Index

Abel, A.B. 196–7
Abowd, J. 312
absorptive capacity 116, 255, 267–8, 374
Academic Medical Centers (AMCs) 84, 90–96, 127
accelerator model 179, 180
access to information, policies to increase 391–2
access to knowledge, global 401, 407
access to technology, provision of 377–8, 392, 406–7
accountability 101, 138
accounting standards 187
Acemoglu, D. 311, 354
ACME computing facility 93
Acs, Z.J. 116, 225
adjustment costs 171, 172, 179
Adler, P. 344
advanced manufacturing technologies (AMTs) 329, 331–2
Advanced Technology Program (ATP) 100, 143
adverse selection 122, 211
Aerts, K. 211
affiliation-based trust 349
ageing populations 20
Aghion, P. 44, 52, 61, 119, 184, 282, 283, 304, 305, 311, 312, 339, 405, 417
agriculture
Common Agricultural Policy (CAP) 402
open source models applied to research in 342
R&D spending on 132, 133, 136, 137, 140
subsidies to 310
Ahn, S. 289
AIDS 165
Akerlof, G.A. 173
Alam, P. 174
Alderson, M.J. 177
Alfaro, L. 117
Allen, R.C. 333
Almus, M. 196, 204, 232
altruism 344, 346, 349
involuntary 361
American Association for the Advancement of Science 82, 139, 148
American Cancer Society 95
American Competitiveness Initiative 110
American Medical Association 156
Amin, A. 23
Anand, B.N. 184
‘angel’ investors 373
Angell, M. 159
anti-takeover amendments 175
Anton, J.J. 174
Apache 341
applied research
Europe’s performance in 302
share of, by US agencies 136, 139, 140
Arellano, M. 179
arm’s length financing 176, 177, 184, 186
Arora, A. 195
ARPANET 141
Arrow, K.J. 17, 50, 52, 56, 116, 131, 153, 154, 169, 193, 194, 195, 327, 371
Arundel, A. 216, 218, 225, 329, 331
Arvanitis, S. 239, 245, 246, 252, 255, 267, 268, 269, 273, 274
asset-augmenting foreign R&D 249
asset-exploiting foreign R&D 249
asymmetric contribution 348, 353
asymmetric information 173–4, 176, 178, 182, 184, 194, 196, 372–4, 392–3
Atomic Energy Commission 95
Audretsch, D. 103, 225
Auerbach, A.J. 177–8
Auerswald, P.E. 373
Austria
basic research expenditure 114, 115
productivity indicators 115
AUTM 68, 154
automated data collection 341
Avnimelech, G. 381
Baily, M. 117
Baily, B. 97
Baldwin, C.Y. 332, 339, 359, 360–61
Baldwin, J. 295
Bania, N. 120
Bank of England 182
Bank of Israel 382
bankruptcy 175
Baran, Paul 141
Barcelona 3% target for R&D investment 307, 310, 311, 317, 401, 407, 414
bariatric medicine 165
Barro, R. 118
Bartelsman, E. 289, 290, 291, 292, 293, 294, 295, 296, 297, 298
basic research 113–20
appropriability of 10, 15–16, 152–4, 156–8
definition of 119–20
economic views on 116–17
empirical pattern of 113–16
Europe’s performance in 302
evaluating impact in terms of health outcomes 149–52, 154–6, 157, 158, 165–6
financing of 10, 110, 118–19
economic rationale for NIH-funded basic research 148–58, 165–6
further issues for exploration 119
optimal amount of 117–18
share of, by US agencies 136, 139, 140
Baum, C.F. 211
BBN 141
Beckstead, D. 331, 332
Belderbos, R. 221
Bell, M. 25
Bell Labs model 188
Bénassy-Quéré, A. 118
Benkler, Y. 333, 337, 339, 340, 342, 352, 354, 358, 359, 361
Berg, Paul 92, 93
Bergemann, D. 176
Berkeley Software Design (BSD) license 353
Berlin Academy 88
Bernal, J.D. 89
Betker, B.L. 177
between-firm effect 297, 298, 299, 301
Bhagat, S. 181, 187
Bhaattacharya, S. 174
bibliometrics 103
‘big box’ retail format 300
‘big push’ strategy for development 60
Binswanger, H.P. 17
biochemistry 84, 91, 92, 93, 96
bioinformatics 128, 342
biology 235, 236, 243
biomedical sciences
breakthroughs from the realm of physics 85–96, 127–8
economic rationale for NIH-funded basic research 148–58, 165–6
open source models applied to 342
R&D expenditure on 81–4, 96, 128, 135, 140, 164
‘Biotech Valley’ 93
biotechnology 40, 59, 75, 185, 234, 242, 268–9, 363
Black, B.S. 186
Blair, M.M. 176
Blass, A.A. 176–7
‘Blind Giant Quandary’ 37, 42
Bloch, Felix 94
Bloom, N. 211, 316
Blostrom, M. 372
blue skies projects 56
Blundell, R. 220
Boeing 328
Bohnet, I. 349
Bohr, Niels 85
Bolton, P. 184
Boone, J. 312
‘bottom-up’ principle for allocating funds 231, 234, 242, 272
Bougeas, S. 181
boundary layer 100–101
bounded rationality 8, 40
Bowles, S. 344, 351
Boyd, R. 344
Boyle, J. 342
Bozeman, B. 101, 245
Bragg, Lawrence 86–90, 96
Bragg, William 86, 87
Branscomb, L.M. 373
Braun, D. 97
Brazil, peer production in 343
Brennais, D. 106
Bresnahan, T.F. 58, 59, 393
bridging organizations 40
broadband penetration 316, 377–8
Brown, A. 97
Brown, George 99
Brown, W. 181
Buckley, P.J. 261
budget constraints 73
budget federalism 309
Bulán, L.T. 211
Bush, V. 131, 135, 157, 163
Bush social contract 135, 138
business services 236
Butzen, R. 197
Cabagnols, A. 221
CAD systems 329, 331–2
Cahuc, P. 312
Caliendo, M. 246
Cambridge University (UK) 85, 89; see also Cavendish Laboratory
Camerer, C.F. 344, 352, 354
Canada
entry size in 295
expenditure on mission-oriented R&D 133
expenditure on non-mission-oriented R&D 134, 135
percentage of population with university degree 82
survey of user-centered innovation in 331–2
Canadian Survey of Innovation 218
cancer treatment 95–6, 144, 165
Cantwell, J. 23, 249
capabilities development 25
capability accumulation, failures in 35, 40, 41
capital gains tax 178, 182
capital market imperfections 17, 181, 196
capital structure 176–7
carbon taxes 142
Cardenas, J.C. 344
cardiocvascular disease 150–52, 158, 165–6
Carruth, A. 197, 211
Cassiman, B. 221
Casson, M.C. 261
catastrophes 67
catch-up, structural conditions necessary for 282, 311
Catozzella, A. 221
Cavendish Laboratory 85, 86–7, 89–90, 96, 127
Caves, R. 289
Cefis, E. 223
central coordination policies 40–41
Centre for European Economic Research 199
Centrino chip 384
CERN 140
channel neutrality 334
Chatterji, A.K. 330
chemical production processes 329–30
Chen, Z. 312
China
basic research expenditure 114, 115
productivity indicators 115
Cho, S. 175
Chubin, D. 106
Chung, K.H. 177
churning process 289, 290, 296, 318–19
Cimoli, M. 35
Clark, K.B. 332, 339, 359, 360–61
classical model of international trade and investment 248
client-led innovation services 289, 300
climate change 20, 29, 407; see also global warming
clinical trials 152, 158–9
Clinton, William Jefferson 146
cluster analysis 250, 252, 266
cluster-oriented policies 269
clustering 22–3, 59, 268
coopayments 122–3
Cockburn, I. 417
Coe, D.T. 117, 372, 374
Cohen, I. 103, 374
Cohen, W.M. 26, 116, 195, 208, 255, 340
Cohendet, P. 23
Cold War 140, 144
Cole, S. 103
collaborative user-centered innovation 332–3, 359, 405
conditions favorable to 333, 339
policies to support 333–5, 341, 362–4
collateral 177, 178, 196, 392–3
Colyvas, J. 97
Comin, D. 386–7
Commission of Technology and
Innovation (CTI) coaching support programs 276
Commission of Technology and
Innovation (CTI) subsidies ‘bottom-up’ principle of support 231, 234, 242
selection of projects 231
testing for impact on innovation 231–46
appendix 243–5
database 233–4, 243, 244
matched pairs analysis 231–2, 236–9
patterns of CTI promotion 234–6, 237
results 232, 239–42
summary and implications for Swiss technology policy 242–3
Commission of the European
Communities 29
Common Agricultural Policy (CAP) 402
Common Consolidated Tax Base 321
common pool problems 55
commons-based peer production advantages of 339
applications other than software development 341–2
boundaries of 359–60
broader research agenda on systems design for cooperation 343–53
coexisting with proprietary production 362
commons-based production defined 337
conclusion 353–4
in context of patent and copyright systems 339–41
in developing economies 342–3
involuntary altruism or preferences for fairness? 360–62
motivations for 338–9
peer production defined 338, 359
policies to support 341, 362–4
see also collaborative user-centered production
commons-based production definition of 337–8
see also collaborative user-centered production; commons-based peer production
communication 346, 347, 348
Community Innovation Surveys 199, 215–25, 269
direct use for innovation policy 216–19
launch in Europe 215
measures provided by 215–16
purposes of 216
questionnaires 218
sampling procedure 218
sources of innovation in 331, 359
use to increase understanding of innovation 219–23
complementarities in innovation strategies 221
dynamics of innovation 223
innovation policy 222–3
R&D–innovation output–productivity relationship 219–21
Community Lisbon Program (CLP) 321, 322, 323
Community Patent Regulation 321, 322
Company Law Directive 321
comparative advantage, sources of 20
competence traps 35–6
competition policy 113, 304, 320, 363
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>competition versus cooperation</td>
<td>411–12</td>
</tr>
<tr>
<td>competitive analysis</td>
<td>25</td>
</tr>
<tr>
<td>competitiveness agenda</td>
<td>19–20</td>
</tr>
<tr>
<td>Competitiveness and Innovation Framework Programme</td>
<td>307</td>
</tr>
<tr>
<td>complementary assets</td>
<td>39</td>
</tr>
<tr>
<td>computer industry</td>
<td>38, 41, 42, 66</td>
</tr>
<tr>
<td>computer literacy</td>
<td>389, 392</td>
</tr>
<tr>
<td>computer science</td>
<td>138, 139</td>
</tr>
<tr>
<td>computerized tomography (CT)</td>
<td>scanner 85, 94</td>
</tr>
<tr>
<td>conglomeration</td>
<td>62</td>
</tr>
<tr>
<td>Connell, D.</td>
<td>305</td>
</tr>
<tr>
<td>construction technology</td>
<td>235, 236, 243</td>
</tr>
<tr>
<td>contract theory</td>
<td>123</td>
</tr>
<tr>
<td>control rights</td>
<td>184, 185</td>
</tr>
<tr>
<td>convertible preferred securities</td>
<td>184</td>
</tr>
<tr>
<td>Conway, P.</td>
<td>300, 320</td>
</tr>
<tr>
<td>Cook-Deegan, R.</td>
<td>155</td>
</tr>
<tr>
<td>Cooke, P.</td>
<td>22</td>
</tr>
<tr>
<td>cooperation</td>
<td>definition of 345–6</td>
</tr>
<tr>
<td>coordination failure</td>
<td>17, 20, 43, 50</td>
</tr>
<tr>
<td>cyclotron</td>
<td>97</td>
</tr>
<tr>
<td>creative commons licenses</td>
<td>341</td>
</tr>
<tr>
<td>creative destruction</td>
<td>282, 283, 289–302,</td>
</tr>
<tr>
<td></td>
<td>318–20, 386, 401,</td>
</tr>
<tr>
<td></td>
<td>405</td>
</tr>
<tr>
<td>cyclic effect</td>
<td>297, 298, 299</td>
</tr>
<tr>
<td>crowding out</td>
<td>183, 196, 222, 347,</td>
</tr>
<tr>
<td></td>
<td>351–2, 354</td>
</tr>
<tr>
<td>Darby, M.</td>
<td>110</td>
</tr>
<tr>
<td>DARPA, see US Defense Advanced Research Projects Agency (DARPA)</td>
<td></td>
</tr>
<tr>
<td>data collection</td>
<td>108</td>
</tr>
<tr>
<td>Database Directive</td>
<td>341</td>
</tr>
<tr>
<td>David, P.A.</td>
<td>17, 21, 37, 42, 52,</td>
</tr>
<tr>
<td></td>
<td>55, 58, 62, 65, 68,</td>
</tr>
<tr>
<td></td>
<td>149, 183, 188, 196,</td>
</tr>
<tr>
<td></td>
<td>212, 404, 413</td>
</tr>
<tr>
<td>delayant financing</td>
<td>177, 178, 181, 185,</td>
</tr>
<tr>
<td></td>
<td>186, 274</td>
</tr>
<tr>
<td>Deci, E.L.</td>
<td>350</td>
</tr>
<tr>
<td>decreasing marginal costs</td>
<td>52–3</td>
</tr>
<tr>
<td>defense</td>
<td>procurement programs 138–9, 140,</td>
</tr>
<tr>
<td></td>
<td>141, 145, 164</td>
</tr>
<tr>
<td>R&D spending on</td>
<td>132, 133, 135–8,</td>
</tr>
<tr>
<td></td>
<td>139, 143, 144</td>
</tr>
<tr>
<td>commercial spinoffs from</td>
<td>138,</td>
</tr>
<tr>
<td></td>
<td>140–41, 142</td>
</tr>
<tr>
<td>delayed vesting</td>
<td>184</td>
</tr>
<tr>
<td>Delgado, J.</td>
<td>306</td>
</tr>
<tr>
<td>Delphi studies</td>
<td>19</td>
</tr>
<tr>
<td>demand pull</td>
<td>220</td>
</tr>
<tr>
<td>demand-related policies</td>
<td>142</td>
</tr>
<tr>
<td>demonstration effects</td>
<td>in the diffusion</td>
</tr>
<tr>
<td></td>
<td>of innovations</td>
</tr>
<tr>
<td></td>
<td>386–7</td>
</tr>
<tr>
<td>demonstration method for evaluating</td>
<td>technology-based programs 103–4</td>
</tr>
<tr>
<td>Court of First Instance</td>
<td>363</td>
</tr>
<tr>
<td>CRAFT program</td>
<td>306</td>
</tr>
<tr>
<td>creative commons licenses</td>
<td>341</td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Denmark, employment in small firms in 291</td>
<td></td>
</tr>
<tr>
<td>depreciation 172, 178</td>
<td></td>
</tr>
<tr>
<td>developed countries, innovation policy challenges in 401–2</td>
<td></td>
</tr>
</tbody>
</table>
Index

