Index

Abernathy, W. 300
Abramson, N. 294, 297
academic and industrial researchers, different approaches of 53–4
academic life see polyvalent knowledge and threats to academic life
academic software and databases 181–4
academic–business research collaborations (and) 74–97
organizational ecology of innovation 88–92
productive shocks and problematic tensions 77–81
social interactions and collaborative research 82–7
university patenting for technology transfer 74–7
see also innovation; legislation
academy–industry relations 2–3, 21, 25, 46–60
effects of different deontic knowledge on 46
incentives for 32
obstacles to 45
transformation of 204–5
see also background knowledge; norms
acronyms proprietary, local, authoritarian, commissioned and expert (PLACE) 47, 52
strategic, hybrid, innovative, public and scepticism (SHIPS) 47, 52
ACT-R (Adaptive Control of Thought–Rational) networks 40
agro-food 144, 151–3
Agrawal, A. 5, 6, 46
ahead-of-the-curve science 146
Ainsworth, S. 244
Alcoa 32
Allen, R.C. 170, 171, 173
allocative efficiency theory 125
Alter, C. 315
Amable, B. 227
Amadae, S.M. 264
analytical ontic knowledge 33–42
cognitive mode of 39–42
descriptive 33–4
explanatory 34–9
see also Appert, Nicholas; Pasteur, Louis
Anderson, J.R. 40
Anderson, P. 300
anti-commons 181
effects 80, 122
tragedy of 18, 20, 134–5
anti-cyclic triple helix see capitalizing knowledge and the triple helix;
 polyvalent knowledge and threats to academic life; publishing and patenting; triple helix in economic cycles; triple helix: laboratory of innovation
Anton, J.J. 171
Antonelli, Cristiano 16, 99
Aoki, M. 226–7
Appert, Nicholas 36–9, 41, 43, 62
and food preservation 36–7, 38–9
appropriability, impact of 36
appropriability, opportunities and rates of innovation (and) 121–42
blurred relations between appropriability and innovation rates 130–136
failures of ‘market failure’ arguments 123–8
growth in patenting rates and (mis) uses of patent protection 128–30
opportunities, capabilities and greed 136–9
Arora, A. 136
Arrow, K.J. 88, 99, 121, 169, 265, 266–7
Art of Computer Programming 168
Arundel, A. 68
Ashby, W.R. 307
AT&T 32
Aventis 151
Avnimelech, G. 113
Ayer, A.J. 264
Azoulay, P. 6, 7

