Acorn Computers 37
Acs, Z. 87, 244
Adams, J. 97
additionality concept 62–3, 115
public support for research and
development (R&D) and 137–8,
139–42, 147–8, 162–3
results of survey 148–61
Adkins, D. 53
Aerts, K. 139
Allen, J. 89
Amin, A. 89
Analysis 37
Anselin, L. 87
Antonelli, C. 12
ARC 37
Arenberg Science Park 44
Armstrong, H. 243
Arundel, A. 62
Asheim, B. 234
ASMI 45
ASML 45
Audretsch, D. 86, 244
Austria 170
Babson College 33
BankBoston 35
Barberis, P. 137, 214
Barro, R. 243
Belgium 11
centres of excellence 81
origins and development 63–4
recent policy changes 65–6
Leuven University 9
incubator facilities 53
as technostarter 43–5
research and development (R&D)
study 143, 162–3
acceleration additionality 155
competence additionality 155–6
network additionality 154
output additionality 156–8
profile of companies 148–50
project additionality 150–52
scope and scale additionality
152–4
strategic (innovation) additionality
158–61
benchmarking 18–19, 22
Bergemann, D. 13
Bernstein, A. 62
best practice 21
Bharti Group 33
bibliographies 87
Bond, R. 67
bootstrapping model of finance 13
BP Amoco 39
Braczyk, H.-J. 18, 234
Broers, Alec 38
Brown, Gordon 39
Buisseret, T.J. 63, 140
business angels 52
Cairncross, F. 89
Cambridge Consultants 37
Cambridge Enterprise 40
Cambridge Instruments 36
Cambridge Science Park 40
Cambridge Technopole Group 41
Cambridge University 9, 32
Institute of Manufacturing 96
as technostarter
active involvement of the
university 38–41
emergence of cluster 36–8
incubator facilities 53
lessons from 41–3
Campbell Soup 35
Caniëls, M. 89
Cantwell, J. 89
centres of excellence 81
origins and development 63–4
recent policy changes 65–6
Chesborough, H. 233
Index

Clarke, G.R.G. 13
Clarysse, B. 140, 178, 183
Co, C. 86
coaching technostarters 54–5
Cohendet, P. 89
cohesion policy of the EU 191
Cohesion Funds 167
consistency with innovation policy 183–4, 188–92
coordination 187, 191–2
development 185–6
financial instruments 186–7
Structural Funds 64, 131, 167, 171, 186
communication 89; see also information and communication technology (ICT)
competition, ICT policy and 131–2
Cooke, P. 2, 10, 18, 178, 233, 234, 244
coordination 22
cohesion policy of the EU 187, 191–2
Lisbon Strategy 169–70, 172–3
national innovation policies 183
national innovation systems (NIS) 212–19
creative destruction 12
Crescenzi, R. 180
crowding-out effects 139
Cuervo-Cazurra, A. 178
Cunningham, P. 62, 67
Czarnitzki, D. 139
Czyzewski, A.B. 243
Darwin, Horace 36
Debackere, C. 10, 44
Debackere, K. 67, 74
Delft University 54
Dell 31
demand 2
spatial distribution of knowledge transfer activity and 96–7
Denmark 170
DG Enterprise 62
Digital Equipment Co. 35
Disney, Walt 31
distance, knowledge transfer and 21, 87–9, 100–102
Djarova, J. 134
DSM 33
DSP Valley 45
Dunnewijk, T. 180, 234, 236
Dunning, J.H. 243
Dunsford, M. 234
Eales, R. 67
Edler, J. 182
EDM 64
educational institutions 2; see also universities
employment in R&D 243
Engqvist, R. 62
entrepreneurship 12, 21
flow of entrepreneurs 47–8
link between start-ups and growth 33–4
technostarters 31–3, 56
Cambridge phenomenon 36–43
four flow model 45–54
Leuven 43–5
link between start-ups and growth 33–4
MIT example 34–6
support 53–6
Environmental Innovation Platform (MIP; Belgium) 64
Ertl, H. 62
Etzkowitz, H. 6, 8
European Union (EU)
cohesion policy 191
Cohesion Funds 167, 186
consistency with innovation policy 183–4, 188–92
coordination 187, 191–2
development 185–6
financial instruments 186–7
regulation 187
Structural Funds 64, 131, 167, 171, 186
innovation and 5, 15–16, 167–8, 190–91, 192–5, 202, 221
consistency with cohesion policy 183–4, 188–92
measuring innovation potential 238–9
policy 181–4
see also Lisbon Strategy; national innovation systems (NIS)
Index

regional differences 234–6
regulation 184, 187
Single European Act 181, 185
excellence, see centres of excellence

