Index

accounting identity 181, 261
aging population 229–30, 239
agricultural labor, monetization 228
agricultural mechanization 18, 101
agricultural productivity decline 154–5
agriculture 52, 65, 67–70, 265
air conditioning 118, 120–21, 122
aircraft 33, 39, 109, 111
AK approach 163, 259, 261
aluminum 113, 114, 119
ammonia 23, 70, 79, 115, 116
animal feed 69, 85, 86, 87, 92, 97, 314
animal/human muscle work 89, 90, 92, 97–8, 101, 232, 265
Arrow, Kenneth J. 15, 49, 143, 148, 163, 178
Arthur, W. Brian 19, 211
automation 146, 147, 148, 190, 234, 256, 265
automobiles 34–6, 38, 106, 108, 109–11, 123, 124, 125–6, 199
Ayres, Leslie W. 24, 78
Ayres, Robert U. 11, 12, 24, 39, 45, 49, 63, 64, 78, 106, 113, 118, 120, 121, 122, 126, 137, 142, 147, 168, 170, 171, 197, 198, 200, 234, 235, 253, 262, 263, 293
barriers to technological progress 17, 26, 34–9, 43–4, 58
Barro, Robert J. 160, 161, 162, 164, 255, 257
biology 12, 15, 42, 166, 167
biomass
and conservation of mass 65
and exergy 72, 73, 76, 79, 168
and exergy/GDP 83
Japanese data 333
mass as a measure 77
and mass flows 71, 72, 73, 76
and mass/GDP 83
and production function estimation for US and Japan 199
and REXSF model of the US economy 240, 242, 246
US data 327
and useful work 126, 131, 265, 315
borrowing 229–30, 302, 308
breakthroughs 11, 17, 26–7, 34–9, 42–3, 44, 54, 58
buses 123, 125
business cycles 7, 144–5, 175
CAFÉ standards 109, 111, 124, 126, 234
calculus of variations 3–4
calories 79, 97
Cambridge controversy 177, 180, 305
capital
concept 304–6
and disequilibrium paradigm 10–11, 25
and economic development theory 254–5, 256
and economic growth 253
and endogenous growth theories 163, 164
and exergy 151–2, 153
and factor share theorem 152, 153
and input-output models 157, 158
and integrated assessment (IA) models 225
Japanese data 329, 339–43
and neoclassical paradigm 2, 4–5, 141, 149, 150, 159, 311–12
and production functions 175, 176–7, 178–9, 180, 181, 182, 183, 187
Cobb-Douglas production function 184–6, 187, 189
LINEX production function 190–91, 192–3, 194, 295, 296
production function estimation for US and Japan 197, 201, 204, 210, 211, 212, 213, 214–16, 217, 219, 220
and Ramsey theory of optimal growth 3, 145, 147
and REXSF model of the US economy 237, 238–40, 242
and REXSF simplified model 264
and Solow-Swan model of economic growth 5, 6, 7, 148, 149, 150, 159–61, 162, 183, 233, 253
‘stylized facts’ about economic growth 257
US data 318, 334–8
and wealth 62
capital-GDP ratio 257
capital-labor ratio 4, 5, 257
capital payments 210
carbon dioxide 68, 69, 70, 78, 79, 141, 142, 297
carbon efficiency 112–13
Casten, Thomas R. 19–20, 213, 235
catch-up countries, REXSF simplified model see REXSF simplified model
catch-up elasticity 288–91, 293
causality, and production function estimation for US and Japan 204–5, 214–16
cement production 113, 114
central heating 117–18
central planning 4, 8, 143, 254
CES (constant elasticity of substitution) function 178, 179
chemical industry 39, 112, 115, 116, 120
chemical work 89, 90, 91, 92
chemicals
and exergy 72, 73, 74, 76, 77, 79
and exergy/GDP 81, 83
and mass flows 70, 71, 72, 73, 74, 76, 77
and mass/GDP 81, 83, 84
structural properties 53
technology 52
chemistry 39
chronometers 16, 31–2, 39
climate change 141–2, 154–5, 225, 253, 309
see also greenhouse gases
closed dynamic production-consumption systems 138
closed static production-consumption systems 138, 143–4
coal
exergy and useful work in US and Japan 92, 93, 98
exergy inputs for Japan 86, 87
exergy inputs for US 85, 86
and exergy-to-work efficiency improvements since 1900 104, 105, 115, 116, 117–18
Japanese data 330
and secondary work exergy efficiency 125
and technological progress 233–4
US data 319–21
Cobb-Douglas production function and complementarity 179
and energy 151
and exergy 184–9
and integrated assessment (IA) models 225
and neoclassical paradigm 162
production function estimation for US and Japan 187, 189, 202, 203, 205–6, 207, 208–9, 210, 211, 216, 219, 220
and Solow-Swan model of economic growth 5–6, 7, 148–9, 159
and substitutability 178, 179, 180
and time factors 179
and time series data 181
cointegration 175, 204–5, 214–16
coke 37, 112, 113, 117–18, 234, 320, 321, 330
Collins, Martin J. 19–20, 213
combined heat and power 234–5, 236, 250
combustion 52, 64, 67, 69, 70, 72, 78–9, 265, 298
commercial and residential sectors 105–6, 107, 112, 117, 118, 120–21, 199–200
competitiveness 20, 45, 166
complementarity 179, 219, 295
compression ignition engines 38, 52, 90, 106, 108, 109, 111
depression and conversion 68, 69–70, 71, 168, 169
Index

