Index

abatement cost as function of emissions 62–3
accidents, assessment of 259, 261–3
acidification 23–4, 144
 contingent valuation of reduced fish damage 42
dose–response functions for exceedance of critical loads and fish damage 40–41
economic valuation of fish damage 41–2
 linking changes in emissions and exceedance of critical loads 40
 linking physical and economic indicators 39–40
 potential for benefit transfers 42–3
agricultural soils, acidification 23–4
Ahlgren, E.O. 190, 191, 193
Ajodhia, V. 79, 80, 82, 83, 84
Albers, H.J. 36
Algeria, gas exports 93
Allen, R.N. 85
Alternative Energy Source Incentive Programme (PROINIFA), Brazil 213–14
Amin, M. 82
Amundsen, E.S. 191
analytic approach 54–5
Anthoff, D. 51–2, 156, 157
Aquamoney project, EU 46
aquatic environment
 acidification 39–44
 eutrophication 44–7
Australia
 coal exports 93
 economic loss from outages 85
averaged annualised generation cost model 101
averaged levelised lifetime generating costs (ALLGCs) 122–4, 140–41
Awerbuch, S. 89
Baarsma, B. 81
back-up costs 125–6, 141
back-up power 80–81
backstop technologies 187
BALMOREL model 190
Baltic Sea 45, 190
Barell, R. 91
Bartmann, H. 185, 186, 187
Bateman, I.J. 39
Baumol–Oates tax 202
Behrens, Arno 116
Belgium, renewable energy 209–10
Belton, V. 234, 236
Ben Jannet Allal, H. 224
benchmarking system 199–201
benefit transfers
 acidification 42–3
 eutrophication 45–6
 visual intrusion 48–9
Bergland, O. 44, 45
Bialek, J.W. 78
Bickel, P. 28, 197, 203, 206
Bijvoet, C.M. 79
Bilgen, S. 223, 224
Billinton, R. 80, 82
bio-diesel fuel cycles
 methodology 171
 Turkish case study 171–3
biodiversity
 impact of pollutants 142, 144–53
 and land use change 36–9
Blyth, W. 204
Bohi, D.R. 88
Bräuer, W. 192
Brazil 211–12
 hydro fuel cycle 174–7
 natural gas fuel cycle 168–9, 170–71, 179
 policy instruments to promote renewable energy sources 212–15
The Social Cost of Electricity

Brazilian Electricity Regulatory Agency (ANEEL) 213
Brazilian Ministry of Mines and Energy (MNE) 212, 214
Brazilian Ministry of New and Renewable Energy (MNRE) 219, 222, 223
Brightness Programme, China 216
British Petroleum (BP) 107, 111, 112
building materials, impact and damage assessment 20–21
building-integrated PV systems 129
Bulgaria, nuclear power 278
Butler, L. 248

Caldeira, K. 61
Canada, economic loss from outages 85
Canola Oil 171–2, 173
capacity markets 114
cap-and-trade emission trading 208
capital costs
 fossil and nuclear power plants 124, 130–35
 renewable sources 135–8
carbon capture and storage (CCS) 7–8, 106, 115, 204
Carle, R. 97, 98
CASES project 30, 52, 91–3, 101, 144, 156, 161, 177, 264, 267, 277, 278, 288, 290
Multi-CASES tool 232, 233, 236–7, 242, 252, 261
research reports 155
standard values 163, 168, 170, 171, 264
case studies 82
centralised PV systems 129
China 211–12
coal fuel cycle 160–62, 166, 178, 179
natural gas fuel cycle 169–71, 179
policy instruments to promote renewable energy sources 215–18
classical air pollutants, dispersion and chemical transformation
different background emission scenarios 18
different height of release 18–19
different meteorological years 18
methodology 15–18
Northern Hemisphere 19

physical impacts 20–24
coal
 energy security risks from 93
 fuel costs 97
coal chains 7–8
coal fuel cycles
 China case study 160–62
 comparison and analysis 166
 Indian case study 162–3
 methodology 157–60
 Turkish lignite fuel case study 163–6
Cockerill, T.T. 163
combined cycle gas turbine (CCGT) plants 126, 127, 128, 130–36, 141, 147
assessment of 262–7