Fagerberg, J. 233
Falk, R. 142, 143, 147, 150
Faraday Partnerships 94, 95, 99
Feldmann, M 86
finance, see investment
financial sector, ICT use in 120
Finland 6
innovation in 174, 209–10, 215, 221–2
firms 5, 6
contacts with 93–4, 98
information and communication
technology (ICT) use and 111, 113
contribution of ICT utilisation to
innovation 122–4
economic performance and ICT
utilisation 117–19
facilitating environment for ICT
utilisation 124–6
level of ICT usage 116–17
policy actions to enhance ICT use
126–32
sectoral and spatial differences
119–22
innovation and 12–13, 18, 203, 243
contribution of ICT utilisation to
innovation 122–4
knowledge transfer and, see
knowledge transfer
profits 244
research and development (R&D) 6, 7, 20, 65
cooperation with research
institutions 243–4
financing 244
public support 14, 137–63
size of 97–8
technostarters 31–3, 56
Cambridge phenomenon 36–43
four flow model 45–54
Leuven 43–5
link between start-ups and growth
33–4
MIT example 34–6
support 53–6
fiscal impact of innovation policies
69–71, 78
Flanders District of Creativity 64
Flanders Drive 64
Flanders FOOD 64
Flanders Material Centre (Flamac) 64
Flanders Mechatronics Technology
Centre (FMTC) 64
Flemish Institute for Logistics (VIL) 64
Flemish Institute for Technological
Research (VITO) 63, 75, 76–8
Flemish Interdisciplinary Institute for
Biotechnology (VIB) 63–4, 75, 76, 78–9
four flow model of technostarters 45–6
flow of entrepreneurs 47–8
flow of finance 48–53
flow of technology 46–7
France 195
Freel, M.S. 86
Freeman, C. 1
Frosini, P. 9
GameChanger 33
Geens, Gaston 63
gender 34
Georghiou, L. 63, 67, 143
Germany 34, 35–6
Gillette 35
Glaxo 39
Global Entrepreneurship Monitoring
(GEM) 33, 34
globalisation, innovation and 5
Google 31
government and the state
information and communication
technology (ICT) policy 111, 126
developments in skills and labour
market 132
encouraging greater adoption of
ICT in public sector 128–9
need for sector-specific policies
126–8
promoting Internet security and
trust 129–30
stimulation of fair competition
131–2
supporting research and
innovation 130–31
innovation and 1, 15, 16–17, 60–63
impact assessment of innovation
policies 66–75
see also centres of excellence;
national innovation systems
(NIS)
support for research and
development (R&D) 14, 130–
31, 137–8, 162–3
acceleration additionality 155
behavioural additionality 137–8,
139–42, 162–3
competence additionality 155–6
network additionality 154
output additionality 156–8
profile of companies 148–50
project additionality 150–52
research design 142–8
scope and scale additionality
152–4
strategic (innovation) additionality
158–61
see also public sector
Greiner, L.E. 47
Grossman, G. 12
Guerrero, C.G. 233

Haasrode Science Park 44
Hall, B. 13, 14
Hall, R. 189
Harhoff, D. 86
Harvard Business School 32
Hege, U. 13
Helpman, E. 12
Heshmati, A. 12
Hewlett-Packard 35
Higher Education Innovation Fund
(HEIF) 39
higher education institutions (HEIs),
see universities
Higher Education Reach-Out to
Business and the Community
Fund (HEROBC) 39
Hitachi 39
Hoechst 39
Hollanders, H. 238
Hollenstein, H. 13
Horst, A. 15
Hume, David 229
Huntingford, J. 9