conservation of mass described 64, 169–70
mass-balance principle 62–3, 65, 67–9, 169–70
materials processor model 168–9, 169, 262
and neoclassical paradigm 140, 141, 144, 261
and production functions 182
constant returns to scale see Euler condition
constant savings rate 181
‘constrained growth’ law 12
construction materials 71, 72, 73, 75, 76, 82, 83, 84
consumer credit 229, 230, 302
consumption
and disequilibrium paradigm 10
and endogenous growth theories 163
and materials processor model 168, 169
and neoclassical paradigm 1, 2, 9, 141
and non-sustainability 135–6
and optimal extraction of exhaustible resources 4
and positive feedback 163, 232
and production function estimation for US and Japan 214
and Ramsey theory of optimal growth 3, 145
and recession 144
and risks of blind extrapolation 227, 229
and wealth 62
and welfare 62
see also electricity consumption;
energy consumption; natural resource consumption;
petroleum and oil consumption;
production-consumption systems; resource consumption
convergence theories 160, 255, 257
conversion and concentration 68, 69–70, 71, 168, 169
costs
automation 146, 147
and factor share theorem 152
and integrated assessment (IA) models 225
and neoclassical paradigm 140, 311–12
and physical limit barriers 57
pollution 141, 142
and positive feedback 9, 163, 233, 234
useful work 193, 234–6
waste flows 63, 141, 144, 170
see also energy costs; extraction and harvesting costs; labor costs;
production cost reductions
covariance stationarity, and production function estimation for US and Japan 201–2, 204
creative destruction 11, 41, 42, 164, 259
credit 229, 230, 302
crisis-driven radical innovation 31–9, 42–5, 57
cultural knowledge 47–8
Daly, Herman E. 136, 142, 304
debt 308
decentralized combined heat and power (DCHP) 235, 236
deficit spending 144, 145, 227
Delphi Forecasting 222, 223, 224
demand
and crisis-driven radical innovation 34, 35, 57
and disequilibrium paradigm 25–6, 35, 55, 57–8
and neoclassical paradigm 1, 2, 24, 54, 55, 233
and positive feedback 9, 233, 234
and Solow-Swan model of economic growth 7
dematerialization 53, 63, 84–5, 170, 242, 246
depreciation 5, 141, 145, 225, 238–40
developing countries 252, 263
see also poor countries
DICE model 225
Dickey-Fuller statistic, and production function estimation for US and Japan 201, 210
diesel and diesel-electric locomotives 38, 102, 104, 105, 125
diesel engines see compression ignition engines
direct heat 111–18

Robert U. Ayres and Benjamin Warr - 9781848445956
Downloaded from Elgar Online at 09/16/2019 04:39:32AM
via free access
discontinuity hypothesis of technological progress 39–42
discounting 3, 4, 135, 136, 225–6
disequilibrium paradigm 10–12, 25–6, 55–6, 57–9
disutility 1, 3
diversity, and evolutionary theories 167
domestic labor, monetization 228
Durbin-Watson statistic, and production function estimation for US and Japan 202, 203, 210
dynamic economic growth theories 144–5
economic activity 134–5, 303
see also GDP
economic change 175, 181, 186, 201–2
economic development theory 162–5, 254–5, 262–3
economic discontinuities 41
economic efficiency 299
economic growth explained ‘stylized facts’ in standard theories 258–9
factors assisting economic growth 257, 263, 266
factors preventing economic growth 263, 266, 271, 292
‘stylized facts’ 256–8
unexplained ‘stylized facts’ in standard theories 260–62
economic growth forecasting 51–4, 252–3
see also extrapolation in economic growth forecasting; REXSF model of the US economy; REXSF simplified model
economic value 45, 46, 47, 48, 49–50
economies of scale and disequilibrium paradigm 11, 12, 25
and electricity prices 232
and lock-in 19, 20
and neoclassical theory of growth 9, 10
and positive feedback 9, 11, 163, 233
and REXSF model of the US economy 249–50
see also Euler condition
education and training 6, 160, 164, 255, 302, 305, 307
efficiency see carbon efficiency; economic efficiency; energy efficiency; exergy-to-work efficiency improvements since 1900; first-law efficiency; fuel efficiency; inefficiency; payload efficiency; petroleum efficiency; second-law efficiency; technical efficiency; technological efficiency; thermodynamic efficiency
efficient technologies 250
see also combined heat and power; insulation
elasticities of exergy services 154
elasticities of output and neoclassical paradigm 311–12
and production functions 178, 181
Cobb-Douglas production function 184–7, 220
LINEX production function 190
production function estimation for US and Japan 208–9, 210–13, 216, 217–18, 220
and Solow-Swan model of economic growth 183, 217
elasticities of useful work 154, 210, 216
electric lighting 31, 121, 122, 123
electric motors 51, 52, 103–4, 120, 122, 123
electric pumps 120, 122
electrical appliances 105–6, 120, 122
electricity costs 147, 148
and exergy-to-work efficiency improvements since 1900 103–6, 107, 113, 114, 115, 117, 126, 127, 128
and exergy-to-work efficiencies 199
and materials life-cycle 67
secondary work exergy efficiency 119–22, 123, 126, 127, 128
and useful work 89, 90–91, 92, 93–6, 126, 127, 128, 232
electricity consumption 120, 264, 265–6, 291–2, 344–8
see also EP (energy proxy)
electricity generation 234–5
electricity prices 105–6, 121, 193, 232, 236
electrolytic reduction 52, 119
electronics 39, 52, 53, 122, 123
embodied information 69
employment 144–5
see also labor
endogenous growth theories 48–9, 55–6, 162–5, 211, 213, 255, 258, 259, 260
energy
and Cobb-Douglas production function 151
defined 151
and disequilibrium paradigm 10
and extrapolation in economic growth forecasting 233–4, 252
and factor payments 151, 152, 154
importance in economic growth 252–3
and input-output models 157, 158
and neoclassical paradigm 2, 9, 140, 141, 261
and positive feedback 233–4
and production function estimation for US and Japan 197, 198, 204, 213, 214, 219
and production functions 175
and Solow-Swan model of economic growth 10, 233
energy consumption 204, 213, 214, 219, 297
energy costs 249–50, 253, 297
energy crisis 23–4, 40, 150, 175, 199, 213
energy demand 297
energy efficiency 296–7
energy flows 168, 169, 182, 183
energy intensity, and integrated assessment (IA) models 225
energy prices 218–19, 256, 258
see also electricity prices; gas prices; petroleum and oil prices
energy quality 141
energy scarcity and depletion 231–2
see also natural gas scarcity and depletion; petroleum and oil scarcity and depletion
energy services 152, 157, 158–9
engines 33, 34–6, 37–8, 53, 91, 148
see also compression ignition engines; factory engines; internal combustion engines (ICES); prime movers; railway engines; spark ignition engines; steam engines
entropy law
described 136–7
and economic models 137–9
and exergy 136, 137, 139, 141
and materials processor model 69, 169
and neoclassical paradigm 140, 144
and production functions 182
and resource scarcity 170–72
and useful work 91
and wastes 168, 169, 170, 171
environmental economics 140, 142
environmental harm 68, 69, 137, 307
equilibrium
critique 135–6
and exergy 78, 136, 137
and neoclassical paradigm 1, 2, 8, 9, 10, 24, 54–5, 152, 159, 261, 311–12
and optimal extraction of exhaustible resources 4
and production function estimation for US and Japan 211, 213, 214
and Solow-Swan model of economic growth 149, 152, 159, 161
and Walrasian economics 1, 2, 10, 143
essentiality see non-substitutability
Euler condition
and neoclassical paradigm 5, 149, 152, 161–2
and production functions 175, 181, 183–4
Cobb-Douglas production functions 184–5, 186, 187
LINEX production function 190, 192, 194
production function estimation for US and Japan 209, 211, 213
and Solow-Swan model of economic growth 5, 149, 152, 161–2
Euler-Lagrange equations 3, 4, 146
evolutionary theories 11, 42, 166–8, 183, 259
exergy
and capital 151–2, 153
defined 78–9, 141
and energy quality 141
and entropy law 136, 137, 139, 141
and equilibrium 78, 136, 137
Japanese data 339–43
and labor 151, 153
and materials life-cycle 67
and materials processor model 168, 169
as a measure of materials 78–80
and neoclassical paradigm 141
and optimal control theories 147
and production functions 183, 218
Cobb-Douglas production function 184–9
LINEX production function 190–92, 194
production function estimation for US and Japan 197, 198–9, 201, 204, 207, 214–16, 217–19
and REXSF model of the US economy 240–45, 246–7, 248–9, 250
US data 334–8
and useful work 78–80, 89, 92, 93–6, 141
and wastes 141, 170
exergy/capital ratio, and REXSF model of the US economy 240–41
exergy flows 72, 73–6
exergy inputs 85, 86, 87
exergy/mass ratio 80–85
exergy services 90, 154, 168, 258
see also final and finished goods; useful work
exergy-to-work efficiencies 199–200
exergy-to-work efficiency improvements since 1900
direct heat and quasi-work 111–18
prime movers 101–11
exhaustible resources 4, 21–4
exogenous processes, and neoclassical theory of growth 6, 8, 9, 24, 50, 150, 159, 183
exogenous variables, and production functions 176
experience see 'experience curve'; learning-by-doing; production experience; skills
'experience curve’ 12–15, 20, 31
exponential trends 224, 252
exports 68, 207
see also petroleum and oil exporting countries; trade
externalities 64, 134, 163, 170
see also pollution and harmful wastes; spillovers; wastes
extraction and harvesting
and conservation of mass 62–3, 64–5
and disequilibrium paradigm 10
and mass flows 68, 69, 70, 71, 72
and materials life-cycle 65, 66
and materials processor model 168, 169, 262
and Solow-Swan model of economic growth 150
extrapolation, concept 223–4
extrapolation in economic growth forecasting in integrated assessment (IA) models 224–6
problem of recursion 236–7
risks of blind extrapolation 226–32, 252
technological progress 233–6, 252
factor accumulation 255, 256, 257, 260
factor payments 5–6, 151, 152, 154, 161, 185, 187, 210, 220
factor share theorem 152–3, 161, 311–12
factory engines 102–4
feedback 182
see also positive feedback
Fel'dman, G.A. 143, 254
Felipe, Jesus 176, 181
final and finished goods 68, 71, 72, 168, 169
final demand 156, 157, 158
Index