combined heat and power plants (CHPs) 128–9, 131, 140–41, 144–51, 153
assessment of 262–7
as back-up technology 126
heat credits 125
private costs 134–5, 140–41
social costs 144–53
command-and-control measures 187, 204
assessment of 237–56
commercial sector, energy security 82, 105
competition 106, 108
concentration response functions (CRF)
 acidification of agricultural soils 23–4
 effects from ozone 21–3
 effects from SO2 21
 fertilization effects from nitrogen deposition 24
human health impacts of classical air pollutants 20
human health impacts of non-classical pollutants 25–6
conjoint analysis 81
consumer price mechanism, effectiveness of 241, 242–5
consumer prices
effects of regulatory instruments 189–94
to reflect full social costs 205–6
consumption, reducing 191, 205
contingent valuation (CVM) 28, 50, 53–4, 55, 81
fish damage 41–2
visual effects 48

Anil Markandya, Andrea Bigano and Roberto Porchia - 9780857937155
Downloaded from Elgar Online at 07/06/2019 07:04:52AM via free access
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convention on Long Range Trans-boundary Air Pollution (LTRAP) 40</td>
</tr>
<tr>
<td>CORINE land cover classification 37</td>
</tr>
<tr>
<td>cost case studies, supply interruption 82</td>
</tr>
<tr>
<td>cost-efficiency, policy instruments 248,</td>
</tr>
<tr>
<td>252–6</td>
</tr>
<tr>
<td>cost penalty, external costs 66–71</td>
</tr>
<tr>
<td>CO₂ emissions 276</td>
</tr>
<tr>
<td>forecasts 288–9</td>
</tr>
<tr>
<td>CO₂ tax, assessment of 237–56</td>
</tr>
<tr>
<td>Council of European Energy Regulators 108</td>
</tr>
<tr>
<td>counterfactual (lowest cost) model 94–5</td>
</tr>
<tr>
<td>country average external costs of emissions 13–14</td>
</tr>
<tr>
<td>country case studies, consistency of results 156–7</td>
</tr>
<tr>
<td>country results, VOLL 82–5</td>
</tr>
<tr>
<td>Cramton, P. 200</td>
</tr>
<tr>
<td>crops</td>
</tr>
<tr>
<td>concentration response functions 21–4</td>
</tr>
<tr>
<td>impact and damage assessment 20–21</td>
</tr>
<tr>
<td>impact of bio-diesel fuel cycles 171–3</td>
</tr>
<tr>
<td>impact of coal fuel cycles 157–66</td>
</tr>
<tr>
<td>impact of hydro fuel cycles 174–7</td>
</tr>
<tr>
<td>impact of natural gas fuel cycles 166–77</td>
</tr>
<tr>
<td>impact of pollutants 142, 144–5</td>
</tr>
<tr>
<td>monetary valuation of losses 24, 25</td>
</tr>
<tr>
<td>Curtiss, PS. 56</td>
</tr>
<tr>
<td>Czech Republic, eutrophication studies 44, 45, 46</td>
</tr>
<tr>
<td>Daalsgaard, T. 91</td>
</tr>
<tr>
<td>damage costs</td>
</tr>
<tr>
<td>greenhouse gases 60–63</td>
</tr>
<tr>
<td>PM, NOₓ and SO₂ 57–9</td>
</tr>
<tr>
<td>damage function approach 39–4</td>
</tr>
<tr>
<td>damages, treatment of</td>
</tr>
<tr>
<td>combining different external costs 35</td>
</tr>
<tr>
<td>different background emission scenarios 32</td>
</tr>
<tr>
<td>discounting to net present values 33–4</td>
</tr>
<tr>
<td>future damages and sum of present and future damages 32–3</td>
</tr>
<tr>
<td>important assumptions 34–5</td>
</tr>
<tr>
<td>increased willingness to pay 33</td>
</tr>
<tr>
<td>real prices 32</td>
</tr>
<tr>
<td>de Jong, J.J. 110</td>
</tr>
<tr>
<td>demand curves 80–81</td>
</tr>
<tr>
<td>demand levels, EU 283–4</td>
</tr>
<tr>
<td>demand restraint policies 112</td>
</tr>
<tr>
<td>Denmark</td>
</tr>
<tr>
<td>renewable energy 193</td>
</tr>
<tr>
<td>wind parks 47</td>
</tr>
<tr>
<td>De Nocker, L. 201, 202</td>
</tr>
<tr>
<td>Department for Environment, Food and</td>
</tr>
<tr>
<td>Rural Affairs (DEFRA) 53–4, 60</td>
</tr>
<tr>
<td>Social Cost of Carbon Project 53, 60</td>