endoscopy 85
energy policy, European 304, 322
energy procurement programs 142
energy technology R&D 66–7, 132, 133, 136, 137, 407
energy use patterns 22
Eng, L. 175
Engel, D. 185
English language 389, 392
Enlightenment 387
Enos, J.L. 329
Enterprise Fund 182
entrepreneurial academic activity 91–2, 93
entrepreneurship, conditions for 413–14
entry effect 297, 298, 299
entry rate 294, 301
entry size 294–5, 301
entry to system, ease of 346, 348, 352
environmental policy 68
equilibrium feedback effects 119
equity financing 176–7, 178, 185, 186, 304, 306, 381
Ergas, H. 35, 41, 145
ESEE survey 224–5
EU Database Directive 341
EU Framework Programs 100, 101, 307, 407
EU Services Directive 306, 321
Euler equation 179–80
Europe
venture capital industry in 183, 184, 185
see also European Union
European Bank of Investment (EBI) 308
European Coal and Steel Community 402
European Commission 18, 97, 284, 289, 308, 312, 363
European Council 284, 304, 308, 310, 403
European Innovation Scoreboard (EIS) 216, 217, 272, 316–17
European Institute of Technology 28
European internal market 292, 301, 304, 305, 321, 322
European paradox 302
European Parliament 306
European Patent Office 317
European Research Area 29
European technology gap 281–312, 315–23
basic statistics on 281–2
creative destruction process and 282, 283, 289–302, 318–20
diagnoses from literature 282
difficulties in formulating economic policy recommendations 282–3
innovation deficit in EU 316–19
sectoral locus of 284–9
based on ICT usage 283, 284–6, 300–301, 316
based on patterns of innovation 283, 285, 286–9, 301
structural policies implications
complementary structural policies to improve creative destruction process 302–8, 320–23
implementation level 308–11
European Telecommunications Standards Institute (ETSI) 38
European Union
employment rate in 281, 315
export market shares of 303
funding instruments 307
GDP growth in 315
heterogeneity within 282–3, 311
ICT firms located in 303
innovation surveys in, see Community Innovation Surveys
productivity differences between US and, see European technology gap
R&D investment in 307–8
shift from industrial policy to ‘knowledge’ policy in 402–4
territorially based research networking strategy of 407
world market shares in ICT sectors 303
Eurostat 215, 315
eurozone 281, 283, 310–11
evaluation of R&D programs 101–9, 122–5, 144, 145, 232
evergreening 13, 14
evolutionary biology 344, 349
evolutionary theory compared with neoclassical theory 7–12, 21, 74–5

econometric models and 16 evolutionary failures 34–9
and motives for innovation 22
pharmaceuticals technology policy in context of 15
role of variety in 21–2, 36–8
and STIG systems 47
exit effect 297, 298, 299
exit from system, ease of 346, 348, 352
exit rate 294, 301
expandability option 196, 197
experimental economics 343–4, 349–50, 351, 352, 361
exploration–exploitation trade-off 36
export market shares 303
export-oriented versus local market-oriented innovation 376–9, 383
external capital, cost of, relative to internal funding 170
economic theory explaining 173–8
testing for financial constraints 178–82, 196
external knowledge inputs 255, 257–8, 263, 264, 265
external plausibility check 252
externalities generated by R&D 8, 10, 15, 195
appropriability problem due to 54, 56–7, 193–4, 195, 371–2
in developing economies 369, 374, 376, 385–8
demonstration effects in the diffusion of innovation 386–7
emulation and positive-sum norms in historical perspective 387–8
post-innovation competition 385–6
international research spillovers 116–17, 118, 372
from mission-oriented R&D programs 135
from open science 56–7
welfare-enhancing effects of 153–4, 170, 193–4

