Index

Abernathy, W. 35, 69
Abraham, S. 189
Acee, H. 35, 38
Acs, Z. 121
Adamson, K. 158
Adler, P. 104
Adner, R. 35, 170
Afuah, A. 67, 68, 105
Agnolucci, Paolo 152–66
Agrawal, R. 186
Ahuja, G. 69, 72, 77, 80, 102, 108, 109
Air Products 46
Alcácer, L. 138
Aleklett, K. 146

alliances see fuel cell technology, new industry networks
Ancona, D. 105
Anderson, P. 35, 36, 37
Arora, A. 67, 106
Arthur, W. 104
Asahi 201, 203

Australia
- fuel cell buses 143
- International Partnership for the Hydrogen Economy (IPHE) 188

automotive industry see fuel cell technologies in automotive industry, introduction of

Auxiliary Power Unit (APU)
- 15, 45, 158–60, 161, 162, 163

Avadikyan, A. 87
Avadikyan, A. 203
Axelrod, R. 182, 183, 184

Baden-Fuller, C. 106
Baker, A. 158
Baker, M. 119, 124
Ball, Michael 52–65
Ballard 41, 43, 44, 75, 78–9, 81, 112–13, 138, 141, 203
Banerjee, A. xx, 66, 152
Barberis, N. 124
Barbier, F. 186
Bartlett, C. 104
Baxi Adelan 220
Becattini, G. 154
Benner, M. 102
Bentley, R. 23
Berkhout, F. 37
Bikhchandani, S. 124
- biofuels 7, 14, 23, 25, 28, 30, 44
- biomass gasification 10, 11, 26, 53, 54, 55, 56, 60
Birkinshaw, J. 104, 105
BMW 45, 142
BOC 46
Borgatti, S. 68, 72, 76
Borrioni-Bird, C. 139, 140
Borup, M. et al. 122
Bourgeois, B. 75
Boyle, G. 23
BP 46, 47, 189
Brazil, International Partnership for the Hydrogen Economy (IPHE) 188
Breschi, S. 93–4, 95
Brodrick, C. 159, 160
Bromily, P. 124
Bromine-calcium (Br-CA) process 10
Brown, James 34–51
Brown, S. 102, 105
Brusco, S. 154
Budd, E. 139, 140, 147–8
Bührer, Mary Jean 118–37
Burgelman, R. 104, 105
Burns, T. 104
Butler, J. 81
Calantone, R. 34
Camison, C. 155
Canada
- fuel cell buses 143
- fuel cell network 70, 71, 143
fuel cell network top-performers 79, 81
fuel cell technology, infrastructure issues 47, 143, 144, 146
greenhouse gas emissions, commitment to halving 4
Hydrogen Highway 143, 144, 146
International Partnership for the Hydrogen Economy (IPHE) 188
Cantwell, J. 95
car industry see fuel cell technologies in automotive industry, introduction of
carbon capture and storage (CCS) 6, 9, 12, 14, 25–6, 27, 54, 56, 60, 61, 63, 221
Carley, K. 103
Carlsson, B. 170
Carlyle Group 128
CENEX 220
CFC Solutions 111
Chan, L. 124
Chandy, R. 34
Chesbrough, H. 37, 38
Chevron 189
China
fuel cell technology and automotive development 43
fuel cell technology, infrastructure issues 148
International Partnership for the Hydrogen Economy (IPHE) 188
and low carbon technologies 147
Christensen, C. 34, 35, 36, 37, 47, 48–9, 105, 170, 185
Christensen, E. 122
Chrysalix Energy 79
Chubu Electric 203
Clark, K. 37, 90, 92
climate change, actions and strategies to deal with 4–6
CO₂ emissions
abatement costs 4, 5–7
and hybrid cars 147
and hydrogen production 9, 63, 148–9
standards for new cars, EU 28
see also GHG emissions
clean coal gasification 9–10, 11–12, 26–7, 55, 56, 63, 146
see also fossil fuels
Cockburn, J. 90
Cohen, D. 141
Collantes, G. 189
commercialization
disruptive innovation and market niches 37
EU hydrogen and fuel cell 7, 172–8
EU market penetration of hydrogen passenger cars 53
EU ‘Precommercial Procurement’ 218
fuel cells, early market for see fuel cells, early market for
Japan Fuel Cell Commercialization Conference of Japan (FCCJ) 206
market penetration of hydrogen passenger cars, EU 53
mass market availability date 30–1, 44, 45, 54
product-market structure and industry strategies 42, 43–5, 46–7
see also European hydrogen and fuel cell technology platform, market coordination and network effects; fuel cell market development, financing and venture capital
commercialization suggestions, hydrogen and fuel cells 7, 172–8
Conduit Ventures 79
Contestabile, Marcello 20–33
Cornelius, B. 121
Courtenay, V. 139
Daf 138
DaimlerChrysler 44, 79, 112–13, 189, 203, 221
Daneels, E. 37
Deeds, D. 68, 105, 106
demonstration projects see hydrogen demonstration projects
Dibiaggio, Ludovic 87–101
Diefendorf, S. 118, 120
direct methanol fuel cells (DMFC) 14, 16, 144, 161, 162
Doherty, R. 156
Dosi, G. 37, 87, 88
Doz, Y. 68
Dresher, M. 182
‘drive-by-wire’ technology 44
Duncan, J. 139
Dushnitsky, G. 121
Dyer, J. 67, 69, 105
Dyerson, R. 45–6
Eames, M. xx, 29, 48, 66, 80, 161
Eisenhardt, K. 102, 105
electric vehicles 7, 14, 25, 30, 46, 142, 146, 147, 159, 160
electrolysis 10–11, 12, 46, 54, 60, 201, 216
EU
biofuels 23, 25, 28
CO₂ emission standards for new cars 28
emissions trading scheme (ETS) 27–8
energy policy objectives 27–9, 215–16
European Hydrogen Highway 47
European Hydrogen Association (EHA) 216, 219
fuel cell R&D 43
fuel cell vehicle projects 40, 44, 175
Fuel Quality Directive 28
GHG emissions targets 4, 27–8
hydrogen demonstration projects 47, 143, 174, 175–6, 179, 217–18, 220, 221–2
hydrogen and fuel cell futures 29–31, 215
hydrogen infrastructure, build-up of 47, 54–6, 218–19, 221–2
hydrogen transition process 30
Hydrogen for Transport 218
HyFleet/CUTE (urban buses) demonstration project 47, 143, 220, 221–2
HyLights project 217–18
HyRaMP (European Regions and Municipalities Partnership for Hydrogen and Fuel Cells) 218–19
HyWays project 25, 30, 53, 54, 55–6, 57, 58, 215
Hywind balance (hydrogen storage) project 221
International Partnership for the Hydrogen Economy (IPHE) 188, 217
Joint Technology Initiative for Hydrogen and Fuel Cells (JTI) 29, 30, 31, 175–8, 218, 219, 221, 222
Lisbon strategy 171
market penetration of hydrogen passenger cars 53
nuclear feedstocks 55
‘Precommercial Procurement’ 218
Renewable Energy Directive proposal 28
road transport oil dependency 23, 25
road transport sustainability challenges 21–7
Roads2Hycom project 218
Strategic Energy Technology Plan (SET Plan) 215
Technology Platforms 169–72
transport fuels, life-cycle emission monitoring 28–9
wind power 55, 220
Zero Region project 47, 220
see also individual countries
European hydrogen and fuel cell technology platform, market coordination and network effects 169–81
demonstration projects 175–6, 179
Framework Programmes 174, 176
HFP strategy formulation 173–6, 177, 178
HFP target setting 174–5
HFP vision building 173, 174, 175
hydrogen and fuel cell commercialization 7, 172–8
member state involvement 177–8
public procurement 176
regulatory barriers, removal of 176
road vehicle demonstration sites 174
standardization process 176, 179
stationary fuel cells (CHP) 175
Technological Platform 169–78
Innovation, markets and sustainable energy

- technological system formation: 170–2
- technological uncertainty: 170–1
- transport applications: 174–5
- European Technology Strategy (CEC): 20, 25
- EWE AG: 221