background knowledge (and) 45, 47–60
groups 53–4
shared vs unshared 64–5
‘teamthink’ theory 53
see also cognitive rules; language; norms; research; studies (on)
Bagchi-Sen, S. 143, 152, 155
Balconi, M. 41, 64, 75
Baltimore, David 148
banks and polyarchic decision-making 101–2
Bar Hillel, M. 57
Barnet, G. 206
Barré, R. 223, 233
Barsalou, L.W. 40, 44
Barton, J. 135
Bas, T. 146, 148, 159
Bathelt, H. 293
Baumgartner, F. 244
Bayer 151
Bazdarich, M. 151
Becker, G.S. 273
Belfa, J.-L. 234
Bell, Daniel A. 324
Bell Labs 125
Bernstein, R.J. 264
Bessen, J. 135
Beston, A. 243
Beth, E. 44
big pharma 153–4, 155, 156
‘big science’ projects 63
Bilderbeek, R. 305
biopharma clusters 19
biopharmaceuticals 18, 143–8, 151–3, 250
Biopolis (Singapore) R&D hub 160
bioprocessing 160
bioregional clusters 157
biosciences 152–5
and knowledge networks 153, 157–8
new research institutes for 160
vehicles for implantation of 153–5
Biosciences Policy Institute 252
see also Life Sciences Network (LSN)
Biosystems Genomics, Centre for 153
biotechnology 41, 147–9, 152–3
and cluster theory 144–6
clustering 149–50
collaborative aspect of 148
and dedicated biotechnological firms (DBF’s) 19, 144–6, 153
in Germany 19 see also Germany
globalization of 150–152
initiatives (Cambridge University) 2
and nanabiotechnology 160
networked hierarchy in 155–61
sociocultural impact of (in New Zealand) 247–8
see also cluster theory; Schumpeter, J.A.
biotechnology firms
Cambridge (UK) 148
Perkin-Elmer (USA) 149
Birdzell, L.E. 34, 35, 36, 61
Blau, P.M. 295
Bloch, C. 115
Blumenthal, D. 4, 206, 208, 209
Bohman, J. 323
Boltanski L. 219, 227
Borras, S. 234
Boulding, K. E. 266
boundaries 244–5
mental 245
setting 247
social 245
symbolic 245
boundary organizations: their role in maintaining separation in the triple helix (and) 243–60
boundaries 244–5
boundary work 245–7
Life Sciences Network (LSN) 248–58
research project 247–8
boundary work 245–7
activities 246
and demarcation 247
Bowie, J. 143
Bozkaya, A. 114
Braczyk, H.-J. 291
Braine, M.D.S. 44
Branciard, A. 233
Bratko, I. 306
Brenner, Sidney 160
Breschi, S. 8
British Petroleum (BP) 153
Broesterhuizen, E. 47
Buck, P. 272
Burt, R.S. 313, 318
Bush, V. 276
Calderini, M. 8
Callon, M. 226, 227, 314
Cal Tech 208
Cambridge (UK) 146, 148, 150, 151
Cambridge University 2, 159
Cambridge–Boston 159, 162
and global bioscientific network hierarchy 158
Camerer, C. 68
Campart, S. 115
Campbell, E.G. 4
Canada
biotechnology in 150–151
bioregional clusters in 157
capability clusters 139
capability-based theory of the firm 138
Capitalism, Socialism and Democracy 102
capitalism, varieties of 218
capitalizing knowledge and the triple helix 14–25
see also triple helix in economic cycles; triple helix: laboratory of innovation
Carlsson, B. 143, 291
Carnegie, Andrew 31
Carruthers, P. 39
Carson, C.S. 272
Carter, A.P. 291
Casper, S. 146, 148, 150, 232
causal reasoning 44, 57–8
Celera 182
Centennial Exhibition, Philadelphia (1876) 134
Chandlerian model of innovation 116
Chase Econometrics 183
chemicals complex, Grangemouth, Scotland 152–3
Cheng, P.W. 44
Chesbrough, H. 113, 153
Chiappello, E. 227
Childhood and Neglected Diseases, Institute for (ICND) 155
Clark, H.H. 50, 51, 52, 65
Clark, K.B. 300
Cleeremans, A. 45
cluster penetration for open innovation 154
cluster theory 144–6
cluster-building 19, 147
Coase, R. 105, 123
and Coase Theorem 76
Cobbenhagen, J. 297
Coenen, L. 151, 153
cognitive rules (and) 54–60, 64
application of 45
decision-making 58–60
differences in 66
intuitive and analytical thinking 54–5
problem-solving 55–6
reasoning 56–8
cognitive style, shared vs unshared 65–7
Cohen, J. 67
Colbertist model 223
Collins, A.M. 4044
Collins, S. 174, 250, 253, 255–6
Colman, Alan 160
communication 53–4
and information 276–7
linguistic 64–5
non-verbal 51–2
theory 269–70
Complex Adaptive Systems (CAD) 25
Computer Science, National Institute of (INRIA) 233
Conway, S. 318
Cook-Deegan, R. 90
Cooke, P. 18, 143, 145, 159, 292, 293
Cookson, J.E. 272
normative impetus to firm foundation 211–12
research funding difficulties 207–12
and transformation of industry–university relations 204–5
Epicyte 144–6
patent-holder: Scripps Research Institute 145
and Plantibodies: patents for DNA antibody sequences 144, 145
Ernst & Young 231
Espiner, G. 248
Etzkowitz, Henry 3, 6, 13, 21, 60, 201, 203, 207, 210, 215, 220, 226
European Commission 78, 183, 234, 291, 305
funding of SESI project 239
European Environmental Agency 247
European Framework Programmes 2
European NACE codes 295
European Patent Office (EPO) 75–6
European Research Area (ERA) 77, 78
European Summit (Lisbon, 2000) 291
European Union (EU) 218, 219, 239
and admin system of European universities 77
EU-15 297
knowledge ecology of 89
legislation (Bayh–Dole-inspired) 79
member states 74, 296
publications on measurement of knowledge 280
universities 91
Eurostat 291, 296, 303
Evans, R. 247
externalities, lack of 123–4
Eymard-Duvernay, F. 219
Fabrizio, K.R. 7
Faulkner, W. 205
feedback
positive processes of 90–91, 115
from reflective overlay 24
from reflexive overlay 293
Feldman, M. 146, 147, 148, 150
Feldman, Stuart 15, 79
finance and innovation (and) 99–104
Type 1 and/or Type 2 errors 100–101, 104
see also innovation
Finegold, D. 155, 160
First Industrial Revolution 31, 34, 35, 40, 41, 43
Fischhoff, B. 58
Fisher, D. 250
Fondazione Rosselli 66
Foray, D. 171, 173, 232, 261, 262, 291, 292
Fourquet, F. 272
France/French 228
Grands corps de l’Etat 224
Grandes écoles 224
and Grenoble innovation complex 146, 234
RDI policies (and) 219, 232–4
Grenoble technological district 234
Guillaume Report 232–3
and Sophia Antipolis 2
and state as entrepreneur system 232–4
Francis, J. 146, 147, 148, 150
Franzoni, C. 8
Freeman, C. 146, 280, 292
Friends of the Earth 250, 251
Fritsch, M. 292, 301, 306
Fuchs, G. 143
Gallini, N. 132
Gambardella, Alfonso 20, 21
GE Plastics 153
Geiger, R. 203
Geiry, T. 246, 247
Gene Technology Information Trust see Genepool: Life Sciences Network (LSN)
General Electric 32
Generalized Public License (GPL) 21, 168–9, 183, 186, 188, 197–8
as coordination device 175–7
lesser (LGPL) 190–191
and nature and consequences of GPL coordination 177–8
GenePool 248, 253
Genetic Modification, Royal Commission into (RCGM) 244, 250–252, 258
genetic modification (GM) 248–58
and anti-GM activists 244
role in New Zealand 253–4
The capitalization of knowledge