Fabrizio, K. 330
FACS (fluorescence activated cell sorter) 93–4, 127
fairness 346, 347, 349–50
Falk, A. 351
Fazzari, S.M. 179, 180
Federal Department of Energy 95
Fehr, E. 344, 350, 351, 353, 354
Feller, I. 103, 107, 109, 110, 354
Fier, A. 232
Figueiredo, P.N. 29
Financial Accounting Standards Board (FASB) 187
financial constraints on Swiss companies 274–6
testing for 178–82, 196
Finland, venture capital industry in 185
firm demography 290–94, 301
firm size
distribution in Europe and US 290–94, 301
and financial constraints 274
and foreign R&D 256–9, 261, 262, 263, 264, 265, 267–8
and propensity for innovation 267–8, 273
fiscal competition 118
Flamm, K.J. 17, 145
flat panel display industry 22
Fleming, D. 97
flexi-security regime 306
flexibility of public policy 41–2, 72
Florida, R. 249
flow cytometry 94
fluorescence activated cell sorter (FACS) 93–4, 127
Folini, M. 3
Foray, D. 404, 416
foreign direct investment (FDI) spillovers from 117, 118, 372
see also Swiss firms, foreign R&D strategies of
Foster, L. 286, 289, 300
Framework Programs 100, 101, 307, 407
France basic research expenditure 114, 115, 118
cash flow effects on R&D in 180–81
central system coordination in 41
entry, exit and turnover in 294, 295–6, 299
expenditure on mission-oriented
R&D 133
expenditure on non-mission-oriented
R&D 134, 135
firm size distribution in 291, 293, 294
percentage of population with
university degree 82
productivity indicators 115
Francis, J. 175
Franke, N. 328, 329, 332, 339
Franklin, Rosalind 87, 89
Fransman, M. 37
Frascati Manual (OECD) 27, 132
free-riding 361
Freeman, C. 20, 329–30
Frey, B.S. 349, 352
Friend, I. 187
Frolich, N. 344
Frost, T.S. 249
Funk, M. 117
Fuss, C. 197
Gächter, S. 351, 352
Galetovic, A. 184
Galileo 307
Gambardella, A. 416
Gambetta, D. 350
game theory 66, 77, 349, 360–61
Gamota, G. 103
Gassler, H. 110
gateway technologies 38
Gault, Fred 331
Gelins, A. 90
gene-cultural co-evolution 344
GATT 402
General Agreement on Tariffs and
Trade (GATT) 402
General Public License (GPL) 341, 353
General Purpose Technologies (GPTs)
58–60
in developing economies 367, 369, 374–6
genetics 84, 91, 92, 93, 96
Georgiou, L. 245
German Ministry for Education and
Research 73
Germany
basic research expenditure 114, 115
biotechnology debate in 75
cash flow effects on R&D in 180, 181
entry, exit and turnover in 299
expenditure on mission-oriented
R&D 133
expenditure on non-mission-oriented
R&D 134, 135
firm size distribution in 291
government funding for start-up firms in 182
matching methods used to evaluate
technology programs in 232
productivity indicators 115
scientific culture in 88
venture capital industry in 185
Geroski, P. 223, 224, 295
Gersbach, H. 117, 118, 119, 120
Ghosal, V. 211
Ghosh, R.A. 338, 354, 406
Gibbons, M. 138
Gilson, R.J. 186
Gintis, H. 344, 351, 354, 361
Ginzberg, E. 90
Ginzton, E.L. 95, 97
Glennerster, R. 210
global division of labor 20
Global Summary Innovation Index 216–17
global warming 54; see also climate change
globalization 344, 367, 376–7, 403–4, 409, 410, 411
GNU/Linux system 341
goals of technology policy 17–18, 412–15
Goel, R.K. 197–8
Goldberg, I. 394
Goldfarb, B. 97
Gompers, P.A. 185
González, X. 196, 225
Gordon, R. 281, 300
Gorecki, P. 295
Görg, H. 196, 232
governance of the commons 344
graduate students, role in innovation 108
Granovetter, M.S. 23
Granstrand, O. 249, 251
granularity 333, 339, 352, 362
Greenberg, D. 156
Greenstein, S. 17
Griffith, R. 220, 304, 305, 311
Griliches, Z. 146, 170, 386
Grokster decision 341
Gross, C.P. 155
gross turnover rates 295
Grossman, G.M. 370
Hackett, E. 106
Hagedoorn, J. 29, 255
Guston, D.H. 135
Haslam, S.A. 349
Hélder, C. 329
Herzenberg, Leonard 93, 94, 97
Herzenberg, Leonore 93
Herzenberg Laboratory 93–4
high-risk research proposals 107
higher education, see tertiary education
Himmelberg, C.P. 178, 180
Hitler, Adolf 88
Hobijn, B. 386–7
Hochschulen 88
Hodgkin, Dorothy 89
Hodkin's disease 95–6
Hoffman-La Roche 272
Hollander, A. 304
Hollenstein, H. 217, 255, 258, 259, 261, 267
home-country effects of foreign R&D
direct effects 266–7
indirect effects from knowledge spillovers 266, 267–8
homophily 349
Hope, J.E. 354
Howitt, P. 52, 61, 119, 312, 405
Huber, R. 246
Huergo, E. 225
human capital
access to 249, 253, 263, 265, 266, 267
knowledge embedded in 171, 177
see also skill shortages
human capital intensity 255, 259, 268
human cooperation, systems design for 343–53
human genome, sequencing of 157
humanization 346, 347, 349
Hussinger, K. 196, 204
Hyttinen, A. 196
Iammarino, S. 23
IBM 42, 384
ICQ 382
idiosyncratic competences 39
Ifo Institute for Economic Research 224
imitation 386, 406
cost of 169
and positive-sum norms 387–8
imperfect capital markets 17, 181, 196
import substitution 60
inaction, dangers of 67–8
incomplete contracts 184
incomplete markets 173
incubators 380
India 389
industrial dynamics 25, 27, 283, 289–302, 318–20
complementary structural policies to improve 302–8, 320–23
in developing economies 386
industrial policy
in emerging countries 402
in Europe 303
shift from industrial to ‘knowledge’ policy 402–4
Industrial Revolution 387
infant industry argument 17, 22
inflation rate 198
information, policies to increase access to 391–2
information and communication technologies (ICT)
adoption in developing economies 375–6, 377–8
CTI support for projects in 234, 235, 236, 243
development by commercial sector 128
development in Israel 379–85, 396–7
and global access to knowledge 401
government role in coordinating 66
to impart basic skills 389
location of top ICT firms 303
‘mass customization’ provided by 377
R&D intensity of ICT firms 317–18
regulatory barriers and diffusion of 299–300, 320, 321
sectoral differences in usage of 283, 284–6, 300–301, 316
world market shares in 303
informational effects 386
initial public offerings (IPOs) 185–6, 381
innovation complementarities 50, 59–60, 369, 376, 383
innovation in innovation 404–5
innovation indicators 255, 256, 263, 264, 265, 316–17
innovation inputs 215, 255, 256, 263–4, 265, 317
innovation outputs 215, 255, 256, 263, 264, 265, 317
R&D–innovation output–productivity relationship 219–21
innovation surveys 215–25
direct use for innovation policy 216–19
launch in Europe 215
measures provided by 215–16
purposes of 216
questionnaires 218
sources of innovation in 331–2, 359
use to increase understanding of innovation 219–23
complementarities in innovation strategies 221
dynamics of innovation 223
innovation policy 222–3
R&D–innovation output–productivity relationship 219–21
see also Community Innovation Surveys; Swiss Innovation Survey
innovative firms, proximity to 249, 253, 263–4, 266
Institute of Medicine 148, 155
institutional failures 51
institutional investors 175, 275, 276
institutional mechanisms, evolution of 61–4
instrumental variables 179, 188
integrated circuits 139
integration policy 268
Intel 384
interdisciplinary research 84, 87, 96, 102, 106, 107, 127
interfaces, access to 334, 359, 362–3
internal financing of R&D 178, 187, 196, 274, 373
internal life of the firm 49
Internal Market Program 322
internalizing advantages (I-advantages) 249, 252, 261, 263, 264, 265