- Farrell, A.: 185, 189
- Faust, K.: 70–2, 74
- Fenn, J.: 119
- Ferrell, A.: 144
- finance: see fuel cell market development, financing and venture capital
- Finkelstein, S.: 174
- Finland: hydrogen infrastructure buildup: 55
- Fiorino, D.: 185, 187
- Fischer-Tropsch synfuels: 14
- Fleming, L.: 92
- Flink, J.: 140
- Flood, M.: 182
- Florida, R.: 121
- Ford: 79, 112–13, 139, 140, 142, 147–8, 189
- Ford, B.: 44, 45
- Foster, P.: 68, 72, 76
- fossil fuels: 46, 54, 60, 145–6
- coal gasification: 9–10, 11–12, 26–7, 55, 56, 63, 146
- Foxon, T.: 153
- France: fuel cell network: 71
- HYBird (aircraft on fuel cells): project 220
- hydrogen infrastructure buildup: 55
- SOLHyVert (hydrogen production by solar power): 220
- Franke, N.: 125
- Freeman, C.: 153, 170
- Freeman, L.: 72
- Froot, K.: 124
- Fuchs, D.: 185
- fuel cell industry, intra- and interorganizational learning: 102–17
- alliance formation: ambidexterity: 105–7, 111–14
- alliances and economic risk reduction: 106
- cooperation and innovation: 105–6, 112
- cooperation and transaction cost reduction: 106, 113, 155
- exploration and exploitation balancing: 102–10
- exploration and exploitation balancing through ambidexterity: 103–5
- exploration and exploitation, internal dynamics of: 106–7
- new product development and ambidexterity: 108
- and organizational lock-ins: 104–5
- performance consequences of ambidexterity: 108–9, 110, 111–12
- specialization and exploration and exploitation balancing: 107, 110
- fuel cell innovations, technological knowledge database: 87–101
- breakthrough innovation: 121–2
- complementary technologies: 95–7
- data description: 88–9
- fuel cell technological space: 100–1
- knowledge organization in innovative outputs: 91–7
- patent applications: 88–9, 111
- patent characteristics: 89–90
- patent growth and process of technological development: 81, 89–91, 93, 96, 100–1
- substitutable technologies: 93–5
- substitutable technologies and cosine index: 93–4
- technological domains and combinational relationships: 90–1, 92
- technological innovation, understanding: 34–8
- fuel cell market development, financing and venture capital: 118–37
- and breakthrough innovation: 121–2
- expectation dynamics, actively shaping: 131–2
fuel cell investment companies, investment in 126–7
fuel cell investment cycle analysis 125–9
innovation process and expectation dynamics 122–3
investment decisions and expectation dynamics 123–5, 129
investment in fuel-cell companies 127–9
investment performance and expectation dynamics 130–1
literature review 120–5
media coverage and expectation dynamics 131
publicly-traded and privately-held companies, differences between 128
technology development and expectation dynamics 129–32
venture capital funding cycles, and rationality 129–30
venture capital funding cycles, reasons for 119–21, 123, 126–8
fuel cell technology
as Auxiliary Power Unit (APU) 15, 45, 158–60, 161, 162, 163
complementary assets 42, 45–7
cost levels 40–2, 44
direct methanol fuel cells (DMFC) 14, 16, 144, 161, 162
as disruptive innovation 34–51
‘drive-by-wire’ technology 44
durability 42
and efficiency levels 15–16
fuel cell costs 17–18
fuel cell lifetime 16
fuel cell stack 41, 44
government regulation and investment 40, 41, 43, 44, 45, 46, 47, 48, 144
HotModule fuel cells 111
hydrogen requirement 42–3, 44
industry structure 41–2
infrastructure issues 46–7, 142, 143–4, 145, 148
invention of xxii
major manufacturers, collaboration with 45–6
mass market availability date 30–1, 44, 45, 54
molten-carbonate fuel cells (MCFC) 14, 15–16, 18, 111, 202, 203
overview 14–18
patent activity 43, 81
phosphoric acid electrolyte fuel cell (PAFC) 16, 202, 203
and platinum 17
product-market structure and industry strategies 42, 43–5, 46–7
proton exchange membrane fuel cells (PEMFC) 14–15, 16, 17, 18, 44, 53, 112, 161, 201, 203, 205–6, 207
R&D funding 44, 158
and servicing and repair 46
‘skateboard’ chassis 44
solid oxide fuel cells (SOFC) 14, 15–16, 18, 161, 162, 201, 203
stationary power applications 43
technology performance 40–3
urban buses 43, 44, 46
see also hydrogen technology
fuel cell technology in automotive industry, introduction of 138–51
automotive development, current 43
barriers 13–14
car industry commitment 140–3
dissent 142
drivers and barriers 39
first fuel cell car 138
future objectives 144–6
history of automobile production 139–40, 147–8
and hydrogen supply 142, 143–4
leading and emerging countries’ role 146–9
platinum, need for 141
practical problems 141–2
progress review 38–47
see also transportation sector
fuel cell technology, new industry networks 69–70, 130
dynamics of top-performer 78–80
and hydrogen economy 163
and innovation 68–9, 76–8
Japan 70, 71, 81
network effects and infrastructure 156
network evolutionary path 72–4, 78
social network analysis and network representation 70–2, 77
fuel cell technology, new industry shaping 66–84
centrality measures 72, 74, 78
competences 74–6
firm collaboration, reasons for 67–9
fuel cell producers 75–6, 77
and governance structure 68
innovation barriers and constraints 66–7
joint ventures 68
relational patterns analysis 76–8
social network analysis and network representation 70–2, 77
strategic alliances 67–72
fuel cells, early market for 152–66
Auxiliary Power Units (APU) 15, 45, 158–60, 161, 162, 163
and expectations 155
external economies of scale and industrial development 154–5, 158
and hydrogen economy see hydrogen economy
internal economies of scale 154, 158
learning in user and institutional contexts 155
and market performance (payback period) 159–60
and micro fuel cells (MFCs) 156–8, 161, 162, 163
network effects and infrastructure 156
niche-related processes 154–6
possible markets 159, 160
service sector support 161
technology-push/market-pull 152–4
FuelCell Energy 78, 79
Fuji Electric 41, 44, 201, 202
future research
energy sector investment 133–4
expectation dynamics in venture capital investing 133
hydrogen transition process 32
venture capital and new technology development 133

