors and industries
‘low-skill equilibrium’ 272–3
low-tech (LT) industries 76, 199–200, 210, 212
and human factor improvements 122–4
low technology and growth 88
low-tech innovation patterns, debate on 221
relevance of low technology 87–8
and traded and untraded interdependences 225
see also Poland
Luxembourg 233

Maclaurin, R.W. 70–71
macroeconomic discussions 88
Main Science and Technology Indicators (MSTI) 70, 74
maintenance and after-care services
168
Malaysia 245
managers and career paths 271
Managers/management 10, 93
manufacturers transforming into service providers 161
transition from LMT to high-tech industries 6
mapping knowledge sources 103–6
markets
complexity of markets 259
incumbents and challengers 44
market failures 143
markets as fields 44
players in 44
stable markets 49
Marx, Karl 95
Matthew effect 34
‘mechatronics’ 140, 149–55
and technology fusion 141
metrics 66
Microsoft 48
MIT 70
models of economic growth 253–6
modes of organizing production 142
modularities 103, 148
modularity, product and organizational 143–4
molecular modeling 48
MROs (maintenance and repair organizations) 119

nanotechnology 5, 111–12, 248, 256
National Association of Manufacturers (US) 66
National Research Council (NRC, US) 66
National Science Foundation (NSF, US) 66, 67, 69

‘National Strategy for Regional Development’ (Poland) 237
networks research 110, 112
network-centric perspective 131
New Zealand 111
newly industrialized countries 16
Nicomachean Ethics (Aristotle) 72
non-research-intensive sector 9, 11, 69
innovations in 25, 43
Norway 109, 110, 117

OECD 66, 67–8, 69, 85, 245
analysis of technological development 69–70
concept of technology gap 68
campaign for science policies 67
classification of firms and R&D levels 97–8
classification of industries 3–4
definition of technology levels 69–70
Frascati manual 69, 75–6
knowledge economy 95, 97
OECD classification of industrial sectors 5–6, 175, 178
OECD Council of Ministers 69
OECD countries 6, 68, 74, 87, 250, 260
OECD economies 6
OECD science policies 67
Oslo manual 87, 203, 205, 213
and R&D 74
storytelling functions of 75
and term ‘high technology’ 69, 97–8
OECD NESTI Group 74
OMROM 52
Open-Source General Public License 56
‘Operational Process Model’ 134
Oracle 48
organizations, layered 54
organizational proximity 133
outsourcing 169–70, 222
strategic aspects of 170

packaging and innovation 111–12
‘paradox of territories’ 13
patents 246, 259
patent rights 54
patenting 95
Paul, St 73
performance improvements, transfusion between firms and industries 102
persistent errors, potential fruitfulness of 25
Personal Digital Assistants (PDAs) 126
PILOT (Policy and Innovation in Low-tech Industries) 17, 26, 31, 35, 118, 281
PISA reading literacy scale 277
Poland 18–19, 197
and low-quality trap 203
changes in sectoral productivity 201–2
comparison to EU15 states 199, 201, 203, 206, 240
competitive performance of manufacturing 199–203
decentralization in 237
determinants of change 198
development programmes 238
economic growth 199
exports to EU 203, 208, 239
firm size and proportion of innovative spending 208
firm size and spending on R&D 208
increased innovation 217
innovation in 202
investment in 204
labour force in 202, 204
level of technology and collaboration 215
licensing of technology 205–6
LMT in 198, 239
regional policies 237–40
reorganisation of firms 202–3
skills barrier 210
technological development 204
unit labour costs and relative unit labour costs 200
variations in innovation activity 212–16
variations in sectoral innovation 207–12
Policy and Innovation in Low-tech Industries see PILOT
policy makers 93
Portugal 233
prisoners’ dilemma 119–20, 133
problem handling and solving 145–7, 257
product development 143–4, 180
and organisations 144
product services 164
production technologies 10
product decomposability 147–9
product interdependences 148–9
productivity 180–82
and firm size 180
types of 180
PROFIBUS 50, 51, 52–3, 54, 59
PROFIBUS & PROFINET
International (PI) 58
PROFIBUS International (PI) 52, 55
PROFIBUS User Organization (PNO) 51, 52, 53, 57–8
Advisory Board 57
PNO Business Office 54
PNO IPR Policy (2006) 54
PNO Board of Directors 56, 57
WG 56–7
PROFINET 52, 54, 59
use in real time 53, 54
proximity – global, cultural and spatial 13–14
public innovation support programmes 11
public research and technology policies 221
‘qualifications, hybrid’ 10–11
qualification deficits 10–11
qualifications and firms 10–11
vocational training 11
RAND-terms 54
‘rationalization’ 88
regional ties, erosion of 13–14
Reich, Robert 268, 269, 270–71, 272
R&D (research and development) 3, 4, 11, 13, 74, 95, 96, 118, 142, 144, 203, 246
advanced 49
analysis of level of R&D intensity 177
Chinese R&D 248–52
comparison of regions 44–7
components of 76
definitions 32
effects of outsourcing R&D 145
European R&D 45–6
examples 32–4, 37–8
as form of knowledge creation 39–40
government R&D 50, 64
growth in 49
indirect relationship with knowledge
generation 97
interaction with innovation 85, 86–7, 118, 119
internal R&D 106–8
intramural R&D 100, 102, 205, 227
investment patterns 45
networks research 110, 112
non-diffusion of R&D 217
OECD definitions 97
organization of R&D activities 147, 155
and other scientific activities 72
in Poland 204–6
and problem decomposability 146–7
and problem solving 147
R&D capacity 26
R&D departments in firms 27
R&D facilities 30
R&D and innovation, interaction
between 85–7
R&D intensity 87, 177, 179, 180, 189
and competitiveness 180
and size of firms 190
R&D intensive products 85
R&D spending 45, 75
R&D strategies 43
relationship between R&D intensity
and services 186–7
research into 65–6
and research intensity 67, 251
and return on investment ratios 65, 66
and Schumpeter 89
and statistics 74, 75
traditional forms 59
and universities 274
verticalization and de-verticalization
145
see also HILAS, mechatronics,
technology
research budget and national income
64–5
in aviation industry 119, 123
‘effectiveness’ of research 65
and linear model 254
industrial R&D 49
research intensity 67–8, 89
R&D capacity and innovation 26
research, pure, significance of 275
evaluation of effectiveness 65–6
research-education-development 65
‘return on investment’ (ROI) ratios 65
risk model 130
risk sharing 120
Romania 233
Rosa, E.B. 74
S&T 245, 246, 261
safety management 121, 124–5, 134
Schumpeter, Joseph 70, 171, 172
concepts 85, 87
and R&D-intensive products 89
Schumpeterian competition 202
Science and Technology Indicators
(OECD publication) 69
Science and Technology Studies (STS)
27, 28–9, 30
science and technology 75, 76
Science Research Board (US) 64
science and trust 71
scientific truth 71
service sectors and industries 160,
269
and R&D 87
combining goods and services 163–5
cultural provision of service
provision 166
distinction from goods 161
inclusion of services in costs 190–91
industrial services 163–4
innovation and services 162, 165, 171
interrelationship with R&D 187
life cycle service provision 167, 168
models 161–2
nature and components of 161–3, 164
pricing of services 188, 190
product related services 176, 182–8
purchase of services 169–71
relevance of services 176
‘six service concept’ 162
service providers 12