International Haplotype Mapping project 342
international research spillovers 116–17, 118, 372
international trade liberalization 402
Internet 375, 401
 access in developing countries 377–8, 392
 architecture of 65
 communications cost reduced by 333, 361
 development in US 140–41
 government funding for access to 334
 learning via 389
Internet browsers 363
intertemporal knowledge spillovers 52
investment in R&D
 Barcelona 3% target for 307, 310, 311, 317, 401, 407, 414
 characteristics of 170–71
 costs of financing 169–88
 government support for, see R&D subsidies
 and innovation 28
 under uncertainty 193–212
 financing difficulties arising from 171, 173, 184, 194, 196
 patent policies and 194–5, 198–9, 200, 202, 204–8, 209, 210
 real options approach to 194–5, 198, 200, 202, 204, 205, 210
 relationship between uncertainty and investment 196–8
 subsidies and 194–5, 196, 198–9, 200–204, 208, 209, 210–11
involuntary altruism 361
Ireland
 basic research expenditure 118
 cash flow effects on R&D in 181
 matching methods used to evaluate technology programs in 232
 irreversible capital 194, 197, 198
Irvine Foundation 95
isotope tracer techniques 86
Israel, development of High Tech sector in 379–85, 396–7
 accounting for dual economy 383–5, 396–7
 innovation policies 379–81
 outcomes 381–2, 396
Israel Ministry of Industry and Trade 379–80
Italy, firm size distribution in 291
Jacobs, B. 312
Jacobsson, S. 182
Jaffe, A.B. 66, 107, 116, 149, 188
Japan
 basic research expenditure 114, 115
 cash flow effects on R&D in 181
 catching-up policy in computer industry in 42
 expenditure on mission-oriented R&D 133
 expenditure on non-mission-oriented R&D 134
GDP growth 315
 productivity indicators 115
 publications in life sciences in 81
 venture capital industry in 185–6
 ‘vision’ of government policy in 37, 43
 world market shares in ICT sectors 303
Jaumandreu, J. 225
Java 363
Jege, R. 352
Jensen, M.C. 174
Johnson, J. 360
Johnston, M.S. 175
Joint Technology Initiatives 28
Jones, C.I. 371
Jorgenson, D.W. 376
Kadiyala, S. 150, 151, 152
Kaplan, Harry 91, 92, 93, 94–5
Kaplan, S.N. 126, 184
Karaomerliolu, D.C. 182
Kealey, T. 116
Keller, W. 117
Kendrew, John 86
Keniston, K. 135
Kennedy Center for Molecular Medicine 92–3
Kennedy Foundation 92
Kevles, D.J. 95, 97
Kleinman, D.L. 157
Kleinrock, Leonard 141
Klette, T.J. 66, 188, 196, 245
Kline, S.J. 20–21
Klug, A. 97
knowledge, global access to 401, 407
 ‘knowledge’ policy, move towards 402–4
knowledge-seeking foreign R&D 248–9
knowledge transfer to headquarters
253, 263–4, 266–7
Kok, W. 282, 284, 308, 312
Kok High-Level Group report 308, 311
Kokko, A. 372
Konle-Seidl, R. 312
Kopeinig, S. 246
Kornberg, Arthur 92, 93
Kornberg, Roger 93
Kortum, S. 109, 185
Kraft, K. 177
Kremer, M. 282, 284, 308, 312
Kremp, E. 220
Krug, Charles 97
Krugman, P. 407
Ku, H.H.P. 187
Kulatilaka, N. 211
Kuznets, S. 25–6
Kyoto Prize 94
Labeaga, J.M. 221
labor market reform 304, 305, 306–7,
309, 311, 315, 320, 321, 322
Lach, S. 171, 196
Lachenmaier, S. 224
Lakhani, K. 354
Lamont, M. 106
Lang, H.H.P. 187
Langlois, R.N. 138
Lanjouw, J.O. 208
Lasers 86
late industrialization 18
Laudel, G. 106
Le Bas, C. 221, 223, 249
late times 39
lead users, innovations by 328
leadership 346, 348, 352–3
Leahy, J.V. 211
Leamer, E. 104
leaf-frogging 18, 282, 311
learning failures 35, 40, 41
Lecuyer, C. 97
Lederberg, Joshua 92–3
Leiponen, A. 221
Leland, H.E. 172
‘lemons’ premium 173–4, 177, 181, 184
Lenoir, T. 97
Lensink, R. 197, 211
Lerner, J. 182, 183, 185, 341, 354, 361
Leslie, S.W. 140
Lettl, C. 330
leveraged buyout (LBO) 174, 176
Levin, R.C. 26, 39, 169, 340
Levinthal, D.A. 116, 374
licensing 15, 340–41, 353, 363
Licht, G. 196
Lichtenberg, F. 117, 139, 152, 155, 160
life sciences
breakthroughs from the realm of
physics 84–96, 127–8
publications in 81, 84
R&D expenditure on 81–4, 96, 128
Likert scales 106, 251, 253, 256, 258,
259, 261
linac technology 95
linear accelerators 86
linear model 19–20, 23
liquidation costs 177
liquidity constraints, testing for
178–82, 196
Lisbon Agenda 28–9, 216–17, 284,
307, 308, 310, 311, 315, 321–3,
403, 414
Lisbon Summit (2000) 281, 308, 321
Litan, R.E. 176
literacy 389
literature-based innovation indicators
225
loans for R&D 380
local market-oriented versus export-
oriented innovation 376–9, 383
localization studies 22–3
location-specific advantages
(L-advantages) 249
location-specific disadvantages
(L-disadvantages) 252, 260–61,
263, 264, 265
lock-in 21, 35–6, 50, 65
Loungani, P. 211
Lowen, R.S. 140
Lumme, A. 185
Lundvall, B.-A. 20
Luria, Salvador 86
Lüthje, C. 328, 329
MacCoby, M. 352
MacDuffie, J.P. 352
machinery and apparatus construction
234, 235, 236, 243
macroeconomic growth models 47
macroeconomic policies 113
Magnet Program 380
magnetic resonance imaging (MRI) 86, 94, 127, 377
mainframes 41, 42
Mairesse, J. 187, 206, 220–21
Majumdar, S.K. 175
Majewski, S.E. 185
Malerba, F. 21, 35, 36, 44, 75, 76–7, 223, 362
Mallard, G. 106
management practices, quality of 316
Manly, B.F.J. 252
Mannheim Innovation Panel (MIP) 199
Mansfield, E. 152, 169, 327, 340, 386
Manufacturing Extension Partnership (MEP) program 100
manufacturing sector
entry, exit and turnover in 294–9, 301–2
ICT usage in 284–6, 300–301
patterns of innovation in 285, 287–8, 301
size distribution of firms in 291–4, 301
Marberger, J. 101, 103
Marco, A.C. 211
marginal product of capital 172, 173, 179
marginal profit condition 172, 173, 179
marginal social rates of return 54, 57
market concentration 256, 259, 264
market growth, medium-run 255, 258, 263, 264, 265
market interest rate 179–80
market failure
appropriability problem and 52–4, 56, 193–4, 195, 371–2
and funding gap 170, 172, 186, 371, 372–4
and mission-oriented programs 131, 132, 135, 141, 142, 145, 163
neoclassical economics and 9–11
and public support of basic medical research 152–4, 156, 157, 158, 165
and public support of clinical research 159
uncertainty and 195, 210
market-oriented foreign R&D 248, 249, 253, 254, 264–5, 266
Marmet, D. 274
Martin, B.R. 99, 104, 145
Martinez-Ros, E. 221
Maskin, E. 55
Massachusetts Institute of Technology (MIT) 141, 390
matched-pairs analysis 231–2, 236–9
material sciences 235, 236, 243
Matsuyama, K. 66
Maurer, S.M. 342
Mazzoleni, R. 108, 211
McClellan, M. 150, 152, 159
McGeary, M. 155
McGuckin, R. 312
McPherson, M. 349
Meckling, W. 174
medical device patents 330
Medical Research Council 84, 87, 89, 95
medical sciences
breakthroughs from the realm of physics 85–96, 127–8
economic rationale for NIH-funded basic research 148–58, 165–6
open source models applied to 342
R&D expenditure on 81–4, 96, 128, 135, 140, 164
see also health
MedTech program 231
Merges, R. 153
merit reviews 102, 105–7, 138, 144, 145, 155–6, 157
Metcalfe, S. 17, 33, 35
microelectronics 235, 236, 243
Microsoft cases 363
microwave linear accelerators 95
Miller, M.H. 172
Minton, B.A. 211
Miravete, E. 221
mission-oriented R&D 17, 66–7
defining and measuring investment in 132–8
economic effects of 138–41
economic rationale for NIH-funded basic research 148–58, 165–6
economic rationale for NIH-funded clinical research 158–9