Gambordella, A. 67, 106
Garcia, R. 34
Geels, F. 37, 48, 153
Geels, F. 35, 153
Germany
CNETHPC experimentation centre 219
EU HyFleet CUTE project 220
EU Hywind balance (hydrogen storage) project 221
fuel cell network 70, 71, 81
fuel cell network top-performers 79
fuel cell technology, automotive development, current 43
fuel cell technology, infrastructure issues 47
GermanHy project 56–60
Hydrogen Bus Alliance 220
hydrogen costs and CO2 emissions 63
hydrogen demand for road transport, introductory phase 58–63
hydrogen and fuel cell network 220
hydrogen highway projects 217
hydrogen infrastructure buildup 55, 56–63
hydrogen production, transport and distribution system development 59–63
National Hydrogen and Fuel Cell Technology Innovation Programme 30
GHG emissions and global cooperation 4
and hydrogen technology 24–5, 27
targets, EU 4, 27–8
transport sector, EU 21–3, 24
see also CO2 emissions
Gibbons, M. 195
Gibbons, R. 184
Gibson, C. 104, 105
Gimeno, J. 70
GM (General Motors) 43, 44, 46, 79, 140, 189, 221
Goddard, Dale 118–37
Gompers, P. 119, 128
Goshal, S. 104
Gouldson, A. 182, 184–5, 190
government regulation and investment 40, 41, 43, 44, 45, 46, 47, 48, 144
Index

Govindarajan, V. 38
Grant, R. 92, 102, 106
Greece, hydrogen infrastructure
buildup 55
Green, M. 144
Greenwald, T. 123
Greve, C. 171
Griliches, Z. 88
Grimwood, J. 186
Guice, J. 123
Gulati, R. 67, 68, 69, 70, 76, 80, 106
Gupta, A. 104, 107, 108