see also Life Sciences Network (LSN)
genetically modified organism (GMO) 23, 251
genomics 62, 154, 160, 233
Centre for Biosystems Genomics 153
functional 155
Genomics Institute of Novartis Research Foundation (GNF) 155
Joint Center for Structural Genomics (JCSG) 155
Gentner, D. 45
Georghiou, K. 229, 230
Germany/German 2, 32, 102, 152, 219–20, 228, 297
BioM 150
BioRegio programme in 150
biotechnology in 19, 149
Federal Ministry of Education and Research 231, 232
ICT sector 232
professional networks/university entrepreneurship 230–232
RDI policies/regime 219, 228, 231–2
revolution in organic chemistry in 32
university model 21
Geuna, A. 68, 174
Gibbons, M. 4, 225
Giere, R.N. 39
Gieryn, T. 215
Gilbert, Walter 148
Glaxo 143
global bioregions: knowledge domains, capabilities and innovation system networks 143–66
‘Globalization 2’ 161, 162
globalization in biosciences see biosciences
Goffman, E. 50
Gompers, P. 111, 113
Grandstrand, O. 126
Granovetter, M.S. 313, 318
Greenpeace 250, 251
Gregersen, B. 148
GREMI group 150
Grice, H.P. 54
Griliches, Z. 272, 275
Grossman, M. 45
growth accounting 23, 263, 271–2, 278–9
Guillaume, H. 232
Guston, D. 243, 245, 258
Gutmann, A. 323
Hage, J. 315
Hall, B. 128, 139, 134
Hall, B.H. 20, 21, 100, 164, 171, 174
Hall, P. 148, 218, 227
Hansen, W.L. 273
Harhoff, D. 171, 173
Harvard Medical School (HMS) 159, 162
Harvard University 1, 148, 202, 206
Haseltine, Walter 148
Hawkes, J. 250, 255, 256
Hayek, F.A. 263, 265–6
Health, National Institutes of (NIH) 211
research funding 156–7
Heims, S.J. 269
Heller, M.A. 122, 135, 180
Hellstrom, T. 243
Henderson, R. 5, 6, 46, 149
Hendry’s model development methodology 186
Heracleous, L. 243
Hernes, T. 243, 244–5
Hertzfeld, H.R. 174
Hewlett, Bill 210
Hewlett-Packard 228
Hiatt and Hine 145
Hicks, John 265
Hickson, D.J. 295
higher education institutions (HEIs) 82, 83–4, 242
Hilaire-Perez, L. 171, 173
Hinsz, V. 53
Hodgson, G.M. 98
Holyoak, K.J. 44
Holyoke, T. 244
Hoppit, J. 272
Hortsmann, I. 130
Hounshell, D.A. 267, 270
human genome decoding/Celera 147–8, 149
human genome mapping 63
Hurd, J. 151
Hussinger, K. 111
hybrid organizations 22, 32, 41–2, 60, 64, 66–7, 98, 226, 243

Incyte 182
information and communication technology (ICT) 5, 41, 98, 125–6, 147–9, 151, 229, 232, 233, 261, 264
core technologies of 18
emergence of 125–6
revolution 64, 116
imagery 9
incentives for knowledge production with many producers 169–72
and granting of IPR 170
intellectual curiosity 170
open science regime 170–171
and system for ‘collective invention’ 171

Industry and Trade 88
initial public offerings (IPOs) 12, 112, 113–14
innovation(s) 1–3, 9–20, 22, 31–9, 42–4, 61–2, 67–8, 88–92
bundling finance and competence with 111
and finance 99–104
and imitation, model of 127
and innovative activity 88
national systems of 291
oilseed rape 152
patent 5, 125
policy response 88–9
imitation of patent-protected 131
opportunities for 137–8
protection of 132–3
profiting from 132
rates of 122–3
and RDI policies 218–42
see also open innovation
innovative opportunities 125, 127–8, 137
intellectual property (IP) 4
costs of protecting 134–5
lawyers 135
monopolies 81, 126
ownership of 77
protection 79–80, 124–6
and appropriability 124–5
and royalty stacking 80
weak regime of 126
intellectual property rights (IPR) 15–18, 22, 32, 80, 121–3
capitalization of knowledge through 22
and corporate strategies on legal claim of 129
enforcement strategies 127
fragmentation of 183
influence on knowledge 130–131
and innovation 18
and joint R&D ventures 86
knowledge-intensive 111–13
-leads-to-profitability model 138
legal protection of 123
markets for technologies/rates of innovation/diffusion 136
and modes of appropriation 121
and new technologies 126–7
as obstacle to research/innovation 18, 80
over-the-county (OTC) offerings of 112
protection and income distribution 122–3
protection and innovation 135–7
regimes
changes in 132
lack of effects of different 133
strengthening of 137–8
-related incentives 139
and technology transfer officers (TTOs) 21
university access to 173–4
see also markets
interaction and discussion between academics and business 19
investment on research and innovative outcomes 134
Isabelle, M. 170
IT industry 228
Itai, S.244
Italy 75
patenting and publishing study 8–9
and Piedmont regional government 2
Politecnico of Turin 2
Jachtenfuchs, M. 320, 324
Jackendoff , R. 44
The capitalization of knowledge