Dominique Foray - 9781848449169
Downloaded from Elgar Online at 08/13/2019 10:46:57PM via free access
economic theory and 131–46, 163–4
policy implications 142–4
‘mixed’ foreign R&D strategies 250,
253, 263–7
mobility of R&D personnel 97, 110,
193, 310, 323, 372, 390–91
modalities of innovation 215, 216
Mode 2 R&D 138
Modigliani, F. 172
Modigliani–Miller theorem 172–3
modularity 333, 339, 352, 359–60, 361, 362
Moed, H. 103
Moen, J. 66
Mohnen, P. 126, 221, 222
Mokyr, J. 369, 387
molecular biology 85, 86, 87, 92–3, 96,
127, 128
money 351–2
Monjon, S. 223
Monte Verità 1, 3
Moore, B. 185
Moore’s Law 375
moral hazard, financial difficulties
arising from 174–6, 182, 184, 393
Morange, M. 85, 86, 87, 88
Morgan, K. 22
Morrison, P.D. 329
mortality by cause of death 150, 151
Moses, H. 148
motives for innovation 22, 26–8, 76
Motorola 384
Mowery, D.C. 17, 27, 29, 36, 41, 67,
138, 140, 146, 154, 158, 207, 342,
416, 417
MRC Unit for the Study of Molecular
Structure of Biological Systems
(later Laboratory of Molecular
Biology) 89
Mullay, B. 180
Muller, H.J. 86
multinational enterprises (MNEs) 217,
264, 269, 384, 403, 410–11
multiple imputation 252
Mundell, R.A. 248
NACE 202
Nagarajan, A. 175
nanotechnology 59, 63, 128, 234, 235,
236, 242, 243, 268–9
‘Narrow Policy Window Paradox’ 37
Narula, R. 248, 249
NASA 93, 144
NASDAQ 187, 381
Nathan, D.G. 158
National Academies-Institute of
Medicine 102
National Academies-National
Research Council 102, 105, 106,
108
national champions 41, 403
National Institute of Standards and
Technology (NIST) 38
National Institutes of Health 148
allocation processes of 105, 106, 124,
154–7, 154–6
budget of 82–4, 144, 307
clinical research funded by 152,
158–9
economic effects of mission-oriented
spending by 142
economic rationale for NIH-funded
basic research 148–58, 165–6
funding metrics used by 101
grants for linac technology 95
impact on orientation of medical
schools 90
parent agency of 139
percentage of federally funded R&D
 supplied by 140
public support for mission of 128
responsible for funding basic
biomedical research 12, 148
National Reform Programmes (NRPs)
308, 310, 321, 322, 323
National Research Council 141, 188
National Science Board 84, 120, 132,
133, 134, 136, 137
National Science Foundation (NSF)
97, 105, 109–10, 132, 135, 136,
137, 145, 334
national security 66, 141
National Semiconductors 384
national systems of innovation (NSI)
20–21, 75–6, 107–9, 138, 140, 145,
403–4
Nazi party 88
NBER, The Rate and Direction of
Inventive Activity (1962) 410,
414