H Power Corp. 79
Hacker, B. 186
Hagedoorn, J. 68, 69, 77, 105–6
Haleblian, J. 74
Hall, J. xx, 75
Harayama, Yuko 195–211
Harborne, Paul 34–51
HARI (Hydrogen and Renewables
Integration) Project, UK 220
He, Z. 102, 108, 109
Hege, J. 142
Heidenreich, B. 142
Hellman, H. 69, 144
Henderson, R. 37, 90, 92
Hendry, Chris 34–51, 75
Hercules project, Spain 219
Hill, C. 68
Hirsch, R. 146
Hisschemöller, M. 152
Hitachi 202
Holmqvist, M. 103, 109
Homma, T. 203
Honda 43, 45, 46, 113, 141, 189, 221
Honda, Kuniaki 195–211
Hoogma, R. 145, 155
Hoskisson, R. 74
HotModule fuel cells 111
Hughes, N. 157, 158
Huleatt-James, N. xx
hybrid vehicles 14, 44, 45, 142, 146,
147, 157, 159
hydrogen demonstration projects
EU 47, 143, 174, 175–6, 179, 217–18,
220, 221–2
Japan 47, 208, 209
hydrogen economy 13–14, 29, 160–3,
217
hydrogen highway projects
EU 47
Germany 217
Japan 217
US 143, 144, 146, 217
hydrogen infrastructure, build-up of
13–14, 52–65, 217
deployment and uses of hydrogen
52–4
EU 54–6, 218–19, 221–2
hydrogen vehicle penetration areas 53
Japan 47, 199
Slovenia 221
US 56
hydrogen technology
abatement costs 6
alternatives to 53–4
biological processes 11
biomass gasification 10, 11, 26, 53,
54, 55, 56, 60
carbon capture and storage (CCS)
6, 9, 12, 14, 25–6, 27, 54, 56, 60,
61, 63, 221
CO2–free, limited supply 8
coal gasification 9–10, 11–12, 26–7,
55, 56, 63, 146
combustion suggestions 7,
172–8
and efficiency levels 9, 10
electrolysis 10–11, 12, 46, 54, 60,
201, 216
and energy future 3–19
and fossil fuels 46, 54, 60, 145–6
future impacts projections,
uncertainty of 24–5, 29–31,
215
futures, EU 29–31, 215
and GHG emissions 24–5, 27
hydrogen production 8–9
HyWays project, EU 25, 30
and industrial waste 54, 111
infrastructure investment 13–14
and internal combustion engine
(ICE) fuel 45, 142, 147, 159,
160
and lignite 61
and limited resource availability 61,
63
mass market transition 30–1, 44,
45, 54
and methane 9, 26, 64
natural gas reforming 9, 11–12, 15,
25–6, 29, 53, 54, 55, 56, 61
on-board (vehicle) reforming 142, 162
origins and future 215–23
photo-electrolysis 10–11
potential 6–7
production costs 11–12
renewable hydrogen pathways and
efficiency 24–5, 30
and renewable sources 27, 60, 63
and safety 43
and servicing 46
solar energy 27, 220
stationary applications 54
Steam Methane Reformer (SMR) 64
storage for fuel cell vehicles 13
supply costs 64–5
and transition towards sustainable
energy systems 20–33
water thermolysis and higher-
temperature nuclear reactors 27
‘well-to-wheel’ (WTW) energy
efficiency 24, 25, 26
and wind power 60, 61, 63
see also fuel cell technology
Hydrogenics Corporation 75, 78, 79, 81
HyFleet/CUTE (urban buses)
demonstration project, EU 47,
143, 220, 221–2
HyLights project, EU 217–18
Hymer 158
HyRaMP (European Regions and
Municipalities Partnership for
Hydrogen and Fuel Cells) 218–19
Hyundai 43, 189
HyWay A22, Italy 219
HyWays project, EU 25, 30, 53, 54,
55–6, 57, 58, 215
Hywind balance (hydrogen storage)
project, EU 221
Iansiti, M. 92
Iceland
hydrogen infrastructure buildup 61,
145, 146
International Partnership for the
Hydrogen Economy (IPHE) 188
see also Scandinavia
Ida Tech 79
IHI Corporation 202
India
fuel cell technology, infrastructure
issues 148