</tr>
<tr>
<td>Department of Trade and Industry (DTI) 78, 79</td>
</tr>
<tr>
<td>Desaiques, B. 201</td>
</tr>
<tr>
<td>Deutch, J. 126</td>
</tr>
<tr>
<td>DG Tren 278, 284</td>
</tr>
<tr>
<td>Baseline Report (2005) 277</td>
</tr>
<tr>
<td>Diakoulaiki, Danae 234</td>
</tr>
<tr>
<td>DICE model 50</td>
</tr>
<tr>
<td>Dieppe, A. 91</td>
</tr>
<tr>
<td>Dinica, V. 194</td>
</tr>
<tr>
<td>dioxins, human health impacts 25–6</td>
</tr>
<tr>
<td>direct emissions 6</td>
</tr>
<tr>
<td>disability adjusted life year (DALY) 27,</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>discounting</td>
</tr>
<tr>
<td>greenhouse gas emissions 50–51</td>
</tr>
<tr>
<td>to net present values 33–4</td>
</tr>
<tr>
<td>disease cost method (DC) 175</td>
</tr>
<tr>
<td>distorting subsidies, abolishing 198–9</td>
</tr>
<tr>
<td>Dones, R. 9, 10</td>
</tr>
<tr>
<td>dose–damage functions 20–21</td>
</tr>
<tr>
<td>exceedance of critical loads and fish damage 40–41</td>
</tr>
<tr>
<td>Do Valle Costa, C. 214</td>
</tr>
<tr>
<td>Drost-Franke, B. 23</td>
</tr>
<tr>
<td>DSGE model 89</td>
</tr>
<tr>
<td>Duerinck, J. 207</td>
</tr>
<tr>
<td>Dutra, R.M. 214</td>
</tr>
<tr>
<td>Econ classic energy model</td>
</tr>
<tr>
<td>CO₂ emissions 288–9</td>
</tr>
<tr>
<td>demand 283–4</td>
</tr>
<tr>
<td>fuel use in the electricity sector 286–8</td>
</tr>
<tr>
<td>generation 284–6</td>
</tr>
<tr>
<td>inputs and assumptions 277–8</td>
</tr>
<tr>
<td>investments 279–8</td>
</tr>
<tr>
<td>economic indicators</td>
</tr>
<tr>
<td>acidification 39–4</td>
</tr>
<tr>
<td>eutrophication 44–5</td>
</tr>
<tr>
<td>land use change 37</td>
</tr>
</tbody>
</table>
economic instruments 187–8
economic loss from outages 82–5
economic rents 198
economic valuation, fish damages 41–2
EcoSenseWeb 4, 19, 21, 28, 30–31, 142, 256
ecosystem damage potential (EDP) 37–8
ecosystems
 impact of bio-diesel fuel cycles 171–3
 impact of coal fuel cycles 157–66
 impact of hydro fuel cycles 174–7
 impact of natural gas fuel cycles 166–77
EDGAR data 19
Egenhofer, Christian 103, 110, 116
Electricity Act (2003), India 220
Electricity Market Licensing Regulation, Turkey 224
electricity services, perceptions of reliability 85
Electrobras 213
Ellerman, A.D. 204
Elliot, D. 248
Emergency Energy Programme (PROEOLICA), Brazil 213
emergency supply rights 109–10
emission caps 192, 194
emission changes, linking to exceedance of critical loads 50
emission trading scheme (EU ETS) 110–11
 allowance allocation 199–201
 analysis of linkages to 189–94
 assessment of 237–56
 EU 199
 policy linkages with 207–10
 with safety valves 203–4
emissions
 abatement cost as function of 62–3
 damage costs as function of 60–62
 marginal external costs 142
emissions permits, price of 192–3
emissions, treatment of
 combining different external costs 35
 different background emission scenarios 32
 discounting to net present values 33–4
 future damages and sum of present and future damages 32–3
 important assumptions 34–5
increased willingness to pay 33
real prices 32
energy chains 6–12
energy efficiency, EU commitment to 106, 115
Energy Market Regulatory Authority (EMRA), Turkey 225
energy models, EU
 Econ classic model 277–8
 existing models 273–5
 main results of existing models 275–6
 results of Econ classic model 278–89
Energy Policy for Europe 102, 105–7
energy security
 estimating historical costs 94–102
 initial assessment of policy options 102–16
 national and EU level estimates of energy supply externalities 86–93
 and renewable energy 186
 studies on value of load cost (VOLL) 78–85