IDEA Consult 11, 14
impact assessment of innovation
policies 66–7
economic impact 68–9, 76–8
fiscal impact 69–71, 78
scientific impact 71–3, 78–9
technological impact 73–5
Incubation point Geo-information
(IncGeo) 64
incubator facilities 53–4
India 33
informal investors 52
information and communication
technology (ICT) 12–13, 45,
111–12, 132–4
additionality concept 115
contribution of ICT utilisation to
innovation 122–4
contribution to economic
performance of firms
economic performance and ICT
utilisation 117–19
level of ICT usage 116–17
sectoral and spatial differences
119–22
coverage of study 115–16
facilitating environment for ICT
utilisation 124–6
government policy on 111, 126
developments in skills and labour
market 132
encouraging greater adoption of
ICT in public sector 128–9
need for sector-specific policies
126–8
promoting Internet security and
trust 129–30
stimulation of fair competition
131–2
supporting research and
innovation 130–31
methodology of study 113–15
policy actions to enhance ICT use
126
innovation
centres of excellence 81
origins and development 63–4
recent policy changes 65–6
definition 4–5
drivers of firm innovation 12–13
European Union (EU) and 5, 15–16, 167–8, 190–91, 192–5, 202, 221 consistency with cohesion policy 183–4, 188–92 measuring innovation potential 238–9 policy 181–4 see also Lisbon Strategy; national innovation systems (NIS) finance 13–14 firms and 12–13, 18, 203, 243 contribution of ICT utilisation to innovation 122–4 government and 1, 15, 16–17, 60–63 impact assessment of innovation policies 66–75 see also centres of excellence information and communication technology (ICT) and 122–4, 130–31 national systems, see national innovation systems (NIS) public support for research and development (R&D) and 158–61 regional systems, see regional innovation systems research and development (R&D) and 87 systems 1–3, 5–6, 19–20, 22 national, see national innovation systems (NIS) open 65 regional, see regional innovation systems INSEAD 32 Institute for the Promotion of Innovation through Science and Technology (IWT; Belgium) 143, 147–8, 150–63 Intel 31, 35, 45 Interdisciplinary Institute for Broadband Technology (IBBT; Belgium) 64 Inter-University MicroElectronics Centre (IMEC; Belgium) 45, 63, 75, 76, 80–81 inventions 242 INVEST 103 investment finance in four flow model of technostarters 48–53 finance of innovation 13–14 R&D 14, 244, 245 Italy 170 Jaffe, A.B. 87 Japan 34 Jordan, A. 15 Judge Management School 41 Jumpstart 103 Kirkpatrick, C. 67 Klette, T.J.J. 14 knowledge capital 12 knowledge creation 5, 60 knowledge transfer 10–12, 85–6 effect of distance 21, 87–9, 100–102 public sector and 102–4 routes 86–7 spatial distribution of knowledge transfer activity 93–6 capacity to develop linkages with firms 98 initial contacts 98 pattern of demand 96–7 personal and professional networks 99 requests for support from business 99 size of firm and 97–8 strategy adopted by universities 99–100 universities and 86, 87, 89–91, 104–5 contacts with firms 93–4 specific knowledge transfer programmes 94 types of institution 94–6 Konno, N. 89 Kor, Y.Y. 47 Krugman, P. 86 KTPs 94, 95, 96, 99, 102 Kuemmerle, W. 31 labour market employment in R&D 243 information and communication technology (ICT) policy and 132
Latvia, ICT use in 127
Lee, N. 67
Leuven Security Excellence
Consortium 45
Leuven University 9
incubator facilities 53
as technostarter 43–5
Leydesdorff, L. 6, 233
LINK programme 94, 95
Lisbon Strategy 1, 137, 194
coordination 169–70, 172–3
objectives 168–9
use of Structural Funds for 171–2
reasons for lack of results 170–71
Lissoni, F. 86
Lithuania, ICT use in 127, 131
LiveWire 33
London Business School 33
London Technology Network 99, 103
Lööf, H. 12
Looy, B. 44
Lopez, A.J. 12
Lundvall, B.A. 2, 233, 244
McDonnel Douglas 35
Macedonia 54
Mahoney, J.T. 47
management, innovation and 12
Manufacturing Advisory Service 104
manufacturing sector, ICT use in 121
Marburger, J. 62
market imperfections 14
Marshall, A. 86
Massachusetts Institute of Technology (MIT) 32, 34–6
Microsoft 31, 38, 39
Miles, I. 62, 67
Mittal, Sunil 33
Molle, W. 15, 174, 189, 193
Morgan, K. 2, 18, 89, 105, 233, 244
Motorola 38
Muldr, U. 178, 183
Muller, E. 180
multidimensional innovation impact
assessment method (MIFA) 11,
67–8, 81–2
case studies 75–6
Flemish Institute for
Technological Research (VITO) 75, 76–8
Flemish Interdisciplinary Institute for Biotechnology (VIB) 75,
76, 78–9
Inter-University MicroElectronics
Centre (IMEC; Belgium) 75,
76, 80–81
impact assessment of innovation
policies 66–7
economic impact 68–9, 76–8
fiscal impact 69–71, 78
scientific impact 71–3, 78–9
technological impact 73–5
multi-national enterprises (MNEs),
knowledge transfer and 97
Mytelka, L.K. 181
Närfelt, K.-H. 141
National Composites Network (UK) 99
National Endowment for Science, Technology and the Arts (NESTA; UK) 4
national innovation systems (NIS) 1,
16–17, 174–7, 201–2, 225–6
budget allocations 205
coordination mechanisms 212–19
GoodNIP classification 206–8
governance of innovation 202–4,
208–12, 215–19
innovation trend chart 205–6
policy mix 204, 208–12
definition 219–20
illustration 220–25
National Semiconductor 35
Nauwelaers, C. 15, 18
Nelson, R.R. 2
Netherlands 195, 215
networks
network additionality 154
personal and professional 99
nodal knowledge 89
Nokia 38
Nonaka, I. 89
Norway 219
Novartis 38
Office of Science and Technology Policy (USA) 62
open innovation systems 65
opportunity entrepreneurs 32–3
Index