International Partnership for the
Hydrogen Economy (IPHE) 188
industrial waste 54, 111
Infraserv 220
infrastructure issues
fuel cell technology 46–7, 142,
143–4, 145, 148
hydrogen see hydrogen
infrastructure, buildup of
innovation see fuel cell innovations,
technological knowledge database
Intelligent Energy 220
internal combustion engine (ICE) fuel
45, 142, 147, 159, 160
International Energy Agency (IEA) 5,
6, 7, 53, 217
International Partnership for the
Hydrogen Economy (IPHE) 188,
217
investment see fuel cell market
development, financing and
venture capital
Italy
fuel cell network 71
fuel cell network top-performers 79
Habitech 219
Hercules project 219
hydrogen and fuel cell industrial
cluster 221
hydrogen infrastructure buildup 55
hydrogen refuelling station
(demonstration) 220
HyWay A22 219
and International Partnership for the
Hydrogen Economy (IPHE) 188
Urban Hydrogen Lab ‘Bicocca’ 220
Jacobsson, S. 107, 170, 171
Japan
automotive development, current 43,
44, 45
Big Project (large-scale industrial
research and development)
196–7, 200–1
Fuel Cell Commercialization
Conference of Japan (FCCJ) 206
fuel cell demonstration projects 47, 208, 209
fuel cell network 70, 71, 81
fuel cell technology policy and progress 195–211
fuel cells i ‘Coordination Program of Science and Technology Projects’ (CSTP) 207–8
greenhouse gas emissions, commitment to halving 4
hydrogen and fuel cells R&D 12, 43, 142, 198–203, 203, 207–8
hydrogen highway projects 217
hydrogen islands 47
infrastructure issues 47, 199
innovation 25 199
innovation and Science and Technology Basic Plans 198–200
International Partnership for the Hydrogen Economy (IPHE) 188
international partnerships and technological transfer 201, 202
Japan Hydrogen and Fuel Cell (JHFC) demonstration project 47
Moonlight Program 201–2, 203
New Sunshine Program 201, 202–3
‘old tool’ technology policies 204–5
patents 81
Promotional Strategies for Prioritized Areas 199
Science and Technology Basic Plans 197–9
science and technology policies overview 196–200
Sunshine Program 200–1
TARGET Program 200, 201
US DOE cooperative partnerships 201
vehicle projects 40, 199
World Energy Network Program (WE-Net) 203
Johnson Matthey 141
Johnson, R. 74
Jollie, D. 158
Jordan, J. 124
Kaas, K. 124
Kahneman, D. 124
Kalhammer, F. 203
Kash, D. 77–8
Katila, R. 102, 108, 109
Katz, M. 69, 169
Keith, D. 144
Keller, J. 43
Kemp, R. 37, 153, 185
Kerr, R., xxi, 75
Kinninger, P. 142
Kline, S. 170
Knott, A. 108
Kogut, B. 68, 69, 90, 92, 106
Kohler, H. 175, 176
Kopalle, P. 38
Koppel, T. 138
Korea fuel cell patents 81
fuel cell technology, automotive development, current 43
and International Partnership for the Hydrogen Economy (IPHE) 188
Kortum, S. 121
Kozai, M. 103, 106
Kyoto Protocol 40
Lakonishok, J. 124
Lambe, C. 69
Lane, P. 103
Larrue, Philippe 195–211
Larsson, R. 103
Lauber, V. 170, 171
Lavie, D. and L. Rosenkopf 103, 106–7
Lenox, M. 121
Lerner, J. 121
Levinthal, D. 35, 102, 104, 170
Levitt, B. 105
Lewin, A. 103
Liebowitz, S. and S. Margolis 156, 169
lignite 61
Linde 46, 47
Lipman, T. xxii
Louça, F. 153
Lubatkin, M. 103
Lutsey, N. 159
Lynn, G. 35
Macdonald, F. 143
McDowall, W. xx, 29, 48, 66, 80, 161
Innovation, markets and sustainable energy