Jackson, S. 53
Jacob, M. 243
Jaffe, A. 128, 133, 137
Jakulin, A. 306
Janus scientist(s) 14, 22, 25, 32
and proximity 60–68
Jensen, R. 5
job losses, UCLA Anderson Business
School report on 151
Jobert, B. 235
Johannisson, K. 279
Johnson, B. 227
Johnson, J. 146
Johnson-Laird, P. 39, 44, 57
Jorgenson, D.W. 272
Kaghan, W. 206
Kahneman, D. 45, 54–5, 57, 58
Kaiser, R. 146, 149, 150
Karamanos, A. 146, 148, 150
Karolinska University/Institute 11, 159
Kauffman, S. 38
Kaufmann, D. 146, 149
Kay, L.E. 269
Kelly, S. 243, 244
Kendrick, J.W. 272
Khalil, E.L. 294
King, R.G. 102
Kista science park (Stockholm) 151
Klevorick, A. 136, 137
knowledge
analytical ontic 33–42
base of an economy 24
as coordination mechanism 24, 292
creation of 268
defining 24
defining as production and
distribution 268–9
deontic (procedural) 39–40, 42, 46
different deontic 46
as economic good 99
elements of: education, R&D,
communication, information
267–8
fountain-heads 146
generation 124
governance 98–120
and identification with information
125
and IPR regimes 130–131
management 155
measurement of 279–80
ontic (declarative) 39–40, 42, 64
operational elements of 23
operationalization of 277
problem-solving (of firms) 138
production and control 292
productive 125
public domain (PD) 173, 174
public-good in private-good patent
124
spillover 155
tacit 64
transfer processes 91
see also analytical ontic knowledge;
venture capitalism
Knowledge: its Creation, Distribution
and Economic Significance 278
knowledge-based economy 291
knowledge capitalization 65
and norms 43
software research 20
knowledge economy 261–90
flow of ideas (Appendix 1) 286–8
indicators on knowledge-based
economy (Appendix 2) 289–90
and knowledge measurement
270–275
see also Machlup, Fritz
knowledge networks: integration
mechanisms and performance
assessment 312–34
as complex systems 313–16
trust and translation 316–20
negotiation and deliberation 320–325
network performance 325–31
see also decision-making; networks;
trust
knowledge production, (Gibbon’s)
Mode 2 of 4, 225
knowledge production see incentives
for knowledge production with
many producers
knowledge transfer 14–15, 19, 43, 53,
64–5, 67, 91, 153, 157
epistemological and cognitive
constraints in 32–42
and analytical ontic knowledge
33–42
global 171
Index

and hybrid organizations 42

and technology 79

knowledge-based development 10

knowledge-driven capitalization of knowledge 16, 19–20, 31–73

see also academy–industry relations; background knowledge; knowledge transfer; 'nudge' suggestions to triple helix