neoclassical theory
compared with evolutionary theory 7−12, 74−5
econometric models and 16
and STIG systems 47
NESTI/WPIA Innovation Microdata project 220
net entry 294
net entry effect 298, 301
Netscape 363
network externalities 60, 64−5, 362, 386
neuroeconomics 344
neuroscience 349
‘neutral’ government policies 379, 383
new technology based firms (NTBFs) 21
New York Times 97
niche technologies 29
Nicoletti, G. 300, 320
Nixon, Richard 144
NMR spectroscopy 94
Nobel, R. 248, 250
Nobel Foundation 88
Nobel Prize winners 86−7, 89, 92, 93, 94, 96, 97
non-excludability 53, 116, 338, 359
non-price competition, intensity of 255−6, 259, 264
non-rival usage 10, 15, 52, 53, 116, 120, 169, 332, 359
normative perspective 75−6, 77
norms 346, 347, 350, 386
positive-sum 387−8
North, Douglass 74
Norway
basic research expenditure 114, 115
productivity indicators 115
Novartis 272
Novy-Marx, R. 194, 211
Nowak, M.A. 344
nuclear magnetic resonance (NMR) 94
nuclear physics 89, 95, 140
numeracy 389
Nunan, C.S. 97
Nurske, Ragnar 60
Nuvolari, A. 405

O’Mahony, M. 284, 285, 287, 288, 312
O-ring technology 360
O’Sullivan, M. 317
OCM mechanism 308, 309, 310
OECD, see Organization for Economic Co-operation and Development (OECD)
off-patent drugs 159
Office of Management and Budget’s Performance Assessment Rating Tool (PART) 101−2
Office of Science and Technology Policy 103
oil refining 329
OLI paradigm 249, 250, 251, 252, 253, 255
oligopoly 385−6
open archiving and libraries 342
open interfaces 334, 359, 362−3
open method of coordination (OCM) 308, 309, 310
open science regime 56−7, 342
co-existence with proprietary R&D regime 57−8
open scientific publication 342
open source educational materials 342
open source software innovation 337, 352, 405
advantages of 332−3, 339
co-existing with proprietary production 362
in developing nations 342−3
ecological effects of patents on 340−41
features of 359−60
leadership emphasized in study of 352−3
licensing of 341
motivations for 338−9
policy questions 362−4
open standards 334
Opler, T.C. 176
Oppenheimer, J.A. 344
opportunistic capture 19, 62, 75−6
optimal number of R&D personnel 412−13
option value 194, 198, 210, 360, 361
options-theoretic approach 68
Organization for Economic Co-operation and Development
(OECD) 48, 81, 102, 114, 119–20, 131, 142, 163, 182, 197, 220, 245, 268, 298, 321, 322, 383, 403

Frascati Manual 27, 132
Oslo Manual 27, 215, 224
organizational culture 64
organizational design 63
organizational innovative services 289
organizational psychology 349
organizational sociology 349, 352
‘orphan’ drugs 14
Orsenigo, L. 223
Oslo Manual (OECD) 27, 215, 224
ostracism 344
Ostrom, E. 344, 350, 354
Owen-Smith, J. 58, 342
ownership-specific advantages (O-advantages) 249, 252, 255–9, 263–4, 264, 265
packet switching 141
Pakes, A. 195
Palo Alto 91, 94, 95
Panofsky, Wolfgang 95
Papanastassiou, M. 249
Pareto distribution 171
Pareto optimality 9–10
Parigi, G. 211
partial equilibrium analysis 109, 123
Patel, P. 249
patent applications in the EU 317
patent citation analysis 103
patent protection
for basic research 10, 15–16, 153–4, 156–8
changes to system 64, 68, 143, 153, 154
for clinical trials data 159
and collaborative user innovation 334–5
for commercial products 10
commons-based peer production in context of 339–41
in developing countries 390
effectiveness in appropriating returns 57, 153–4, 157–8, 194, 195, 372
and effects of uncertainty on R&D investment 194–5, 198–9, 200, 202, 204–8, 209, 210
European 306, 321, 322
evolution of system of 63, 64
excessive amount of 412
link with innovation 26–7, 38–9, 77, 177
for pharmaceutical companies 13–15
technology trajectories indicated by 24, 25
welfare losses from 57, 153–4, 158
patent races 55
patents filed by Israeli inventors 382
patents filed by user-inventors 330
path-dependency 21, 37, 48–9, 50
patterns of innovation, sectoral differences in 283, 285, 286–9, 301
Pavitt, K. 25, 42, 283, 285, 286, 287, 330
Pearce, R.D. 249
pecuniary externalities 309–10
peer production, see commons-based peer production; see also collaborative user-centered innovation
peer reviews 102, 105–7, 138, 144, 145, 155–6, 157
Peeters, C. 187
pension funds 175, 275, 276
pension rights 321
performance measurement 101
Pernias, J. 221
Perotti, E.C. 211
persistence in innovation 223
personal computers 42
personal income tax 178
Perutz, Max 86, 87–8, 89
Peters, B. 223
Petersen, B.C. 178, 180
pharmaceuticals 12–15, 152
Phelps, E. 304, 312
Philips, D. 89, 90
physical capital investment under uncertainty 211
physical sciences breakthroughs from the realm of 84–96, 127–8
R&D expenditure on 81, 83, 144
Pindyck, R.S. 194, 197, 211
Pisani-Ferry, J. 310, 312
Pisano, I. 249
Index