McGowan, M. 142
McNamara, G. 124
March, G. 102, 104, 105
March, J. 102, 104, 105, 107, 108
Markides, C. 36, 38
Margolis, S. 156, 159
Markard, J. 122, 123
Maxton, G. 39
Mazda 142
Mazmanian, F. 183, 184, 190
Medis Technologies 158
Meissner, E. 159
Mercedes 138–9
methane 9, 26, 64
Microcab 220
Migliavacca, Paulo 66–84
Millennium Cell 79
Mina, S. 75
Mitchell, W. 68
Mitsubishi 202, 203
Mohamad, Z. 75
Mokyr, J. 153
molten-carbonate fuel cells (MCFC) 14, 15–16, 18, 111, 202, 203
Moonlight Program, Japan 201–2, 203
Moore, B. 118
Moore, G. 37
Morgan Motor Co. 143
Morocco, hydrogen infrastructure buildup 61
Mowery, D. 106
Nasiriyar, Maryam 87–101
natural gas reforming 9, 11–12, 15, 25–6, 29, 53, 54, 55, 56, 61
Nelson, R. 36, 87, 120, 153, 170, 171
Nerkar, A. 92
Nesta, L. 92, 95
Netherlands fuel cell network top-performers 79 hydrogen infrastructure buildup 55, 144
networks see fuel cell technology, new industry networks
New Zealand, and International Partnership for the Hydrogen Economy (IPHE) 188
Nichols, R. 144
Nieuwenhuis, Paul 138–51, 191
Niosi, J. 67
Nissan 43, 189
Noonan, C. 95
Index