first-law efficiency 114, 117
Fisher, Franklin M. 176, 181
food 68, 69, 85, 86, 87, 92, 97, 314–15
food shortages 23
forecasting 42–3, 44, 222–4
see also economic growth forecasting; extrapolation in economic growth forecasting
forest and forestry 52, 68, 69, 70, 307, 333
formal knowledge 45–6, 47
fossil fuels
and exergy and useful work in US and Japan 92, 93–6, 98–101, 128
and exergy consumption 72, 73, 74, 76
and exergy/GDP 80–81, 83, 84
mass as a measure 77
and mass flows 69, 72, 73, 74, 76
and mass/GDP 80–81, 83, 84
and non-sustainability 135–6
and production functions 182, 199
see also coal; natural gas; petroleum and oil
free markets 24, 54–5, 56
free trade 226–7, 228
fuel efficiency 124, 125–6, 235
fuels
and economic development theory 256
and exergy 78, 79
and mass flows 68, 69, 70, 71, 72
and materials life-cycle 67
and REXSF model of the US economy 240, 246, 247, 249
see also coal; coke; fossil fuels; fuelwood; gas; gasoline; kerosine; petroleum and oil
fuelwood 98, 327, 333
functionality 31, 57, 58
fungibility 45, 48–9, 258, 261
see also non-fungibility
future planning, theories of Pigou 3, 136, 145
future utility 140, 225–6