knowledgeable clusters 161, 162

Knudsen, C. 265

Knuth, Donald 168

Kohler-Koch, B. 314

Koput, K. 143

Kortum, S. 128, 129, 130

Kosslyn, S.M. 45

Krimsky, S. 206, 213

Kuan, J. 181

Kuhn, T. 54

Kuznets, S. 38, 279

Laafia, I. 291, 295, 297

Lakatos, I. 5

Lam, A. 225, 227, 230

Lambert Review 82, 86, 87

Lamberton, D. 266

Lamont, M. 219, 244, 245, 247

Lanciano-Morandat, C. 22, 227, 234

Landes, D. 121

Lane, C. 316

Lane, D.A. 99

Langer, E. 58

Langlois, R.N. 262–3

language (and) 32–3, 50–60, 314, 317–19, 329

command 168, 184–5

co-ordination difficulties 52

mathematical 33, 44

natural/formal 39–40

non-verbal communication 51–2

technology transfer (TT) agents 52

Larédo, P. 220, 232

Latour, B. 212, 314

Law, J. 314

Lawton Smith, H. 143, 152, 155

learning 110, 139, 178

collective 233

-curve advantages 132

by doing 265

implicit 45

interactively 68, 109

and rules 45

Leder and Stewart patent 18, 131

Lederberg, Joshua (Nobel Laureate) 213

Lee, C. 145

Lee, Y.S. 170

Leech, B. 244

legislation and antitrust litigation 125

Bayh–Dole Act (USA) 74, 76, 78, 79

Danish Law on University Patenting (2000) 79

Employment Retirement Income Security Act 113

European Directive on patenting of software in Europe 182–3

Leitch, Shirley 23

Lengyel, B. 306

Leonard, W. 277

Lerner, J. 111, 113, 127, 128, 129, 130, 133, 175, 178, 190

Lesson, K. 278

Levin, R. 18, 132, 136

Levin, S.G. 4

Levine, R. 102

Levinthal, D.A. 178, 306

Lewicki, R.J. 321


Life Sciences Network (LSN) 23, 244, 248–58

campaign strategy for RCGM 251–2

Constitution of 248

evolution into Biosciences Policy Institute 252–3

and Genepool 248

membership of 250

objectives of 249

Linnaeus' natural taxonomy 62

Liu, Edison 160

loss aversion 58–9

and irrational escalation 59

Luhmann, N. 307

Luna, Matilde 25

Lundvall, B.-A. 146, 227, 234, 291, 292, 318
McGill, W.J. 294
Machlup, Fritz (and) 23–4, 126, 261–80, 292

*Information through the Printed World* 278
measuring knowledge/national accounting 270–275
policy issues 275

*The Production and Distribution of Knowledge* 262, 278
sources of insight 279–80
*see also* Machlup’s construction
Machlup’s construction 263–70
and communication theory 269–70
defining knowledge 264–7
‘operationalizing’ knowledge 267–70
McKelvey, M. 143
Mackie, J. 57
Maillat, D. 150
Mansfield, E. 5, 131
Manz, C.C. 53
March, J.G. 60, 178
markets 104–17
classification of 106–7
as devices for reducing transaction costs 105
as economic problem 104–6
functions of 107–10
as coordination mechanisms 108–9
as risk management mechanisms 109–10
as selection and incentive mechanisms 108
as signaling mechanisms 108
and market failure arguments 123–8
and neoclassical theory of exchange 105–6
public capital – focused on IPOs 113–14
as social institutions 105
for technologies and IPR 136
trading knowledge-intensive property rights in 112–13
Marengo, Luigi 17
Markman, A.B. 45
Markusen, A. 148
Marschak, J. 266, 269
Marshall, Arthur 88
Martinelli, A. 314
Marx, K. 121
Maskin, E. 135
Matkin, G. 204
Maurer, S.M. 167, 182, 184, 188
Maurice, M. 219
Maxfield, R.R. 99
measuring knowledge base of an economy in terms of triple-helix relations (and) 291–311
combination of theoretical perspectives 293–4
methods and data 294–8
data 294–5
knowledge intensity and high tech 295–6
regional differences 297
methodology 297–8
regional contributions to knowledge base of Dutch economy 301–2
results 298–300
descriptive statistics 298–9
mutual information 299–300
sectoral decomposition 303–6
Mendeleev’s periodic table of elements 62
Menard, C. 98, 106
Merges, R. 129, 131
Merton, R. 42, 47, 170, 221
Messner, D. 319, 321
Metcalfe, J.S. 15, 88
Meyer-Krahmer, F. 227, 231, 232
Miles, I. 305
Miller, C. 243, 247
Miller’s magical number 40
Mincer, J. 273
Mirowski, P. 292
Mirowsky, P. 269
MIT (Massachusetts Institute of Technology) 6, 158–9, 171, 202, 206, 210–211
MIT–Stanford model 21
Mitroff, I.I. 47
*modus tollens* 45
Mokyr, J. 31, 38, 62
Molnar, V. 244, 245, 247
Monsanto 151, 248, 253
Moore, G.E. 42
Moore, K. 243, 246–7, 255, 256
Moser, P. 134
Motion, J. 248
Mowery, D. 32, 34, 62, 74, 129
multi-level perspectives see research and development (R&D): national policies
Mustar, P. 220, 232
Mykkanen, J. 272

NACE categories 295
NASDAQ 17, 146
regulation (1984) and ‘Alternative 2’ 129
and venture capitalism 110–116
national accounting 24, 261, 262–3, 272–3, 275, 278–9
and System of National Accounts 262, 272–4
National Science Board 207, 280
National Science Foundation (US) 39, 41, 268, 273–4, 278
grant 211
Science Indicators 280
National Venture Capital Association 1
Neck, C.P. 53
Nelson, R.R. 90, 99, 131, 146, 169, 274, 279, 291, 300
Nesta, L. 174
Nestlé 151
Netherlands 153, 294–306
Chambers of Commerce of 294
geographical make-up of 297
regional contributions to knowledge base of economy of 301–2
sectoral decomposition of 303–6
and Statistics Netherlands (CBS) 296
network performance 325–31
dimensions of functional 325–6
functional: effective, efficacy, efficiency 326–8
organizational 328–31
networks 153, 157–8, 312–120
ACT-R 40
and actor-network theory 314
as complex systems 313–6
dynamics of 330
as social coordination mechanisms 314
and social network analysis 313
neuroeconomics 68