QinetiQ 128, 143
QuestAir’s Technologies 79

R&D
- Big Project, Japan 196–7, 200–1
- Energy Research and Development Association (ERDA), US 186
- fuel cell durability 16
- fuel cell technology, R&D funding and collaboration, US 44
- hydrogen and fuel cells 12, 43, 44, 142, 198–203, 203, 207–8
- SCRATCH (supply chain research attached to clean hydrogen) project, UK 220
- US hydrogen strategy and public policy cooperation 12, 43, 44, 186, 189, 191, 192

Ramage, M. 186
Raynor, M. 35, 36, 37
Reijalt, Marieke 215–23
Reinhardt, F. 185
Richter, G. 159
Rickne, Annika 169–81
Rip, A. 153
Roads2Hycom project, EU 218
Rodan, S. 92
Rolls Royce 220
Romm, J. 142, 144, 145, 192
Rosembloom, R. 37, 38
Rosenberg, N. 170
Rothaermel, F. 68, 105, 106
Ruef, A. 122, 123
Russell, S. 155

Russia, and International Partnership for the Hydrogen Economy (IPHE) 188
Russo, Angeloantonio 66–84, 102–17
Rycroft, R. 77–8

S-I (sulphur-iodine) process 10
Saives, A. 80
Salman, N. 80
Sanyo 202, 203
Saviotti, P. 92, 95

Scandinavia
- Finland, hydrogen infrastructure buildup 55
- Hydrogen HyWay Project 217, 221

hydrogen refuelling stations 221
- Iceland see Iceland
- Schaeffer, G. 203
- Schakenraad, J. 68, 105–6
- Scharfstein, D. 119
- Schoonhoven, C. 106
- Scholz, J. 183
- Schot, J. 35, 153
- Schumpeter, J. 121
- SCRATCH (supply chain research attached to clean hydrogen) project, UK 220
- Setton, A. 143
- Shapiro, C. 69, 169
- Sharma, S. 124
- Shell 46, 79, 138, 189, 221
- Shepherd, D. 124, 125
- Siemens Westinghouse 79
- Siggelkow, N. 102
- Simbolotti, Giorgio 3–19
- Singh, H. 67–8, 105
- Slovenia, hydrogen refuelling stations 221
- Smart Fuel Cell 158
- Smith, D. 121
- Soh, P. and E. Roberts 69, 72, 76
- solar energy 27, 220
- solid oxide fuel cells (SOFC) 14, 15–16, 18, 161, 162, 201, 203
- Solomon, B. xx, 62, 152
- Sood, A. 35
- Spain
- CNETHPC experimentation centre 219
- Energy Park 220
- EU CUTE participation 220
- Hercules project 219
- hydrogen infrastructure buildup 55, 219
- wind power management and hydrogen storage 220
- Spedale, S. 67
- Spekman, R. 69
- Sperling, D. 192
- Spowers, H. 143
- Stalker, G. 104
- Stankiewicz, R. 170
stationary applications, hydrogen technology 54
stationary fuel cells (CHP) 175
stationary power applications, fuel cell technology 43
Stein, J. 119
Stein, R. 138
Stern, N. 21–2
Stiglitz, J. 171
Stodolsky, F. 159, 160
Stuart Energy 79
Stuart, T. 67, 68, 72
Suarez, F. 34, 36, 37, 38
sulphur-iodine (S-I) process 10
Sunshine Programs, Japan 200–3
sustainable energy systems, transition towards 20–33
TARGET Program, Japan 200, 201
technological innovation see fuel cell innovations, technological knowledge database
technological uncertainty, European hydrogen and fuel cell technology platform 170–1
Teece, D. 37, 38, 95
Tellis, G. 34, 35
Thaler, R. 124
Thomas, G. 43
Tidd, J. 76
Tonen 202
Toshiba 202, 203
Toyo 202
Toyota 43, 44, 45, 108, 138, 141, 146, 189, 221
transportation sector
auxiliary power units (APU) 15, 45, 158–60
electric vehicles 7, 14, 25, 30, 46, 142, 146, 147, 159, 160
electrified truck stops, US 160
and energy efficiency 6–7
EU road transport sustainability challenges 21–7
fuel cell buses 43, 44, 46, 47, 143, 220, 221–2
fuel cell vehicles 6–7, 14–15, 16, 17, 40, 44, 175
hybrid vehicles 14, 44, 45, 142, 146, 147, 157, 159
Germany, hydrogen demand for road transport, introductory phase 58–63
hydrogen technology and on-board (vehicle) reforming 142, 162
market penetration of hydrogen passenger cars, EU 53
oil dependency 23, 25
transport fuels, life-cycle emission monitoring, EU 28–9
vehicle projects, Japan 40, 199
see also fuel cell technology in automotive industry, introduction of
Turner, J. 144
Tushman, M. 35, 36, 37, 102, 105, 108
Tversky, A. 124
UK
automotive fuel cell development 39
emission regulation 40
fuel cell network 71
fuel cell network top-performers 79
fuel cell technology, maintenance and repair facilities 46
HARI (Hydrogen and Renewables Integration) Project 220
Hydrogen Forum 220
hydrogen and fuel cell development 221–2
hydrogen infrastructure buildup 55
Low Carbon Vehicle Partnership 46
Scotland, hydrogen islands 47
SCRATCH (supply chain research attached to clean hydrogen) project 220
Sustainable Hydrogen Energy Consortium 29
UN, Intergovernmental Panel on Climate Change (IPCC) 3
US
automotive development, current 43, 44
California Fuel Cell Partnership (CaFCP) 47, 189
Department of Defense 79
Department of Energy 78, 79
Department of Energy Hydrogen program 46, 186–7, 188, 189
Department of Transportation (DOT) 188, 189