gas 38, 117, 118
see also gas prices; gas turbines; natural gas; NGL
gas prices 119–20
gas turbines 31, 90, 111, 114, 148
gasoline 34–6, 99, 100, 331
gasoline engines see spark ignition engines
Gaussian probability distribution functions, and REXSF model of the US economy 245–6
GDP
concept 134–5, 303–4, 308, 309
and conservation of mass 65
and factor share theorem 152, 153
growth rates in REXSF model of the US economy 245–50
and integrated assessment (IA) models 225, 226
Japanese data 329, 339–43
and production functions 175
Cobb-Douglas production function 184–7, 189
LINEX production function 190, 191, 192–3, 194
production function estimation for US and Japan 201, 204, 205–10, 214–16, 217–18
and Ramsey theory of optimal growth 145
and Solow-Swan model of economic growth 5, 6, 148, 149, 162
'stylized facts' about economic growth 256, 257, 258–9
and substitutability 154–5
US data 318, 334–8
GDP per capita
and capital 306–8
and REXSF simplified model 264, 275, 278–9, 280, 281, 288, 289, 290–91, 292, 293
and Solow-Swan model of economic growth 6, 253
'stylized facts' about economic growth 256, 257
generators 91, 103–4
den-political power shifts 34, 40, 58, 175
geographic latitude, and REXSF simplified model 268, 270, 271–2, 273, 274, 288, 292
Georgescu-Roegen, Nicholas 2, 9, 69, 136, 139, 142, 171
glass 70, 71, 72
globalization 226–7, 228
goods
input-output models 157, 158
materials processor model 168, 169
in neoclassical paradigm 1, 2, 24, 54, 149–50, 233
see also final and finished goods; information products and services; intermediate products; material goods; material goods' flows; non-rival goods; paper products; single all-purpose products; useful products; wood products
gradual incremental (Usherian) improvements 9, 10, 17, 26, 31, 45, 56, 58, 258, 260–61
Granger-causation, and production function estimation for US and Japan 205, 214–16
greenhouse gases 70, 72, 141, 142, 218, 219, 232, 252, 297
Guyol, Nathaniel B. 89
Hamilton, James Douglas 145, 146, 204, 217–18
harmful wastes see pollution and harmful wastes
Harrod-Domar growth models 4, 143, 144, 163, 254
HDPE 115, 116
health and safety 36, 43
heat
and exergy 78–9
and mass flows 69
and materials life-cycle 67
thermodynamic efficiency 298
and useful work 89–90, 92, 93–6, 98–101, 127, 232, 265
Helmer, Olaf 222
high entropy wastes 168, 169, 171, 182
high temperatures 112–17, 122, 123, 127, 128, 298
homogeneity 45, 48–9, 259, 261
see also inhomogeneity
horsepower 90, 92, 101, 102
Hotelling, H. 4, 23
human/animal muscle work 89, 90, 92, 97, 145, 232, 265, 315
human capital 25, 55, 163, 258, 259, 302, 305–6, 307, 308
hydro-electric power 103, 104, 126, 128, 199, 232, 333
hydro-electricity producing countries, and REXSF simplified model 267–8, 270, 272, 273, 274, 288, 292
incentives to innovate 8, 11, 25, 26, 46
income allocation theorem 185, 311–12
income redistribution 229
incremental (Usherian) improvements 9, 10, 17, 26, 31, 45, 56, 58, 258, 260–61
induced innovation 17–18, 21–4, 26
industrialized countries see rich countries
inefficiency 63
inertia 178, 224
informal economy 134
informal knowledge 47
information and communications technology (ICT) 36, 207, 226, 227, 235–6, 247, 299
information flows 182
information products and services 168, 235–6
inhomogeneity 11, 45, 55–6, 258, 261
see also homogeneity
innovation 8, 11, 159, 164, 165, 167–8, 169, 305, 306
see also breakthroughs; creative destruction; crisis-driven radical innovation; gradual incremental (Usherian) improvements; incentives to innovate; induced innovation; radical (Schumpeterian) innovation; R&D
input-output models 156–9, 182, 183, 218, 295
inputs, and conservation of mass 65
insulation 118, 121, 298
integrated assessment (IA) models, and extrapolation 224–6
intellectual property rights 46, 305
intermediate products 70, 71, 182, 191, 192
intermediate temperatures 112, 117–18, 127, 128
internal combustion engines (ICEs) 31, 37–8, 90, 106, 108–11, 232, 235
investment see savings and investment
iron industry 112–13, 114, 116, 234
Japan
data 314–15, 328–33, 339–43
exergy inputs 86, 87
fossil fuel exergy and useful work 92, 93–6, 98
GDP and factors of production 187, 188
heat as useful work 93–6, 99
prime movers as useful work 93–6, 98, 104
production function estimation see production function estimation for US and Japan
total useful work 126, 128–31
Jorgenson, Dale W. 150–51, 152, 154
kerosine 21–2, 31, 98, 331
Keynes, John Maynard 3, 144–5, 296
Keynes-Ramsey rule 3
Klein, Lawrence R. 176
KLEM (capital, labor, energy, materials) 150–51
Kneese, Allen V. 24, 63, 64, 137, 170, 171, 262
know-how see ‘experience curve’; learning-by-doing; skills
knowledge
and disequilibrium paradigm 55–6
and economic development theory 254, 255
and endogenous growth theories 48–9, 55–6, 163, 164, 165, 259
homogeneity and fungibility 45, 48–9, 261
inhomogeneity and non-fungibility 45, 55–6
and neoclassical paradigm 25, 55
as non-rival goods 46
see also cultural knowledge;
education and training;
formal knowledge; informal knowledge; information flows;
knowledge accumulation;
knowledge capital; knowledge transfer; monopoly knowledge;
skills; social knowledge;
technological knowledge
knowledge accumulation 47, 49–51
knowledge capital 25, 305
knowledge transfer 45–8
Koopmans, Tjalling C. 2, 7, 8, 64, 143
Krugman, Paul R. 1
Kümmel, Reiner 177, 187, 190–91, 194, 206
labor
and disequilibrium paradigm 10–11, 25
and economic development theory 255, 256
and endogenous growth theories 164
and exergy 151, 153
and factor share theorem 152, 153
and input-output models 157, 158
and integrated assessment (IA) models 225
Japanese data 329, 339–43
monetization of domestic and agricultural labor 228
and neoclassical paradigm 2, 24, 141, 149, 159, 311–12
and production functions 175, 179, 180, 181, 182, 183
Cobb-Douglas production function 184–6, 187, 189
LINEX production function 190, 191, 192–3, 194, 295, 296
production function estimation for US and Japan 197, 204, 208–9, 210–11, 212, 214–16, 217, 219, 220
and Ramsey theory of optimal growth 3
and REXSF model of the US economy 237–8, 239, 242
and REXSF simplified model 264
and Solow-Swan model of economic growth, specialization, 'stylized facts' about economic growth, US data, labor costs, labor payments, and production function estimation for US and Japan, labor productivity, large economies, 'laws' of progress, learning-by-doing, see also 'experience curve'; production experience; skills, Leontief, Wassily W., Leontief function, Lewis, W. Arthur, manufacturing, manure, marginal disutility, marginal productivities, market prices, markets, material goods, materials, mass, see also conservation of mass; mass-balance principle; mass/exergy ratio; mass flows, mass-balance principle, mass/exergy ratio, mass flows, material flows, material goods, material goods' flows, materials, and disequilibrium paradigm, mass as a measure, and neoclassical paradigm, and production-consumption system, and Solow-Swan model of economic growth, structural properties, see also concentration and conversion; extraction and harvesting; material flows; materials processor model; raw materials; resources, materials life-cycle, materials processor model, Meadows, Dennis L.
mechanical power 67, 90, 91, 92, 127, 147, 148, 265
see also animal/human muscle work; heat; prime movers

