Figures

1.1 Simple Salter cycle
3.1 The materials life cycle
3.2 US economic system as a whole from a mass flow perspective (1993 in MMT)
3.3a Total major inputs to GDP (fuels, metals, construction, chemicals and biomass): in terms of mass (USA, 1900–2004)
3.3b Total major inputs to GDP (fuels, metals, construction, chemicals and biomass): in terms of exergy (USA, 1900–2004)
3.4a Major inputs of fossil fuels (coal, petroleum, natural gas and NGL): mass/capita and exergy/capita (USA, 1900–2004)
3.4b Major inputs of chemicals to GDP: mass/capita and exergy/capita (USA, 1900–2004)
3.4c Major inputs of construction to GDP: mass/capita and exergy/capita (USA, 1900–2004)
3.4d Major inputs of metals to GDP: mass/capita and exergy/capita (USA, 1900–2004)
3.4e Major inputs of biomass to GDP: mass/capita and exergy/capita (USA, 1900–2004)
3.4f Total major inputs to GDP (fuels, metals, construction, chemicals and biomass): mass/capita and exergy/capita (USA, 1900–2004)
3.5a Major inputs to GDP of fossil fuel: mass/GDP and exergy/GDP (USA, 1900–2004)
3.5b Major inputs to GDP of chemicals, major organic and inorganic: mass/GDP and exergy/GDP (USA, 1900–2004)
3.5c Major inputs to GDP of construction materials: mass/GDP and exergy/GDP (USA, 1900–2004)
3.5d Major inputs to GDP of metals: mass/GDP and exergy/GDP (USA, 1900–2004)
3.5e Major inputs to GDP of biomass: mass/GDP and exergy/GDP (USA, 1900–2004)
3.5f Total major inputs to GDP (fuels, metals, construction, chemicals and biomass): mass/GDP and exergy/GDP (USA, 1900–2004)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Exergy intensities: fossil fuels and total (USA, 1900–2005)</td>
<td>84</td>
</tr>
<tr>
<td>3.7a</td>
<td>Inputs of exergy by source (USA, 1900–2004)</td>
<td>85</td>
</tr>
<tr>
<td>3.7b</td>
<td>Inputs of exergy by source (Japan, 1900–2004)</td>
<td>86</td>
</tr>
<tr>
<td>3.8a</td>
<td>Exergy input sources as percent of total exergy input (USA, 1900–2004)</td>
<td>86</td>
</tr>
<tr>
<td>3.8b</td>
<td>Exergy input sources as percent of total exergy input (Japan, 1900–2004)</td>
<td>87</td>
</tr>
<tr>
<td>4.1a</td>
<td>Percent of coal exergy consumed by type of end-use (USA, 1900–2004)</td>
<td>93</td>
</tr>
<tr>
<td>4.1b</td>
<td>Percent of coal exergy consumed by type of end-use (Japan, 1900–2004)</td>
<td>93</td>
</tr>
<tr>
<td>4.2a</td>
<td>Percent of petroleum and NGL exergy consumed by type of end-use (USA, 1900–2004)</td>
<td>94</td>
</tr>
<tr>
<td>4.2b</td>
<td>Percent of petroleum and NGL exergy consumed by type of end-use (Japan, 1900–2004)</td>
<td>94</td>
</tr>
<tr>
<td>4.3a</td>
<td>Percent of natural gas exergy consumed by type of end-use (USA, 1900–2004)</td>
<td>95</td>
</tr>
<tr>
<td>4.3b</td>
<td>Percent of natural gas exergy consumed by type of end-use (Japan, 1900–2004)</td>
<td>95</td>
</tr>
<tr>
<td>4.4a</td>
<td>Percent of total fossil fuel exergy consumed by type of end-use (USA, 1900–2004)</td>
<td>96</td>
</tr>
<tr>
<td>4.4b</td>
<td>Percent of total fossil fuel exergy consumed by type of end-use (Japan, 1900–2004)</td>
<td>96</td>
</tr>
<tr>
<td>4.5</td>
<td>Developments in petroleum ‘cracking’ fractions (USA, 1910–72)</td>
<td>99</td>
</tr>
<tr>
<td>4.6</td>
<td>Petroleum utilization efficiency: percent used as fuel for prime movers (USA, 1900–82)</td>
<td>100</td>
</tr>
<tr>
<td>4.7</td>
<td>Percent of crude oil cracked to produce gasoline (USA, 1910–72)</td>
<td>100</td>
</tr>
<tr>
<td>4.8</td>
<td>Farm mechanization: substitution of machinery for animals</td>
<td>101</td>
</tr>
<tr>
<td>4.9</td>
<td>Performance of steam engines: fuel consumption and thermal efficiency</td>
<td>102</td>
</tr>
<tr>
<td>4.10</td>
<td>Sources of mechanical drive in manufacturing establishments (USA, 1869–1939)</td>
<td>103</td>
</tr>
<tr>
<td>4.11</td>
<td>Substitution of diesel for steam locomotives in the USA, 1935–57</td>
<td>105</td>
</tr>
<tr>
<td>4.12</td>
<td>Index of total electricity production by electric utilities (1902 = 1) and average energy conversion efficiency (USA, 1902–98)</td>
<td>106</td>
</tr>
<tr>
<td>4.13a</td>
<td>Household electrification (I) (percent of households)</td>
<td>107</td>
</tr>
<tr>
<td>4.13b</td>
<td>Household electrification (II) (percent of households)</td>
<td>107</td>
</tr>
</tbody>
</table>
4.14 Compression ratio in auto engines (USA, 1926–75) 108
4.15 Internal combustion engine efficiency 109
4.16 Breakdown of energy requirements for a typical mid-size automobile 110
4.17 Exergy consumption by industrial processes (USA, 1880–2000) 116
4.18 Secondary electrical work by function as percentage of total secondary electrical work (USA, 1902–2000) 122
4.19 Efficiencies in performance: secondary work from electricity by function (USA, 1900–2000) 123
4.20 Vehicle fuel rates and energy conversion efficiency 124
4.21a Energy (exergy) conversion efficiencies (USA, 1900–2004) 128