New York Times 79
New Zealand 247–58
Association of Crown Research Institutes (ACRI) 248, 254, 255
biotechnology in 247–8
and Biotenz 250
Foundation for Research Science & Technology 247–8
King Salmon 248
Life Sciences Network in 23
role of GM in 253–4, 257
and Royal Commission on Genetic Modification 243, 244, 250–252
and Royal Society of New Zealand (RSNZ) 248, 254, 255
Newcastle University (and) 1
professors of practice (PoPs) 12–13
Regional Development Agency 12
researchers of practice (RoPs) 12–13
Nguyen-Xuan, A. 45
Niosi, J. 143, 146, 148, 159
Nisbett, R.E. 44, 45, 66
Nohara, H. 227, 234
Nooteboom, B. 46
norms 25, 42–4, 47–8, 60–61, 64, 66, 67, 90, 170–171, 173, 177, 182, 187, 190, 211, 245, 316, 323, 326–7, 329
disclosure 80–81
institutional 60, 77
Mertonian 47
operational 48, 50, 52, 55, 56, 58, 60, 68
and pragmatic schemes 44
priority 22
scientific 6
social 44, 48, 64, 178
of universalism vs localism 55
and social value 21
technical 43–4, 63–4
North, Douglass 60
Novartis 152, 161
Genomics Institute of the Novartis Research Foundation (GNF) 155
Institutes for Biomedical Research (NIBR) 155
Nozick, R. 59
Nuvolari, A. 173
‘nudge’ suggestions to triple helix 60–68
generality vs singularity 61–2
complexity vs simplicity 62–3
explicitness vs tacitness 63–4
shared vs unshared background knowledge 64–5
shared vs unshared cognitive style 65–7
see also Janus scientist(s)
‘nudging’ capitalization of knowledge 14

Obama Administration 2
and programme for green technologies 63
OEU 91
Oléron, P. 322
Olson, Mancur 174, 175
and theory of collective action 21
Open Collaborative Research Program 78–9
Cisco Systems 78
Hewlett-Packard 78
IBM 78
Intel 78
US universities 78
see also research
open innovation 154
and ‘Globalization 2’ 161, 162
open science 20, 80–81, 91–2, 126, 162, 169, 170, 171, 178, 188, 221
open source production
complementary investments in 179–81
instability of 174–5
Oresund (Copenhagen/southern Sweden) 9
organizational re-engineering 77–8
Orsenigo, L. 67, 143, 144
Owen-Smith, J. 144, 170, 235

Packard, Dave 210
apon, P. 223, 233
Parkes, C. 151
Pasquali, Corrado 17
Pasteur, Louis 36–9, 62
and function of bacteria in food preservation 36–7, 38, 39
patents/patenting 5, 6–9, 18, 32, 41, 64, 125–6, 128–30, 144–5
applications from US corporations 128
fences 132–3
growth in applications for 128–9
imitation costs of 131
increase in rates of 133
and innovation 132
‘onco-mouse’ (Leder and Stewart) 18, 131
private-good 124
and reasons for not patenting 132
and ‘regulatory capture’ 130
Selden 131
strategic value of 129
transfer 65
uses of 132
wildcat 134
and Wright brothers 131
Paulsen, N. 243
Pavitt, K. 137, 295
Penrose, E. 162
Perez, C. 98, 292
Perkin-Elmer 149
Personal Knowledge 265
Pfister, E. 115
Pfizer 143, 288
pharma, corporate 152
pharmaceuticals 228
Phillips, C. 152
Piaget, J. 44
Polanyi, M. 23, 221, 265
Politzer, G. 45
Polyami (artifi cial fi bres) 153
polyvalent knowledge and threats to academic life 3–5
and IP protection for research 4
Porat, M.U. 262, 274
Porter, A.L. 300
Porter, M. 226
and Porterian clusters 19
Powell, W.W. 143, 144, 170, 201, 235
Pozzali, A. 25, 32, 42, 64, 68
Principles of Economics 88
Production and Distribution of Knowledge in the United States, The 261, 262, 270, 278
proprietary vs public domain licensing: software and research products 167–98
academic software and databases 181–4
econometric software packages (case study) 184–9
Generalized Public License (GPL) 175–8
incentives for knowledge production with many producers 169–72
open source production 179–81
public domain vs proprietary research 172–9
prospect theory 58–9
proximity 8, 14, 19, 24, 32, 60–68, 145, 146, 230, 245, 293
geographical 221
and functional 155–6
public domain vs proprietary research (and) 172–9
configuration of open source equilibrium 172–4
Generalized Public Licence (copyleft) as coordination device 175–7
instability of open source production 174–5
nature and consequences of GPL coordination 177–9
public research organizations (PROs) 89, 90–91, 170
and ‘common-use pools’ of patents 80
publishing
bioscientific 157–60
collaborations 154
and patenting 5
complementarity between 6–9
in Europe 7–8
Pugh, D.S. 295
Quéré, M. 99
Quillian, M.R. 40, 44
Quinn, S. 209
R&YD 263
Raagamaa, G. 160
Racal 228–9
Rahm, D. 205
Rallet, A. 156
Ranga, L.M. 8
Reber, A.S. 45
regional innovation organizer (RIO) 9
Rehg, W. 323
Reingold, N. 276
Renfro, Charles 184, 185, 187
Republic of Science 22, 81, 167, 170, 190, 220, 221–3, 228, 234, 235
research 3–5, 6, 61–2, 161–2, 171–2
academic 66
collaboration 46, 65, 82–7
as costly but fundamental 57
funding 156–7, 207–9
funding for academic 49–50
globalized 155
industrial 49
as investment 24
IP protection for 4
IP protection and innovation 133–4
by National Institutes of Health 147
Open Collaborative Research Program 78–9
productivity of 276
proprietary (PR) 173, 174
public domain vs proprietary 172–9
publication collaboration 158
and Report of Forum on University-based Research (EC, 2005) 78
scientific 41
on sociocultural impact of biotechnology in New Zealand 247–8
strategic, hybrid, innovative, public and scepticism (SHIPS) 47
proprietary, local, authoritarian, commissioned and expert (PLACE) 47
time constraints on 48–9
in universities 224
in Western universities 92
see also public domain vs proprietary research; studies (on)
research, development and innovation (RDI) policies 218–42
and four patterns of RDI policymaking conventions 221–7
‘Republic of Science’ 221–3
state as entrepreneur 223–4