medicine 36, 43
metal cutting/drilling/grinding 120, 122
metallurgy 37

metals
and conservation of mass 65
and exergy consumption 72, 73, 75, 76
and exergy/GDP 82, 83, 84
mass as a measure 77
and mass flows 68, 70, 71, 72, 73, 75, 76
and mass/GDP 82, 83, 84
and materials life-cycle 67
structural properties 53
technology 52

micro-scale problem solving 16–17
microeconomic level 5, 8, 18, 25, 55, 57, 159, 176, 183
military 26, 31–3, 34, 58, 303, 305
see also wars
minerals 68, 71–2
Mirowski, Philip 141
monetary flows 176–7, 180, 182
monetization of domestic and agricultural labor 228
monetization of ‘unearned future wages’ 229–30, 302
money 169, 260, 303, 304
monopoly knowledge 26, 163
monopoly profits 46
Moroney, John R. 217
motive power 90, 91, 232, 265
see also automobiles; buses; trucks
Mulder, Peter 257, 258–9, 260
multi-collinearity, and production function estimation for US and Japan 202–3
multi-sector economies 152, 153–6, 169, 182, 183–4
multipliers
and input-output models 158–9
and optimal control theories 146
and Solow-Swan model of economic growth 5, 6, 148, 149, 150, 253

muscle work 89, 90, 92, 97–8, 232, 265, 315
myopia in future planning 3, 136, 145

natural capital 299, 306–8, 309
natural capital scarcity and depletion 213, 307
natural events 40–41, 175, 303
natural gas
and exergy and useful work in US and Japan 92, 95, 98
and exergy inputs for Japan 86, 87
and exergy inputs for US 85, 86
and exergy-to-work efficiency improvements since 1900 112, 115, 116
Japanese data 333
US data 324–6
see also NGL
natural gas scarcity and depletion 231, 232

natural resource consumption 256, 258
natural resource prices 231–2
natural resource scarcity and depletion 18, 21–4, 231–2, 303, 307
natural resources 24, 152, 153, 175, 180
see also natural capital
needs 17, 26, 31–3, 34, 56, 58
see also crisis-driven radical innovation; induced innovation
negative externalities 134
see also pollution and harmful wastes; wastes
Nelson, Richard R. 11, 42, 166, 167–8, 178, 179, 259

neoclassical paradigm
and conservation of mass 140, 141, 144, 261
critiques 2–3, 8–10, 159–61
thermodynamic critique 139–42, 144
and energy 2, 9, 141, 261
and equilibrium 1, 2, 8, 9, 10, 24, 54–5, 152, 159, 261, 311–12
and materials 2, 9, 140, 149, 261
optimal growth theories, recent formulations 7–8
overview 1–3, 24, 54–5
Ramsey theory of optimal growth 3–4, 143, 145–7, 229
and resources 23–4, 140
Solow-Swan model of economic growth see Solow-Swan model of economic growth
‘stylized facts’ about economic growth 257, 258–9
and technological progress 8, 9, 24, 25, 48, 140, 260
and technology 11, 45
and thermodynamics 139–42, 144
and wastes 64, 136, 144, 261
net worth 302
Newton's laws 223, 224
NGL 92, 94, 98, 99, 324–5, 333
nitrogen 23, 68, 69, 79, 115
non-fungibility 45, 55, 261
see also fungibility
non-linear models 8, 17
non-optimality 8
non-rival goods 46
non-substitutability
and factor share theorem 153–4
and input-output models 158
and multi-sector economies 154–6
and production functions 177–8, 182, 218, 219–20, 295
see also substitutability
non-sustainability 135–6
see also sustainability
Nordhaus, William D. 225, 303–4, 309
nuclear energy 85, 86, 87, 232, 333
oil see oil coefficient; oil crisis (1973-4); petroleum and oil
oil coefficient 266, 275, 276–7, 278, 279–80, 282–3, 284, 285–8, 289–90
oil crisis (1973-4) 23–4, 40, 114, 150, 175, 199, 213
OLS, and production function estimation for US and Japan 202, 203–4, 205, 209, 213
open systems 138
see also materials processor model
optimal control theory 145–7
optimal extraction model of exhaustible resources 4
optimal growth theories 3–4, 7–8, 143, 145–7, 229
optimal savings 3, 7–8
optimality 8, 135–6, 141
oxygen 67–9, 70, 78–9
paper industry 114, 116
paper products 67, 70, 71, 72
path dependence 17, 20, 135–6
pattern recognition 223–4
payload efficiency 123–5
Pearl, Raymond 12, 15
perpetual growth 309–10
perpetual inventory method (PIM) 4–5, 6, 177, 180, 239–40, 304, 306
perpetual motion machines 137, 139, 143
petroleum and oil
and discontinuity hypothesis 40, 42
and exergy and useful work in US and Japan 92, 94, 99, 100, 322–3
and exergy inputs for Japan 86, 87
and exergy inputs for US 85, 86
and exergy-to-work efficiency improvements since 1900 117, 118
and induced innovation 21–3
Japanese data 331–2
US data 322–3
see also oil coefficient; oil crisis (1973–4)
petroleum and oil consumption 264, 265–6, 292
see also EP (energy proxy)
petroleum and oil exporting countries 266–8, 270, 272, 273, 274, 292, 303
petroleum and oil prices 42, 119–20, 150–51, 217–18, 231–2
petroleum and oil refining 113, 114
petroleum and oil scarcity and depletion 231–2, 252–3, 297
petroleum cracking 99, 100
petroleum efficiency 99, 100
photosynthesis 67–9, 79
physical capital 176–7, 180, 305
physical limit barriers 36–9, 41, 42, 44, 53–4, 57, 58
physical science 39
Pigou, A.C. 3, 136, 145
plastics 70, 72
pollution and harmful wastes and conservation of mass 63, 64
costs 141, 142
Index