4.21b Energy (exergy) conversion efficiencies (Japan, 1900–2004) 128
4.22 Useful work (U) for the USA and Japan, 1900–2004 129
4.23 Aggregate efficiencies for the USA and Japan, 1900–2004 129
4.24a Primary work and primary work/GDP ratio (USA, 1900–2005) 130
4.24b Primary work and primary work/GDP ratio (Japan, 1900–2005) 130
5.1 Production-consumption systems 138
5.2 Cost of power per hour as multiple of hourly wage 148
6.1 Substitutability in aggregate production functions 180
6.2 The production frontier as a turbulent cloud 184
6.3a GDP and factors of production (USA, 1900–2005) 188
6.3b GDP and factors of production (Japan, 1900–2005) 188
6.4 US GDP, 1900–2000 (actual versus three-factor Cobb-Douglas function) 189
6.5 Technological progress function and Solow residual (USA, 1900–2005) 189
7.1 Exergy to GDP ratio (USA and Japan, 1900–2005, excluding 1941–7) 198
7.2 Useful work (U) to GDP ratio (USA and Japan, 1900–2005, excluding 1941–7) 199
7.3 Exergy to work efficiencies (f) (USA and Japan, 1900–2005, excluding 1941–7) 200
7.4a Empirical and estimated GDP (USA, 1900–2005, excluding 1941–8) 206
7.4b Empirical and estimated GDP (Japan, 1900–2005, excluding 1941–8) 207
7.5a Cobb-Douglas residuals (USA and Japan, 1900–2005, excluding 1941–8) 208
Figures

7.5b LINEX residuals (USA and Japan, 1900–2005, excluding 1941–8) 208
7.6a Parameters of the LINEX function (USA, 1900–2005) 209
7.6b Parameters of the LINEX function (Japan, 1900–2005) 209
7.7a Elasticities of factors of production – LINEX function (USA, 1900–2005, excluding 1941–7) 212
7.7b Elasticities of factors of production – LINEX function (Japan, 1900–2005, excluding 1941–7) 212
8.1 Simulated labor hire and fire rate (USA, 1900–2000) 238
8.2 Simulated and empirical labor (USA, 1900–2000) 239
8.3 Simulated and empirical capital (USA, 1900–2000) 240
8.4 Energy intensity of capital (USA, 1900–2000) 241
8.5 Energy intensity of GDP (USA, 1900–2000) 242
8.6 Logistic and bi-logistic S-curve fits to the trend of aggregate technical efficiency in the USA, 1900–2000 244
8.7 Rate of change of aggregate technical efficiency of primary exergy conversion (USA, 1900–1998) 245
8.8 Sensitivity test results varying the fractional decay rate of output exergy intensity 247
8.9 Sensitivity test results varying both the fractional rate of output exergy intensity and selected parameters of the bi-logistic curve controlling the rate of efficiency growth 248
8.10 Historical (1950–2000) and forecast (2000–50) GDP for alternate rates of decline of the energy intensity of output, USA 249
8.11 Historical (1950–2000) and forecast (2000–50) technical efficiency of energy conversion for alternate rates of technical efficiency growth, USA 249
8.12 Historical (1950–2000) and forecast (2000–50) GDP for alternate rates of technical efficiency growth, USA 250
9.1 Plot of GDP gap against energy policy gap, all countries, all years 267
9.2 Fitted results from regression 4 (Table 9.3) 271
9.3a Development tracks of countries in group 2 273
9.3b Development tracks of countries in group 3 273
9.3c Development tracks of countries in group 4 274
9.3d Development tracks of countries in group 8 274
9.4a Weighted regressions for group 4 (oil factor = 0.10) 278
9.4b Weighted regressions for group 8 (oil factor = 0.10) 278
9.5a Weighted regressions for group 4 (oil factor = 0.15) 279
9.5b Weighted regressions for group 8 (oil factor = 0.15) 279
9.6a Development tracks of group A countries 281
9.6b Development tracks of group C countries
9.7a Development tracks of catch-up countries
(oil factor = 0.00)
9.7b Development tracks of catch-up countries
(oil factor = 0.10)
9.7c Development tracks of catch-up countries
(oil factor = 0.15)
9.7d Development tracks of catch-up countries
(oil factor = 0.20)
9.7e Development tracks of catch-up countries
(oil factor = 0.25)
9.8a Simulation results for catch-up countries (oil = 0.00)
9.8b Simulation results for catch-up countries (oil = 0.10)
9.8c Simulation results for catch-up countries (oil = 0.15)
9.8d Simulation results for catch-up countries (oil = 0.20)
9.8e Simulation results for catch-up countries (oil = 0.25)
9.9a Changes of catch-up elasticity of GDP with respect to EP for two models using weighted regression results
9.9b Changes of catch-up elasticity of EP with respect to GDP for two models using weighted regression results
C.1 Relationship between GDP and electrification for 1997–2001
C.2 Relationship between GDP and urbanization for 1997–2001
C.3a Processes of urbanization and electrification (France and Japan, 1960–2001)
C.3b Processes of urbanization and electrification (Brazil and China, 1971–2001)
C.3c Processes of urbanization and electrification (India and Indonesia, 1971–2001)
C.3d Processes of urbanization and electrification (Sweden and UK, 1960–2001)
C.3e Processes of urbanization and electrification (USA 1960–2001)