Energy Taxation Directive, EU 208
Energy Technology Support Unit (ETSU) 98
environmental economics theory 197
environmental health costs, assessment of 258, 261–3
environmental risks, energy security 104
Epidemiological Control Programme 175–6
equity weighting, greenhouse gas emissions 51–2
ESPREME 14, 24, 25
Eulerian dispersion and chemical transfer model 12, 14, 15, 19
Europe
 dispersion and chemical transformation of air pollutants 15–19
 energy policy package 105–7
European Commission (EC)
 6th Framework Programme for Research 46
 call for unified gas market 105
 Green Paper on security of supply (2000) 103–4
 role of 116
European Council Action Plan 102
Index

European Energy and Transport Trends to 2030 (EC) 273
European Environment Agency (EEA) 197, 198, 199, 202, 206
European harmonised promotion schemes 195
European level estimates of supply externalities 86–93
European Parliament 208
European Union
 Green Paper on European Strategy for Sustainable, Competitive and Secure Energy 205
 Guidelines on State Aid for Environmental Protection 186
 implementation of policy instruments 205
 Treaty 106–7
European Union, social costs
 methodology and data description 140–44
 results 144–50
 technological comparison and trends 151–2
European Union states
 Econ classic model 277–8
 existing energy models 273–5
 main results of existing energy models 275–6
 policy instruments to promote renewable energy sources 185–211
 results of Econ classic model 278–89
EUSUSTEL 125
eutrophication
 linking physical and economic indicators 44–5
 potential for benefit transfers 45–6
 exposure factors, radionuclides 27, 29
external costs
 acidification 39–44
 bio-diesel fuel cycles 171–3
 coal fuel cycles 157–66
 combining 35
 cost penalty and value of research 66–71
 definition of 185
 dispersion and chemical transformation of classical air pollutants 15–29
effect of uncertainties 63–6
 eutrophication 44–7
 externalities and 3–5
 greenhouse gas emissions 49–54
 hydro fuel cycles 174–7
 impact pathway approach to generate 12–15
 included in social costs 141
 internalising effects of policy instruments 185–6, 196–211
 land use change and biodiversity 36–9
 low external cost versus low social cost technologies 206–7
 methodology for life cycle inventory estimation 5–12
 natural gas fuel cycles 166–77
 non-classical pollutants and radionuclides 24–31
 per kWh 3–5, 142–3
 physical impacts to human health, crops and materials and damage expressed as 20–24
 treatment of emissions and damages in the present and future 31–5
 uncertainties for greenhouse gases 59–63
 uncertainties for PM, NOx and SO2 56–9
 uncertainties of 54–5
 valuing ‘missing’ externalities of energy production 35–6
 visual impacts of wind, hydro and overhead transmission lines 47–9
externalities 1–5
externality, security of supply as 105
ExternE methodology 21, 28–30, 57–8, 142, 155–6, 165–6, 174, 180, 256, 257
ExternE Methodology Report 143–4
ExternE Oil and Gas Report 167
Fang, Y. 216
Fantke, P. 24, 25, 26
fate factors, radionuclides 27
feed-in premium system 195–6
feed-in tariffs 188
 assessment of 248–56
 interaction with emissions trading 194
Ferraro, P. 36
fertilisation effects, nitrogen deposition 24
Finland
 nuclear power 278
 renewable energy 193
fish damage
 contingent valuation of reduction in 42–3
dose–response functions 40–41
 economic valuation 41–2
Five-year Plans
 China 216
 India 220
fixed feed-in tariffs, assessment of 248–56
fixed premium systems 188
 assessment of 248–56