Piscitello, L. 249
planetary biology 93
Pointner, W. 232
policy complementarities 123, 131, 142, 145, 217, 222–3, 283, 284, 302–8
political economy of science and innovation policies 73–4, 124
political science 344
Popper, Karl 19–20
Portugal
basic research expenditure 114, 115
productivity indicators 115
positive-sum norms 387–8
post-hoc ergo propter hoc fallacy 150
post-innovation competition 385–6
Postel-Vinay, F. 312
Powell, W.W. 23, 58, 97, 342
pragmatism 74–5, 77
Prencipe, A. 27
price competition, intensity of 256–7, 258, 264, 265, 385–6
principal–agent problem 174–5, 176, 178
prisoner’s dilemma 352
private foundations 56
probit estimation 238, 244–5
process engineering 235, 236, 243
producers model of innovation 327
product innovations 220, 221, 368, 369, 383, 385
product life cycles 25
production/management concepts 235, 236, 243
productivity
complementarity between employment rate and 305–7
link between foreign R&D and 256, 259, 263, 264, 265
link between R&D and 219–20
productivity gap between Europe and US, see European technology gap
professional qualifications, recognition of 321
profit maximization 22, 179, 193, 210
profits from innovation, distribution of 171
proprietary R&D regime 57
co-existence with open science regime 57–8
‘proximity’, elements of 22–3
public goods 8
advantages of revealing innovation as 332–3
basic research as a public good 116–17, 118–19
peer system as a game of private provision of 360–61
research as a public good 10, 52–4, 56
public health insurance 12–13
Public Health Service grants 92
public infrastructure, financing of 118
Public Library of Science 342
public utilities, regulatory framework for 304
Pugh, W.N. 175
punishment/reward 344, 346, 347, 350, 351
Purcell, E.M. 94
purchase precommitments 210
quality circles 344
quantum theory 85
R&D personnel
mobility of 97, 110, 193, 310, 323, 372, 390–91
optimal number of 412–13
R&D prizes 210
R&D subsidies 54
complementarity with other policies 60–64
crowding out effects of 183, 196, 222
design and implementation problems 196
economic rationale for 370–74, 378–9, 410
Sarewitz, D. 101
Saxenian, A. 22
SBIR program, see Small Business Innovation Research (SBIR) program
scale-intensive industries 285, 287
Scarpetta, S. 300, 320
Schankerman, M. 171, 208
Schechter, A.N. 158
Schelling coordination norms 350
Scherer, F.M. 171
Schmidt, K. 350
Schneider, M. 119
Schneller, O. 85
Schumpeter, J.A. 8, 169, 170, 327, 396, 404
Schumpeterian growth models 118, 396
science and engineering graduates, number of 317
Science and Policy Research Unit (SPRU) 224
science and technology policy cycle 102
science-based industries 285, 288
science policy 268
scientific instrument innovations 330
scientific publications
in life sciences 81, 96
open scientific publication 342
reputation effect of 361
technology trajectories indicated by 24, 25
Scotchmer, S. 195, 340
secrecy 39, 353
sectoral systems of innovation 21
misrepresentation of 42
selection mechanisms for federal research funding 105–7
selection–variety trade-off 36–8
self-financing of R&D 178, 187, 196, 274, 373
selfish rational actor model 343, 349, 351, 353, 361
semiconductors 24–5, 38, 141, 145, 330, 402–3
service sector
CTI subsidies to 236, 245
entry, exit and turnover in 295, 299–300
ICT usage in 284–5, 286, 300, 316
innovation potential in 273
liberalization of 289, 304, 306–7, 310, 311, 320, 321, 322, 323
patterns of innovation in 285, 288–9
size distribution of innovation in 293
setting research priorities 103–5
Shackell, M. 175
Shafaeddin, M. 17
Shah, S. 329, 330, 332
Shirky, C. 345
Sierra, C. 249
Silicon Valley 27, 93
Simcoe, T. 140
Simon, H. 8
simulation models 44, 51, 68–9, 123–4
single platform monopoly 362–3
situational construal 349
skill shortages 35, 260, 261, 263, 264, 274
measures to address 35, 36, 268, 282, 389–90
Slashdot 337, 338
small and medium-sized enterprises (SMEs)
financial constraints facing 274–5
innovation surveys covering 216
innovative capacity of 267–8, 273, 288
share of employment accounted for by 291, 301
support for 28, 35, 143–4, 182–3, 236, 242, 276, 288, 305–6, 308
Small Business Innovation Research (SBIR) program 143–4, 182, 183, 305
Small Business Investment Company (SBIC) program 182
Smith, A. 175
Smith, J. 246
Sober, E. 344
social network theory 349
social preferences 361–2
social rate of return to R&D 99, 153, 170, 193–4, 196, 210, 211, 327, 371–2, 410
Index

social returns from NIH-funded basic research 149–52, 154–6, 157, 158, 165–6
social software 345, 350, 352
socio-economic policy, innovations in 412
Soete, L. 18, 207, 406, 410, 416
software licensing 341, 353
software patents 340–41
solid-state physics 86, 390
solidarity 346, 347, 349
Solow, R. 330, 370
Sonntag, V. 329, 331
Soskice, D.W. 29
South Korea
 expenditure on mission-oriented R&D 133
 expenditure on non-mission-oriented R&D 134
 high-tech investments in 398
Soviet Union, immigration from 380, 381
space exploration, R&D spending on 132, 133, 136, 137
Spanish Ministry of Industry 224–5
specialized suppliers 285, 287–8, 289
spectroscopies 86
Sperling, G. 101
spillover method for evaluating technology-based programs 103, 104
spillovers, see externalities generated by R&D
spinoffs 138, 140–41, 142, 163, 164
Spivack, R.N. 188
sporting equipment, innovations in 329, 330
Stallman, Richard 341
Stampfer, M. 107
standards 17, 38, 40
 accounting 187
standards-writing 334
Stanford Historical Society 96
Stanford Medical School 91–6
Stanford University 91
star scientists 108
start-up firms
 coaching support for 276
 financial constraints facing 274–6
 government funding for 182–3, 187
State Aid for R&D and risk capital 321
Statistics Canada 331–2
Steinmueller, W.E. 18, 49, 76, 416
Stern, N. 54
Stern Report 54
STIG systems 46–70
Stigler, G. 2
Stiglitz, J.E. 63
stock markets 186, 187, 306
Stokes, D. 148
Strickland, S.P. 148, 149, 155, 156
Strobl, E. 196, 232
Strömberg, P. 126, 184
Structural Funds 307
subsidy quotient 232, 239, 242
SUMEX computing facility 93
sunk costs 177, 194
supplier-dominated industries 285, 287
supplier-dominated services 288–9
surgical instruments patents 330
survival rates 296, 301
sustainable development 407
Sweden
 government funding for start-up firms in 182
 percentage of population with university degree 82
Swiss Federal Institute of Technology, Zurich (KOF ETHZ) 274
Swiss firms, foreign R&D strategies of 248–69
 hypothetical motives for foreign R&D 248–50
 identifying foreign R&D strategies 250–51
 data 251–2
 empirical results 253–6
 method 252
 implications for economic policy in Switzerland 266–9
 increasing internationalization of Swiss firms’ R&D 248, 251
Swiss Innovation Survey 232, 233, 237, 250, 251, 254, 256, 258, 259, 261, 262
Swiss Institute for Business Cycle Research 273–4
Switzerland
 basic research expenditure 114, 115

Dominique Foray - 9781848449169
Downloaded from Elgar Online at 08/13/2019 10:46:57PM via free access
CTI coaching support programs in

distinguishing characteristics of

financing of innovation in 273–6

impact of Commission of

Technology and Innovation

(CTI) subsidies in 231–46

intellectual property rights in 275

productivity indicators 115

public procurement in 276

R&D expenditure as share of GDP

272

see also Swiss firms, foreign R&D

strategies of

synthetic biology 59

system dynamics theory 67

systemic dysfunction 21

systems of innovation 11, 16

European Research Area and 29

national systems of innovation (NSI)