Hartmut Hirsch-Kreinsen and David Jacobson - 9781848445055
Downloaded from Elgar Online at 02/08/2019 03:14:54PM
via free access
service provision by low-, medium- and high-tech firms compared 178
services in manufacturing industries 176–7
see also firms, R&D
Shanghai, China 249
Silicon Valley, significance of 271
SIMATIC solutions 57
Singapore 245, 248
skills requirements 168
SMEs (small- and medium-sized enterprises) 76, 99, 112–13
and services 186, 190
and technology level 179, 190
society 77
‘post-industrial society’ 268
sociology, industrial and organizational 27
solution providers 53, 165
Soviet Union 64
Spain 273
Springer, Jerry 278
standard, defining the global 52
European Standards 50–53
standardization processes 51
standard-setting institutions 49
role of standard-setting 47–53
standard-setting dynamics and innovation process 51–2
standard setting partnership 57
statistics 74, 75
statistical agenda 77
STEP (Science Technology Economic Policy) group, Norway 109–10
substitution effects 88–9
suppliers and knowledge provision 8
supply chains 15
Sweden 44, 262, 278
Switzerland 43
‘symbolic analysts’ 269–71, 272
systems integration theory 145
coupling of systems 148–9
system standards 47–50
Taiwan 245
Tayloristic forms of work organization 9, 270
technical and engineering societies and standards 49
technology
adapting new technology 46, 48
advanced knowledge-based technologies 102–3
attendant /partial effects of technical progress 86
concept of high, medium and low technology 70–71
defining high technology 72–3
domestic technological expertise 36
embodied and disembodied technology 203, 205
and employment 88–9, 234
high and low technology, interaction between 72, 88
high/low technology dichotomy 72–3
‘high technology’ 69–71, 73, 74, 85, 87, 89
integration of different technologies 141
integration of technologies 141
intensity 68–9
knowledge based technologies 103
labelling of technologies 72–3
low technology and growth 88
low technology 87
mixing technologies 103
moral economy of high technology 71–5, 76, 88
nature of technical change 149
novel technology 87
patterns of technological change 221–2
quantifying high technology 74
and R&D 75
technological competition and diffusion of technology 102, 222, 224
technology gap 68
technological process 86
technological progress and innovation 25–6, 70
technology fusion 141
technology standards 48
technology and trust 71, 119
terminology and classification 72–3
types of technologies 69, 70–71
technological complementarities 141
patterns of technological change 221
Index

Technological Gap Study Program (US) 68

Thailand 245

Threat and Error Management (TEM) reports 127, 131

development of rhetoric of high technology 66

trade, global, increase in 246

in high tech products 246

transaction-cost theory 142–3, 144

Truman, President Harry 64

and knowledge sharing 119, 123

TU Munich, Institute for Information Technology (ITM) 58

UK 247, 272, 273, 279

call centres in 270

LMT industries 233

and R&D 67

research budget 64, 275

UN 245

'unit export value' (UEV) and 'relative unit export value' (RUEV) 201, 203

unit labour costs (ULC) 200, 201

relative unit labour costs (RULC) 200, 201, 207

universities, research and access 274–7

US Bureau of Standards 65

US Century Fund 277

balance of payments deficit 67

development of rhetoric of high technology 66

education in 267, 274, 276–7

educational deficiencies 277

government policy 269

growing inequality in 276–7

influence of US universities 275–6

market fields in 44

as most ‘knowledgeable’ society 277–8

protectionism 3

and R&D 67, 68, 274

research budget 64

research in 268

and standard setting 51

and technology gap 68–9

see also knowledge based society

value chains 15, 38

Vietnam 245, 246

vocational education and training 278–80

WBRD 245

World Bank 280

WTO 245

Xian, (Shaanxi) China 249–50