food safety risk, assessment of 259, 261–3
formaldehyde, human health impacts 25–6
fossil-fired technologies, social costs of 144–53
fossil power plants
 private costs (2008) 130–33
 private costs (2020) 133–4
Fouquet, D. 248
France
 energy security 95–102, 117
 nuclear power 278
 wind parks 47
free-riding 114
Friedrich, Rainer 28, 126, 141, 197, 203, 206
fuel costs
 and energy security 95–102
 fossil and nuclear power plants 130–35
 renewable sources 135–8
fuel mix assumptions 274–8
fuel price assumptions 124–5, 274–7, 279–83
fuel use intensity 286–8
full cost pricing 202, 205–6
FUND model 50, 53–4, 55
future background emissions 32
future damages 32–3
GAINS model 63
 gas
 energy security risks from 93
fuel costs 97
gas prices, uncertainty about 110–11
gas reserves 108, 113–14
general equilibrium macroeconomic models 88–93
generating costs
 assumptions 124–6
 combined heat and power (2020) 134–5
 fossil and nuclear power plants (2008) 130–33
 fossil and nuclear power plants (2020) 133–4
 included in social costs 140–41
 methodology 122–4
 renewable sources (2008/2030) 135–8
technologies 126–30
generation capacity, investment in 113, 114, 277–83
generation developments 284–6
 ‘generation III’ reactors 126
 ‘generation IV’ reactors 127
generation system, diversification of 251, 252–6
Germany
 energy security 95–102, 117
eutrophication studies 44, 45
 land use change 38
 renewable energy 193, 194
Ghosh, D. 219
global world product (GWP) 60, 62, 69
Goulder, L.H. 62
government failure, threat of 88
grandfathering system 193, 199–201
greenhouse gas emissions
 assessment of 258, 261–3
 assessment of policies to reduce 237–56
cost of 142
discounting 50–51
effectiveness of policy measures 237, 239, 242–5
equity weighting 51–2
estimates of marginal damage cost 52–4
EU commitment to reducing 106
impact assessment 15
uncertainties for 59–63
GreenSense project 50
Green-X database 278
Index

Gregory, R. 257
grid connection costs, assessment of 259, 261–3
grid services 195–6
gross domestic product (GDP) 33, 35, 38, 50, 82–4, 89, 91–2, 277
Grotz, C. 248
guarantees of origin 195
Guner Law Office 224, 225

Hamilton, K. 204
hard coal fired power plants 127–8
assessment of 262–7
as back-up technology 126
private costs (2008) 130–33
private costs (2020) 133–4
Harks, E. 93
Harmonised Index of Consumer Prices (HICPs), EU 35, 142
Harrison, D. 191, 200, 201
HEATCO 32, 33, 35
heat credits for combined heat and power plants (CHPs) 125
heavy metals, human health impacts 25–6
Hendriks, C. 128
Henriksen, A. 41, 42, 43
Henrion, M. 54
Henry, J. 91
Hensing, I. 187
Hindar, A. 42, 43
Hindsberger, M. 190, 191, 193
historical energy security costs estimation data 95–8
discussion and further research 101–2
methodology 94–5
results 98–101
Hobbs, B. 236, 257
Hohmeyer, Olav 186
Hokhy, S. 45
Holm-Mueller, K. 44, 45
Hope, C.W. 50, 55
Horn, G. 236, 257
Hotelling rule 187
Houghton, J.T. 61
Hubert, P. 234
human health impacts assessment of 161–3, 258
bio-diesel fuel cycles 171–3
classical air pollutants 20
coal fuel cycles 157–66
hydro fuel cycles 174–7
natural gas fuel cycles 166–77
non-classical pollutants 25–31
pollutants 142, 144–53
Hunt, Alistair 86, 89–91
Hunt, B. 91
hydro fuel cycles Brazilian case study 174–7
methodology 174
hydro power plants 129
assessment of 262–7
hydropower, visual impact 47–9
ICF Consulting 85
ICR60 recommendations for core analysis 28
IFIEC method 201
impact factors, non-classical pollutants 28
impact pathway approach (IPA) 12–15, 55
greenhouse gases 15
import-dependency risks 104, 107–8
proposal to deal with 109–10