20–21, 75–6, 107–9, 138, 140,

145, 403–4

in pharmaceuticals 12, 15

regional innovation systems 22–3

sectoral systems of innovation 21

misrepresentation of 42

system failures 399–41, 75–6

Szewczyk, S.H. 174

Tabellini, G. 309

tacit knowledge 40, 171, 261

Taiwan, high-tech investments in 398

Tassey, G. 17

tax treatment of R&D

financial bottlenecks caused by 274,

275, 276

and foreign R&D 260, 261, 263, 269

and variations in the cost of capital

172, 177–8, 181–2, 187

team production 344

technological frontier, distance from

113, 115, 118, 305, 311, 320

technological innovation, definition of

3

technological opportunity 34–5, 255,

258, 263, 264, 265

technological paradigms 24

technology trajectories, see technology

trajectories

technology push 220

Technology Reinvestment Program 146

technology trajectories 23–6, 33, 58,

69, 125, 330

technology transfer 19–20, 94, 266,

268, 406

Teece, D.J. 249

telecommunications industry 38, 303

Terman, Fred 91–3

tertiary education 268, 302, 304, 310,

311, 317, 320, 323

Tenbal, M. 381

Thomas, J.M. 89, 90

Thomson, J.J. 89

timing of interventions 65–6

Tirolo, J. 184, 341, 354, 361

Titman, S. 176

Toivanen, O. 196

Toole, A.A. 152, 196, 198–9, 200, 202,

204, 208, 211, 212

TopNano21 program 231

total factor productivity (TFP) growth

298–9, 370, 382, 383

total quality management (TQM) 344

tournament-like pay-off structures 55

trade, spillovers from 372

trademarks 75, 317

Trajtenberg, M. 58, 206, 393

transaction costs 261, 333–5, 339, 340,

360, 362, 405

transistors 390

transparency 346, 348, 352

treatment effect 238

TRIPS (Trade-Related Intellectual

Property Rights) 13

truckling 337

trust 53, 345, 346, 347, 349, 350, 351,

352

Tsai, A. 185

Turner, J. 144

Ueda, M. 185

UK Ministry of Health 95

unbounded expansibility 52

uncertainty, physical capital investment

under 211

uncertainty, R&D investment under

193–212

financing difficulties arising from

171, 173, 184, 194, 196
Index

patent policies and 194–5, 198–9, 200, 202, 204–8, 209, 210
real options approach to 194–5, 198, 200, 202, 204, 205, 210
relationship between uncertainty and investment 196–8
subsidies and 194–5, 196, 198–9, 200–204, 208, 209, 210–11
unintended consequences of technology policies 34, 69
unit of analysis for policy formation 409–11
United Kingdom
cash flow effects on R&D in 180, 181
tax treatment of R&D in 182
venture capital industry in 185
United States
Academic Medical Centers (AMCs) in 84, 90–96, 127
basic research expenditure 114,115, 116
cash flow effects on R&D in 180–81
development of Internet in 140–41
employment rate in 281
expenditure on mission-oriented R&D 66–7, 133, 135–44
expenditure on non-mission-oriented R&D 134, 135
firm size distribution in 291
government funding for start-up firms in 182
percentage of population with university degree 82
publications in life sciences in 81, 84, 96
R&D expenditure on biomedical research 84
tax treatment of R&D in 182
venture capital industry in 185
universities
central government spending on 145, 164
ESTD funding by 373
importance in Swiss public innovation policy 273
patenting and licensing by 15–16, 143, 154, 342, 353–4
place in national innovation system 108
proximity to 94, 96, 249, 253, 263, 265, 266
public support to, in Sweden 272
responsive to shifts in demand for skills 389–90
share of agency R&D 137, 138, 140
university degrees, percentage of population with 82
University of Munich 224
University of Sussex 224
Urban, G.L. 329
urban transport patterns 22
US Congress 155, 156
US Defense Advances Research Projects Agency (DARPA) 138, 141
US Department of Agriculture 136, 137
government role as coordinator in 66–7
ICT firms located in 303
percentage of population with university degree 82
procurement policies in 139
productivity differences between Europe and, see European technology gap
productivity indicators 115
publications in life sciences in 81, 96
R&D expenditure at US universities 81–4, 96, 128, 140
selection mechanism for federal research funding in 105–7
tax treatment of R&D in 177–8, 192
technology policy regarding pharmaceuticals in 12–15
variety-preserving restrictions in 22
venture capital industry in 183–5
world market shares in ICT sectors 303

Dominique Foray - 9781848449169
Downloaded from Elgar Online at 08/13/2019 10:46:57PM
via free access
Index

US Department of Defense 135, 136, 137, 139, 141, 143, 144, 145
US Department of Energy 136, 137
US Department of Health and Human Services 136, 137, 139
US Government Accountability Office (GAO) 143, 148
US House of Representatives Science Committee 99
US–Japanese semiconductor trade agreement 403
US National Academy of Sciences (NAS) 142
US National Aeronautics and Space Administration 136, 137
US Patent Office 382
US Securities and Exchange Commission 187
US Senate 156, 157
US Small Business Act 305
US Small Business Administration 225
US Supreme Court 153
user-centered innovation 327–35, 358–9
 case studies 328–30, 359
 collaborative user-centered innovation 332–3, 359, 405
 conditions favorable to 333, 339
 policies to support 333–5, 341, 362–4
 measurement of 330–32
user patents 330

vaccines 14, 210, 379
value added tax (VAT) 275
van Ark, B. 284, 285, 287, 288, 312
van der Ploeg, F. 312
van Pottelsbergh de la Potterie, B. 117, 187
Van Reenen, J. 187, 245, 316
‘varieties of capitalism’ investigations 20

variety
 trade-off between selection and 36–8
 value associated with 21–2
Varmus, H. 155
Vega, M. 249
venture capital
 combining strengths of market-based and bank-centered capital market systems 186
 concentration of VC industry 186, 187
 European venture capital industry 183, 185, 319
 governance of firms by venture capitalists 27, 184, 185
 ICT and nanotechnology driven by 128
 in Israel 380, 381, 382, 384–5
 Japanese venture capital industry 185–6
 limitations of VC system 187
 in Switzerland 274–5, 276
 US venture capital industry 183–5, 373

Vergragt, P. 29
Verheul, H. 29
Vernon, R. 248
Veugelers, R. 221, 248, 251, 266, 312
vicious circles 40
vision 37, 42–3
Vivarelli, M. 221
Von Kalckreuth, U. 211
von Laue, Max 86, 88
Vu, K. 376

wages and salaries 171, 197, 384
Wal-Mart 375
Wallstein, S. 305
Walsh, J. 154
Walton, K.S. 174
Washington University 92
Watson, James 86, 89, 90
Weber, S. 353
Weeds, H. 211
Weinberg, A. 103
Weitzman, M. 392
Welch, I. 181, 187
Whited, T.M. 211

whole trade sector 286, 289, 293, 295, 300, 307, 316
Wikipedia 337, 338, 350
Wilkins, Maurice 89
Williams, J.C. 371
Williamson, O.E. 177
Wilson, D.S. 344
Index

Windows 363
Winter, S. 7, 29, 35, 36, 39
within-firm effect 297, 298, 299, 301
women, labor market participation of 268, 315
World Economic Forum 272
World Trade Organization (WTO) 403
World War II 12, 95, 145, 155
Wright, G. 58
Wright, P. 177
Wyplosz, C. 309
X-ray crystallography 86–90, 93, 127
X-ray diffraction 86
X-ray machine 85, 86
Yamagishi, T. 351
Yao, D.A. 174
Yeaple, S.R. 117
Yosha, O. 176–7
Yozma program 380, 381
Zanfei, A. 248
Zantout, Z.Z. 174
Zellner, C. 116
Zerhouni, Elias 149, 150
Zingales, L. 186
Zinoecker, K. 107
Zucker, L.G. 110, 120, 349