state as facilitator (of technological products) 225–7
state as regulator 224–5
methodological appendix for 239–42
research and development (R&D) 1–2, 8, 22, 32, 77, 85–6, 89, 91, 92, 124, 127, 130, 132, 134–5, 147, 156, 160, 161, 205, 207
collaboration 67
expenditure 143, 144, 295
investment 80–81, 122, 123
and IPR 86
-intensive corporations/firms 80, 83
national policies 218–42
policy issues 275–6
spending, growth in 133
statistics 280 see also France; Germany; United Kingdom (UK)
research and development (R&D): national policies 218–42
analytical framework: construction of policy-making conventions 219–21
public regimes of action in the UK, Germany and France 228–34
see also France; Germany; research, development and innovation (RDI) policies; United Kingdom (UK)
research institutes
Burnham 145
Gottfried-Wilhelm-Leibniz Association of Research Institutes 231
La Jolla 145
Salk 145, 154, 158, 159
Scripps Research Institute 145, 155, 158, 159
Torrey Mesa Research Institute (San Diego) 152
reasoning 56–8
causal 57–8
deductive 57
probabilistic 56–7
Richardson, G.B. 110
Richter, R. 109
Rip, A. 47
risk 16, 66–7, 85–6, 99–100, 102–3, 324
adversity 15
aversion 85, 108
capital 1
management 109, 111, 249
perception 66
propensity 58–9
of short-sightedness and merchandization in UK 228–30
Rogers, E.M. 269
Rolleston, William 250
Rohm & Haas 153
Rosenberg, N. 32, 34, 35, 36, 61, 62
Ross, B.H. 45
Ruggles, N. 272
Ruggles, P. 272
Rumain, B. 44
Ryan, C. 152
Ryle, G. 23, 264–5, 266, 267
Sable, C. 316
Sah, R.K. 100
Salais, R. 220, 224, 226
Samat, B.N. 74
Samson, A. 248, 250
Samuelson, Paul 265
San Diego 156
Sassen, S. 160
Sauvy, A. 272
Saxenian, A.L. 226
schemas 44–5
pragmatic 44
Schippers, M.C. 53
Schmitter, P.C. 314
Schmoehl, U. 227
Schmoodler, J. 114
Schoenherr, R. 295
Schultz, T.W. 273,275
Schumpeter, J.A. 101–2, 121, 146–9, 292, 297
and post-Schumpeterian symbiotics 144
Schumpeterian(s) corporation 102
innovation/entrepreneurship 161
insights 147
model 19
and Neo-Schumpeterian innovation theorists 146, 148
tradition 148
Index 349