and disequilibrium paradigm 10
and exergy 141
and mass flows 70, 72
and materials life-cycle 67
and neoclassical theory 64
and REXSF model of the US economy 243, 247, 249
and Walrasian equilibrium 10
poor countries 160, 255, 257
see also developing countries
population, aging 229–30, 239
population data 318, 329, 334–43
population growth 21, 23, 237, 256, 257
positive feedback 9–11, 25, 55, 59, 163, 233–7
potential entropy 137
potential work 78, 137
power 67, 90–91
power generation 19–20, 30–31, 37–8
predictability 42–3, 44
see also economic growth forecasting; forecasting
prices
and disequilibrium paradigm 25
and neoclassical paradigm 1, 2, 24, 25, 54–5, 140
and optimal extraction of exhaustible resources 4
and perpetual inventory method (PIM) 177
and positive feedback 9, 163, 233, 234
and resource scarcity and depletion 42
and Walrasian economics 142–3
see also energy prices; market prices; natural resource prices
primary materials conversion 52, 66, 67
primary work 91, 126–31
see also heat; prime movers
primary work/GDP ratio 130–31
prime movers
exergy-to-work efficiency improvements since 1900 101–11
and materials life-cycle 67
and useful work 93–6, 98–101
see also engines; turbines
problem solving 16–17, 42–3
processing see concentration and conversion; materials processor model
production 1, 2, 9, 62, 141, 149, 233
production-consumption systems 137–8
production cost reductions 9, 11, 55
production experience 237, 247, 250
production frontiers 178, 183, 184
production function estimation for US and Japan
critique of results 218–20
estimation 200–205
evidence of elasticity of exergy as useful work 217–18
goodness of fit conclusions 213–16
numerical results 205–13
time series data 197–201
production functions
complementarity 179, 219, 295
critique 176–81
described 175
and disequilibrium paradigm 10–11
and endogenous growth theories 163, 164
and exergy 183, 218
and neoclassical paradigm 141, 161–2
and non-substitutability 177–8, 182, 218, 219–20, 295
and Solow-Swan model of economic growth 5–6, 7
and substitutability 177, 178–80, 182, 219, 292
and useful work 141, 179, 182, 183, 218
see also Cobb-Douglas production function; LINEX production function; production function estimation for US and Japan
products see goods; services
profit maximization 176, 183, 211–12
profits 25, 43, 46, 55, 305, 311–12
progress, ‘laws’ 12–16
‘progress function’ 12–15, 20, 31
pulp industry 114, 116
punctuated equilibrium 42
quasi-work 91, 101, 111–18
radical (Schumpeterian) innovation and barriers 17, 26
described 17, 57
and disequilibrium theories 12, 57
and economic growth 260, 261
and endogenous growth theories 164, 260
and evolutionary theories 11
versus gradual incremental (Usherian) improvements 12, 45
and neoclassical theory of growth 10, 25, 260
and S-shaped curve 15–16
and spillovers 45, 261
‘stylized facts’ about economic growth 258
railroads 124–5
railway engines 38, 102, 103, 104, 105, 125
Ramsey theory of optimal growth 3–4, 143, 145–7, 229
RAND 222
rational expectations 8, 135–6
rationality 2, 10, 140, 260
raw materials 65–77, 234
raw materials extraction 62–3, 64–5, 168, 169, 262
R&D
and breakthroughs 11, 26
and disequilibrium paradigm 25, 55
and endogenous growth theories 164
and evolutionary theories 167
and gradual (Usherian) improvements 26, 31
and knowledge as non-rival good 46
and knowledge capital 305
and neoclassical paradigm 8, 25, 55
and positive feedback 233, 234
process 56–7
see also innovation
real estate 230, 302
rebound effect 105–6, 296–7
recessions 144, 145, 217–18, 226, 309
recycling 67, 68, 70, 71, 136, 170, 171, 236
refrigeration 118, 120–21, 122
regulations 19–20, 43
renewable energy 85, 86, 87, 234, 333
rents 5, 149, 151
residential and commercial sectors 105–6, 107, 112, 117, 118, 120–21, 199–200
resource consumption 11, 23–4, 237, 247
see also electricity consumption; energy consumption; natural resource consumption; petroleum and oil consumption; production-consumption systems
resource prices 11, 303
resource scarcity and depletion
and discontinuity hypothesis 40
and entropy law 170–72
and induced innovation 17–18, 21–4, 26, 57
and neoclassical paradigm 140
and price increases 42
and REXSF model of the US economy 249–50
and substitutability 308
see also energy scarcity and depletion; natural capital scarcity and depletion; natural gas scarcity and depletion; natural resource scarcity and depletion; petroleum and oil scarcity and depletion
resources 147
see also concentration and conversion; extraction; harvesting; materials; natural resources; resource consumption; resource prices; resource scarcity and depletion
returns on capital stock 5, 6, 149, 159–60, 162, 257, 305
returns on labor 5, 6, 149
returns on R&D investment 31, 42
returns to scale see economies of scale; Euler condition
REXSF model of the US economy described 236–45
empirical results and sensitivity 245–50
REXSF simplified model assumptions 262–3
catch-up countries only 275, 278–88, 349
catch-up elasticity 288–91, 293
conclusions 291–3