electrified truck stops 160

Energy Research and Development Association (ERDA) 186

Environmental Protection Agency 189

FreedomCAR and Vehicle Technologies (FCVT) 189

fuel cell buses 143

fuel cell network 70, 71, 81

fuel cell network top-performers 78–9

fuel cell technology, maintenance and repair facilities 46

fuel cell vehicle projects 40

HGV emissions legislation 40

Hydrogen Posture Plan 187–8

infrastructure issues 47, 56, 143, 144, 146, 186

International Partnership for the Hydrogen Economy (IPHE) 188

Japan, cooperative partnerships 201, 202

National Energy Policy (NEP) 186

National Hydrogen Roadmap 187–8

space program fuel cells 16

wind energy 56

Zero Emissions Mandate, California 43

US hydrogen strategy and public policy cooperation 182–94

automobile industry future and alternative fuels 186, 189, 190

collective action dilemma for environmental policy 183, 184–5

cooporative policy 188–9

cooporative policy dynamics 190–1

early experiments 185–6

economic theories of cooperation 182–5

economic-incentive instruments 190–1

Hydrogen Future Act (1996) 186

Hydrogen Highway 143, 144, 146, 217

Hydrogen Posture Plan 187–8

learning demonstrations 188–9

and learning-by-doing 185

national hydrogen policy 185–8

and niche management 185

policy framework evolution 191

R&D 12, 43, 44, 186, 189, 191, 192

technological barriers 187–8

UTC Power 41, 44, 189, 201

Utterback, J. 35, 48, 69, 120

Valeswood 220

van den Hoed, R. 44, 69, 138, 141

van Lente, H. 123

venture capital see fuel cell market development, financing and venture capital

Verdugo-Peralta, C. 142, 146

Vergragt, P. 143

Veryzer, R. 35

Volkswagen 189

Vurro, Clodia 102–17

Waggoner, R. 44, 46

Wallstein, S. 171

Wankel engines 142

Wasserman, S. 70–2, 74

water thermolysis and higher-temperature nuclear reactors 27

Weiss, M. 185

Wells, P. 143, 144, 191

Wietschel, Martin 52–65

Williams, R. 155

Williamson, O. 68

wind power 55, 56, 60, 61, 63, 220

Winter, S. 36, 87, 120, 153

Wong, P. 102, 108, 109

World Energy Network Program (WE-Net) 203

Wormald, J. 39

Wuebker, Robert 118–37

Wüstenhagen, Rolf 118–37

Yang, C. 56

Zacharakis, A. 124

Zander, U. 90, 92

Zapata, Clovis 147, 182–94

Zea Bermudez, V.D. and L. Alcácer 138

Zero Region project, EU 47, 220