Schwartz, D. 292
*Science* 279
*Science, Technology & Human Values* 247

Science and technology, integration between 4

Science Board, National 207

Science Foundation, National (NSF) Grant 211

Science–industry relations 218–20, 229, 231

Scientific software and databases 182–3

in Europe 182–3

privatization of 182

Scotchmer, S. 131, 169, 170

Scott, Anthony 254

Scully, J. 152, 155

Searle, J. 45

Selden patent 131

Second Academic Revolution 6

Second Industrial Revolution 35, 41, 43

Siegel, D. 5, 46, 47

Senker, J. 205

Sent, E.-M. 292

Shannon, C.E. 269, 294

formulae of 297

Shimshoni, D. 206

Shinn, T. 225

Shirley, M.M. 98

Shoemaker, F.F. 269

Silicon Valley 9, 11

venture capitalists 2

Simon, H. 56, 60

Sloman, S.A. 54

Small and medium-sized enterprises (SMEs) 143, 145, 161, 231–2

*Small Business Economics* 143

Smith, Adam 109, 121

Smith, E.E. 45

Smith-Doerr, L. 143

Social interactions and collaborative research 82–7

Social network analysis 313

Solow, R.M. 23, 270, 271–2, 279

Soskice, D. 218, 227

Space Imaging Corporation 182

Sperber, D. 54

Standard Oil 32

Stanford University 158, 159, 201, 208, 210–211

and MIT model 21

Stankiewicz, R. 291

Stanovich, K. 59

Stephan, P.E. 4, 6, 169

Sternberg, R.J. 40, 56

Stevens, A. 207

Steward, F. 318

STI Scoreboard 295

Stigler, G.J. 266

Stiglitz, J.E. 100, 101, 125, 266

Stokes, D.E. 4

Storper, M. 219, 220, 224, 292, 293–4

Streeck, W. 314

Structural change and unemployment 277

Studenski, P. 272

Studies (on)

with Alzheimer patients 45

social norms 47–8

Suárez, F.F. 300

Sunstein, C.R. 3, 14, 61, 67

surveys on effects of changes in IPR regimes (Jaffe, 2000) 137

Survey of Doctorate Recipients 6

Sweden 9, 10, 11, 151

Syngenta 151, 152, 154

System of National Accounts 262, 272–4

Tamm, P. 160

Tartu (Estonia) 160–161

technological paradigm 127

technologies 5

biotechnology 5, 41

information and communication (ICT) 5

nanotechnology 5, 41

technology, description of 127–8

Technology Kingdom 228

Technology Investment Program (Advanced Technology Programme) 2

technology transfer 12, 15, 34, 67–8, 74–5, 81, 206, 210, 229, 232

agents (TTAs) 21, 25, 46, 52, 65, 67

offices 12, 85, 202, 203, 204

Teece, D. 122, 125, 138, 39
Terman, Frederick 210
Teubal, Morris 16, 113
Thaler, R.H. 3, 14, 50, 61, 67
Theil, H. 294, 301

DNA 62
information 62
generality of application of 62

Theory of Economic Development 101

Tilson, M. 303
top-down and bottom-up initiatives 13

Torre, A. 156
triple helix in economic cycles 1–3

triple helix: laboratory of innovation 9–14
triple-helix model 60
anticyclic role of 2
triple-helix relations and economy

triple-helix spaces 10–11
trust (and)

internal cohesion 316–17
or translation 319–20

translation and communication 317–19

Tushman, M.L. 300

universities 1–3 passim; 32, 82–5

universalism 47, 55, 60, 66
vs localism 48
universities in 6, 7, 15

University of California and San

University Challenge 229
virtual centres of excellence (VCE) 229–30

United States of America (US) 150,

agricultural innovation 13

Bush Administration in 2

Court of appeals for the Federal

Circuit (CAFC) 129

Department of Commerce 130

Justice Department 125

National Science Foundation 273–4

patent applications/cases in 128,

129–30

and privatization of Landsat images 182

Reagan Administration in 182

research universities 82–5

universities in 6, 7, 15

University of California and San

Diego 2, 145

UK and corporate liaison offices/

officers 86–7

virtual 11

see also academy–industry relations

University of California and San

Dietz 2, 145

UK and corporate liaison offices/

officers 86–7

virtual 11

see also academy–industry relations

University of California and San

Dietz 2, 145

Valente, T. 314, 318

Van der Panne, G. 24, 295, 302

Van Knippenberg, D. 53

Van Looy, B. 7

Vanoli, A. 272

Velsasco, José Luis 25
venture capitalism 10, 16–17
as mechanism for knowledge governance 98–120
and NASDAQ 110–116
bundling finance and competence with innovation 111
knowledge intensive property rights 111–12
see also finance and innovation; markets; NASDAQ

Verdier, E. 22, 233
Viale, Riccardo 3, 14, 25, 32, 35, 38, 39, 42, 43, 46, 47, 54, 64, 66, 67, 68
Vinck, D. 226
Von Hippel, E. 171, 173
Von Krogh, G. 173
von Mises, Ludwig 263
Von Wright, G.H. 42, 43, 44
Vonortas, N.S. 295

Wakoh, H. 174
Walker, G. 314
Walsh, J.R. 273
Walshok, M. 145
Warren, M.E. 323, 324

Wason, P.C. 57
Watson, James 148
Watts, R.J. 300
Weale, A. 324
Weaver, C.K. 248
Weaver, W. 269
Weiss, W. 100
Wevers, Francis 248, 252, 253, 254
Whitley, R.D. 292
Wiener, N. 269
Wilson, D. 54
Windrum, P. 303
Winter, S. 125, 127, 134, 138, 265
Wintjes, R. 297
Wolter, K. 146
Woolgar, S. 212
Worrall, J. 250
Yao, D.A. 171
Yoshaki Ito 160
Young, A. 280

Zeller, C. 154–5
Ziedonis, R. 129, 132, 134, 171
Ziman, J.M. 47
Zuckler, L. 144, 162