Robert U. Ayres and Benjamin Warr - 9781848445956
Downloaded from Elgar Online at 09/16/2019 04:39:32AM
via free access
Index

electrification and urbanization 264, 265–6, 344–8, 364
groupings and non-linear regressions 271–5, 276–7, 278, 279
hypotheses 263–4
methodology and data 264–6, 350–52
and perpetual growth 310
scatter diagrams and linear regressions 266–71
rich countries 160, 255, 257, 263, 303
road transport 106, 108–11, 298–9
Robinson, Joan 176–7
Romer, Paul M. 48, 55–6, 162, 163, 164–5, 213, 255, 259, 260–61
Rostow, W.W. 254
Ruth, Matthias 140
S-shaped curve 15–16, 26, 58, 243–5, 247, 254
Sala-I-Martin, Xavier 160, 161, 162, 164, 255, 257
salt 21–2, 79
Samuelson, Paul A. 2, 146–7
saturation 160, 247
savings and investment
and capital 307
and economic development theory 254, 256
and integrated assessment (IA) models 225
and neoclassical paradigm 9
and positive feedback 163
and production function estimation for US and Japan 214
and Ramsey theory of optimal growth 3, 145
and recession 144
and REXSF model of the US economy 238–9, 240
and Solow-Swan model of economic growth 145, 150, 162
‘stylized facts’ about economic growth 257, 258–9
Schelling, Thomas C. 154–5
Schumpeter, Joseph A. 11, 15–16, 17, 41, 145, 164, 166, 259
see also creative destruction; radical (Schumpeterian) innovation
sea transport 16, 31–3, 34, 38, 39
second-law efficiency 91, 112, 113–14, 117, 118, 121, 142
secondary processing 52
secondary work
defined 91, 118–19
efficiency 118–26, 298–9
total primary and secondary work 126–31
sectors 51–4, 156–8, 258
selection 166, 167
Serageldin, Ismael 307–8
serial auto-correlation, and production function estimation for US and Japan 202, 203
service output per unit work 118–19
services 1, 2, 24, 54, 149–50, 168, 169, 233
see also energy services; exergy services; information products and services; social welfare services
short-term fluctuations 175, 201, 203, 205
single all-purpose products 2, 7, 149, 152, 154, 156, 161, 182–3
single sector models 7–8, 150–51, 152, 153, 154, 156, 169, 175, 184
see also income allocation theorem; Solow-Swan model of economic growth
skills 47, 49, 254, 255
small economies 161
Smith, Adam 21, 142, 228, 301–2
SNA (system of national accounts) 4, 6
social discount rate 225–6
social inventions 15–16
social knowledge 47–8
social learning 12, 163
social planner 4, 8
social skills 47
social utility 3–4
social welfare services 229
societal benefits 46
societies, and wealth 300–302
soda ash synthesis 115, 116
Söllner, Fritz 140, 142
Solow, Robert M. 2, 5–6, 23–4, 146–7, 178, 217, 225, 226, 253, 309
Solow residual 181, 184–6, 187, 189, 194, 195, 253
Solow-Swan model of economic growth
critique 159–62, 259
described 4–7, 147–50, 152, 153, 182–3, 233, 253
and economic development 162, 254–5
and energy and materials 10, 161, 233
and integrated assessment (IA) models 225
and ‘stylized facts’ about economic growth 258–9
and technological progress 150, 159, 160–61, 187, 189, 233, 253
space heating 112, 117–18, 127, 298
spark ignition engines 34–6, 37–8, 52, 90, 106, 108, 109, 111
specialization of labor 228–9
spending 144, 145, 227, 229
spillovers
and breakthroughs 26–7, 44, 58–9
defined 44
and disequilibrium paradigm 25, 56
and endogenous growth theories 163, 164, 259
and evolutionary theories 11
forecasting 44
and free riders 49
and gradual incremental (Usherian) improvements 45
and long-term economic growth 27
and radical (Schumpeterian) innovation 45, 261
‘stylized facts’ about economic growth 258, 259
spontaneous invention 17, 25
stage theory of economic development 254
standardization 20
static economic growth theories 142–4, 159
steady-state 136, 142
steam 90, 101–2, 112, 117, 127, 199, 232
steam-electric power 103–5
steam engines 30, 38, 102–3, 104, 105, 233–4
steam locomotives 102, 103, 104, 105, 125
steam turbines 30–31, 33, 38, 148
steel 70, 71
steel industry 112–13, 114, 116, 117, 127, 234
Steer, Andrew 307–8
Stern, David I. 205, 214
stock markets 230
structural breaks
and production function estimation for US and Japan 201, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214
and REXSF model of the US economy 241–2
structural properties of materials 53–4
sub-prime mortgages 227–8, 229
subsoil assets 307, 308
substitutability
and agricultural productivity decline 154–5
and factor share theorem 153
and input-output models 157, 158
and neoclassical paradigm 140, 152
physical limit barriers 54
and production functions 177, 178–80, 182, 219, 292
production function estimation for US and Japan 205, 216, 219–20
and resource scarcity and depletion 308
and Solow-Swan model of economic growth 148–9, 152
see also agricultural mechanization; automation; non-substitutability
supply 1, 2, 9, 24, 35, 54, 55, 233, 234
supply-side I-O model 158–9
sustainability 10, 12, 63, 134
see also non-sustainability
Swan, Trevor 5, 147, 253
see also Solow-Swan model of economic growth
systems dynamics 237
see also REXSF model of the US economy; REXSF simplified model
taxes 5, 227, 229, 230
technical efficiency
and economic growth 297
and energy scarcity and depletion
Japanese data 339–43
LINEX production function with useful work 191–2, 194–5
as measure of technological progress and total factor productivity (TFP) 80
and production function estimation for US and Japan 198, 214, 218–19
and REXSF model of the US economy 243–5, 246–7, 248, 249, 250
and secondary work 118–26
US data 334–8
technological discontinuity 41
technological efficiency 53
technological forecasting 51–4
technological knowledge 45, 46, 47, 48, 49–51, 167, 253
technological progress
and discontinuity hypothesis 39–42
and disequilibrium paradigm 25–6, 55, 57–9, 168
and economic development theory 255–6, 262–3
and economic forecasting 51–4
and economic growth 262–3
empirical 'laws' of progress 12–16
and evolutionary theories 11, 167–8
extrapolation in economic growth forecasting 233–6, 252
fungibility 45, 258
homogeneity 45, 259, 261
and induced innovation see induced innovation
inhomogeneity 11, 45, 258, 261