Organisation for Economic Co-operation and Development (OECD) 112
E-commerce Business Impacts Project (EBIP) 112
Working Party on Innovation and Technology Policy (TIP) 138
O'Shea, R. 8
Osnabrugge, M. van 48
Oughton, C. 232
Overstraeten, R. van 45

PA Technology 37
Papaconstantinou, G. 67, 75
patents 87, 242
Peeters, L. 75
Penrose, E.T. 47
Pereira, T.S. 183, 184
Peru 34
Peterson, J. 15, 181
Philips Electronics 33, 38, 45
Pinchot, G. 32
Piontek, R. 243
Piscitello, L. 89
Platform 52–3
Poland 19, 116

information and communication technology (ICT) use 121, 127, 129
innovation in 211, 213, 231
regional heterogeneity 231–2
regional innovation systems case study 246, 249
business R&D financing 244
data 240–41
dynamics of total R&D expenditure 245
employment in R&D 243
enterprises that conduct innovative activity 243
higher education institutions 242–3
patents and inventions 242
profits of enterprises 244
reasons for selection of country 230–31
regional innovation potential index 245–6
share of R&D expenditure in GDP 241–2

poles of competence 65
Polt, W. 67, 75
Porter, M. 233233
productivity 4
ICT use and 119–20, 121
profitability
ICT use and 119–20
regional innovation systems and 244
proximity, knowledge transfer and 21, 87–9, 100–102
public sector 15
encouraging greater adoption of ICT in 128–9
innovation and 2
knowledge transfer and 102–4
research and development (R&D) 6, 7, 20, 85
public support 14, 137–63
see also universities
publicity for technostarters 56
Pye Radio 36, 37
Radosevic, S. 177
Raytheon Co. 35
Read, A. 12
Reenen, J. van 14
regional innovation systems 2, 6, 17–19, 177–9, 229–30, 249
changing regions 236–7
measuring regional innovation potential 237–40
Poland case study 246, 249
business R&D financing 244
data 240–41
dynamics of total R&D expenditure 245
employment in R&D 243
enterprises that conduct innovative activity 243
higher education institutions 242–3
patents and inventions 242
profits of enterprises 244
reasons for selection of country 230–31
regional innovation potential index 245–6
share of R&D expenditure in GDP 241–2

Willem Molle and Julia Djarova - 9781848447417
Downloaded from Elgar Online at 04/11/2019 01:58:12AM
via free access
recognising regional diversity 234–5
role of the region 233–4
spatial hierarchy 234
typology of successful regions 235–6
regulation
European Union (EU) 184, 187
innovation and 202–3
research and development (R&D) 12, 86–7, 137–9
budget allocations 205
employment in 243
exchange of results 182
firms 6, 7, 20, 65
cooperation with research institutions 243–4
financing 244
investment in 14, 244, 245
public sector 6, 7, 14, 20, 85
public support for 14, 130–31, 137–8, 162–3
acceleration additionality 155
behavioural additionality 137–8, 139–42, 162–3
competence additionality 155–6
network additionality 154
output additionality 156–8
profile of companies 148–50
project additionality 150–52
research design 142–8
scope and scale additionality 152–4
strategic (innovation) additionality 158–61
regional innovation systems and 241–2
spin-offs 8–10
universities and public funding 91
research funds from business 92
spin-offs 8–10
student exchange 92–3
research institutions 2, 6, 7–8, 20, 243–4
Richard, D. 32
Richardson, H.W. 233
Ridding, John 33
Robinson, R.J. 48
Rockwell International 35
Rodriguez-Pose, A. 180
Rolls Royce 39
Romanainen, J 222
Room, G. 119
Roper, S. 204
Rosenfeld, S. 233
Rousseau, Jean-Jacques 229
Royal Dutch Shell 33
Rubalcaba, L. 4
Russia 116
ICT use in 121, 126, 127
St John’s Innovation Centre 40
Sala-i-Martin, X. 243
Samsung 45
Sanz-Menéndez, L. 213
scale economies 15
Schoenmakers, W. 89
Schout, A. 15
Schumpeter, J. 4, 12
science parks 40, 44–5
Scientific Generics 37
Seiko 39
Seró, A.S. 233
service sector, ICT use in 120–21
Sharp, M. 15, 181, 183, 184
Silicon Valley 48, 52
Sinclair 37
Sinclair, Clive 38
size of firms, knowledge transfer and 97–8
skills development, ICT policy and 132
Skype 31
small and medium size enterprises (SMEs) 220–21
knowledge transfer and 11, 97–8
Small Business Service 103
Smith, D. 97
Smith, K. 181
SmithKline Beecham 39
Spain 208–9
spillovers 74, 86, 87, 89, 100, 104
spin-offs from research and development (R&D) 8–10
Spithoven, A. 16
Stanford University 48
state, see government and the state; public sector
Stel, A. van 34
Storey, D.J. 10
strategic research centres 65
subsidies 14, 139

support
EU support for innovation 181–2
public support for research and
development (R&D) 14,
130–31, 137–8
behavioural additionality 137–8,
139–42, 162–3
profile of companies 148–50
research design 142–8
technostarters 53–4

Sweden 6, 174

tacit knowledge 87
Tallinn Technical University 130
taxation, fiscal impact of innovation
policies 69–71, 78
Taylor, J. 243
technology
four flow model of technostarters
46–7
ICT, see information and
communication technology
(ICT)
technological impact of innovation
policies 73–5
transfer 21

technostarters 31–3, 56
Cambridge phenomenon
active involvement of the
university 38–41
emergence of cluster 36–8
lessons from 41–3
four flow model 45–6
flow of entrepreneurs 47–8
flow of finance 48–53
flow of support 53–4
flow of technology 46–7
Leuven 43–5
link between start-ups and growth
33–4
MIT example 34–6
support 53–6
Teirlinck, P. 16

telecommunications sector, ICT use
131–2

Ttermunck Science Park 44
Tether, B.S. 10
Texas Instruments 35
Thrift, N. 89

Toshiba 39
training 87
transfer of knowledge, see knowledge
transfer
TTP 37
Twaalfhoven, B. 35

Un, C.A. 178
Unilever 39
United Kingdom 34, 103–4
knowledge transfer 85
universities 11, 89–93

factors influencing spatial
distribution of knowledge
transfer activity 96–100
spatial distribution of knowledge
transfer activity 93–6

see also Cambridge University
United States of America 34
Office of Science and Technology
Policy 62
Silicon Valley 48, 52
universities and higher education
institutions (HEIs) 6, 17–18,
20–21
information and communication
technology (ICT) use 130
knowledge transfer and 10–12, 86,
87, 89–91, 104–5
contacts with firms 93–4, 98
initial contacts 98
personal and professional
networks 99
requests for support from business
99
specific knowledge transfer
programmes 94
strategy adopted by universities
99–100
types of institution 94–6
public funding 91
regional innovation systems and
242–3
research and development (R&D)
public funding 91
research funds from business 92
spin-offs 8–10
student exchange 92–3

research funds from business 92
student exchange 92–3
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>technostarters 31–3, 56</td>
</tr>
<tr>
<td>Cambridge phenomenon 36–43</td>
</tr>
<tr>
<td>four flow model 45–54</td>
</tr>
<tr>
<td>Leuven 43–5</td>
</tr>
<tr>
<td>link between start-ups and growth 33–4</td>
</tr>
<tr>
<td>MIT example 34–6</td>
</tr>
<tr>
<td>support 53–6</td>
</tr>
<tr>
<td>Uyarra, E. 234</td>
</tr>
<tr>
<td>Valley of Death 51–2</td>
</tr>
<tr>
<td>Verbeek, A. 67, 71, 79</td>
</tr>
<tr>
<td>Verhoest, P. 122</td>
</tr>
<tr>
<td>Verspagen, B. 89</td>
</tr>
<tr>
<td>Veugelers, R. 10, 62</td>
</tr>
<tr>
<td>Vicente, M.R. 12</td>
</tr>
<tr>
<td>VIGC 64</td>
</tr>
<tr>
<td>Voyer, R. 244</td>
</tr>
<tr>
<td>Vyakarnam, S. 37</td>
</tr>
<tr>
<td>Wartenberg, Ludolf von 36</td>
</tr>
<tr>
<td>Wildeberger, A. 141</td>
</tr>
<tr>
<td>Wintjes, R. 15, 204, 214</td>
</tr>
<tr>
<td>Wissema, J.G. 44, 55</td>
</tr>
<tr>
<td>Wright, M. 8</td>
</tr>
</tbody>
</table>