and integrated assessment (IA) models 225
and knowledge accumulation 49–51
and lock-out/lock-in 19–20
macroeconomic theory of change and innovation 17–19
as multiplier in Solow-Swan model of economic growth 6
and neoclassical paradigm 8, 9, 24, 25, 48, 55, 140, 260
non-fungibility 45, 261
and optimal extraction of exhaustible resources 4
and positive feedback 59, 233–6
as problem solving 16–17
and production functions 178–9, 181, 186, 194
and REXSF model of the US economy 237
and Solow-Swan model of economic growth 150, 159, 160–61, 187, 189, 233, 253
'stylized facts' about economic growth 258, 259
and technical efficiency 80
technological trajectories 30–31
transfers from industrialized to developing countries 263
and useful work 263
and wealth 62
technology 11, 45, 52–4
TFP (total factor productivity)
and economic development theory 255–6, 262–3
and economic growth 262–3
and equilibrium 54
and integrated assessment (IA) models 225
and Solow-Swan model of economic growth 6, 7, 150, 160, 161, 187, 189, 253
and technical efficiency 80
thermodynamic efficiency 234–5, 243–4, 298–9
thermodynamic equilibrium 136, 137, 261
thermodynamics 139–42, 144, 168, 169
see also conservation of mass; entropy law; thermodynamic efficiency; thermodynamic equilibrium; useful work
time factors
production functions 175–6, 178–9
Cobb-Douglas production function 185
LINEX production function 190–91, 194, 195
and REXSF simplified model 270–71
Solow-Swan model of economic growth 6, 253
time preferences 225–6, 229
\textit{time series data} 179, 181, 197–201, 239–40, 298
\textit{see also} extrapolation, concept
Tobin, James 303–4
town gas 38, 117
trade 34, 226–7, 228
\textit{see also} exports; petroleum and oil exporting countries
trade deficits 207, 227
transport fuel 34–6
\textit{see also} fuel efficiency; gasoline
transportation
\textit{classification} 52
and crisis-driven radical innovation 31–3, 34–6, 38, 39
and exergy-to-work efficiency improvements since 1900 106, 108–11, 127, 128
and secondary work exergy efficiency 123–6, 298–9
and useful work 265–6
\textit{see also} automobiles; motor vehicles; transport fuel
trends 223–4, 226
\textit{see also} extrapolation, concept
trucks 38, 106, 108, 109, 111, 124, 125, 126
turbines 30–31, 33, 38, 52, 53, 90, 91, 104, 111, 114, 148
two factor production functions, described 175
two-sector economies 152–3, 164, 169, 191–5
unemployment 144, 145
unit roots, and production function estimation for US and Japan 201, 203, 204, 210, 214
urbanization 265, 291–2, 307–8, 344–8
US
Cobb-Douglas production function with exergy 187, 189
data 314–27, 334–8
economic importance 262
exergy inputs 85, 86
exergy/mass and exergy/GDP trends 80–85
fossil fuel exergy and useful work 92, 93–6, 98
GDP and factors of production 187, 188
heat as useful work 93–6, 99, 101, 111–18
human/animal muscle work 89, 90, 92, 97–8, 101
mass and exergy flows 67–77
materials life-cycle 65–7
prime movers as useful work 93–6, 98, 99–111
production function estimation for US see production function estimation for US and Japan
REXSF model of the economy see REXSF model of the US economy
and REXSF simplified model 262, 266, 272–3, 274, 275, 278, 279, 280, 281, 282, 283, 284, 286–8, 290–91, 292, 293
risks of blind extrapolation 226–32
secondary work efficiency 119–31
technological progress and Solow residual 187, 189
total useful work 126–31
useful products 69
useful work
animal/human muscle work 89, 90, 92, 97–8, 232, 265, 315
costs 193, 234–6
defined 89–92, 296
elasticities 154
and energy scarcity and depletion 232
and exergy 78–80, 89, 92, 93–6, 141
\textit{see also} exergy-to-work efficiency improvements since 1900
and factor share theorem 152–3
and fossil fuel exergy 92, 93–6
Japanese data 339–43
and materials life-cycle 66, 67
and materials processor model 168
prime movers and heat 89–90, 93–6, 98–101, 232, 265
and production functions 141, 179, 182, 183, 218
LINEX production function 191–5, 295–6
\textit{Robert U. Ayres and Benjamin Warr - 9781848445956
Downloaded from Elgar Online at 09/16/2019 04:39:32AM via free access}
production function estimation for US and Japan 197, 198, 199, 201, 204, 207, 208–9, 210, 211, 212, 214–16, 217–18, 219
and REXSF model of the US economy 240–45, 246–7, 248–9, 250
and REXSF simplified model 264, 265, 284, 310
secondary work 118–26
and Solow-Swan model of economic growth 183
and technological progress 263
and thermodynamic efficiency 234–5
total primary and secondary work 126–31
US data 334–8
useful work/GDP, and production function estimation for US and Japan 198, 199
useful work payments 210
utility 1, 2, 3–4, 140, 141, 145–6, 225–6
utility maximization 2, 3, 260
utility of future consumption, and integrated assessment (IA) models 225–6
value 1, 45, 46, 47–8, 49–50, 169
value added 69, 157, 182, 247, 249
von Neumann, John 2, 143–4, 170
wages 5–6, 24, 25, 54, 55, 147, 148, 149, 229–30
Walras, Leon 2, 143, 170
Walrasian economics 1, 2, 3, 10, 140, 142–3, 159
Warr, Benjamin 24, 168, 198, 200, 253, 263, 293
wars
and crisis-driven radical innovation 26, 31–3, 34, 58
and production function estimation for US and Japan 201, 203, 205, 206, 207, 208, 209, 210, 211, 213, 214
and production functions 175–6
waste disposal and treatment 63, 64, 141, 168, 170
waste flows 63, 64–5, 141, 144, 168–9
wastes
and disequilibrium paradigm 10
and entropy law 168, 169, 170, 171
and exergy 141, 170
and mass flows 68, 69, 70, 71–2
and materials life-cycle 65, 66, 67
and neoclassical paradigm 64, 136, 144, 261
and Solow-Swan model of economic growth 150
’stylized facts’ about economic growth 258
and Walrasian equilibrium 10
see also pollution and harmful wastes; recycling; waste disposal and treatment; waste flows
water 79, 307–8
water heating 112, 117
water vapor 68, 69
wealth 62–3, 134–5, 299, 300–302, 303, 309
welfare 21, 62, 134–5, 303–4
Winter, Sidney G. 11, 42, 166, 167–8, 259
wood products 70
work 89, 296
see also useful work
World Bank 264, 306–8
young countries 280–82, 293
zero emissions 171