incomplete rent capture 86
India 211–12
coal fuel cycle 162–3, 166, 178, 179
policy instruments to promote renewable energy sources 218–23
Indian Alternate Energy Project 219–20
indirect emissions 6
industrial sector, energy security 82, 105
integrated assessment models (IAMs) 50–51, 52–4
Integrated Energy Policy, India 220
integrated gasification combined cycle (IGCC) technology 127, 130–36, 145, 146, 148, 149, 150
Intensification of Endemic Controls Programme 175–6
intermittent energy sources, back-up costs 125–6
internalisation of externalities, effects of policy instruments 185–6, 196–211
International Council on Large Electric Systems (CIGRE) 85

Anil Markandya, Andrea Bigano and Roberto Porchia - 9780857937155
Downloaded from Elgar Online at 07/06/2019 07:04:52AM via free access
International Energy Agency (IEA) 77, 78, 111–12, 125, 212, 215, 223
Annex B 33
Collective Action 112
energy database 97, 98
World Energy Outlook 273–6, 277
International Energy Programme (IEP) 111–12
International Monetary Fund (IMF) 83, 84, 89
interruptable contracts 80–81
interruptable customers 109–10
investment costs
fossil and nuclear power plants 130–35
renewable sources 135–8
investment, generation capacity 113, 114, 277–83
investment subsidies 189
Italy, energy security 95–102, 117
Jacoby, H.D. 204
Japan, energy security 97
Jensen, S. 189, 190, 191, 192
Jepma, C.J. 199, 203
Jiang, K. 155, 160, 161, 167, 169, 170
Jolliet, O. 27
Jungbluth, N. 11
Kariuki, K.K. 85
Kaya, D. 223
Keeney, R. 257
Kerr, S. 200
Klaassen, G. 63
Klotz, V. 28
Koellner, T. 37
Krewitt, W. 185, 186
Küffer, K. 97, 98
kWh electricity
energy security in terms of 89, 91–2
external costs 3–5, 142–3
Kyoto Protocol 110, 142, 204
Lahdelma, R. 234
land use change
linking physical and economic indicators 37
willingness to pay 37–8
Larsson, R. 107, 110
Lekander, P. 111
LEVEL weighting method 236, 243, 245, 253, 261, 262, 264, 266
liberalised electricity markets, ensuring security in 105, 113–14
life cycle assessments (LCA) 5–12, 37
life cycle inventory (LCI) estimation 1–2, 30
emissions for electricity generation 142–3
methodology 5–12
lignite fired power plants 127–8
assessment of 262–7
Li, J. 218
Lijesen, M. 80
liquefied natural gas (LNG) 110–11
Lisbon Treaty 106–7
lognormal distribution method 54–5
Longo, A. 185, 200
low carbon electricity production, policy instruments
multicriteria ranking of instruments 242–5
qualitative criteria 240–42
quantitative criteria 237–40
scoring of instruments on criteria 237
Luciani, G. 104
macroeconomic costs, energy security 86–8
macroeconomic externalities 86–7
macroeconomic impacts, oil price increases 88–93
Magnussen, Kristin 45
Mahapatra, D. 155, 160, 162, 164
marginal avoidance costs (MAC) 1
marginal cost of pollution reduction 197
marginal damage costs (MDC) 3
greenhouse gas emissions 52–4
marginal external costs of emissions 142
MARKAL model 190
Markandya, Anil 86, 89–91, 185, 200
market compatible strategies, energy security 107–8
markets
competition in 106, 108
liberalisation of 113–14
unification of 105
Martinez-Alier, J. 234
materials
impact of bio-diesel fuel cycles 171–3
impact of coal fuel cycles 157–66
impact of hydro fuel cycles 174–7
impact of natural gas fuel cycles 166–77
impact of pollutants 142, 144–53
Mathai, K. 62
Mathematica® 65
Maystre, L. 236
meta-analysis 37–8, 45, 46
MethodEx project 24, 25, 35, 50
Millennium Ecosystem Assessment (MRA) 36
‘missing’ externalities, valuing 35–54
Mitchell, C. 249
Mitchell, J.V. 104
monetary valuation, crop losses 24, 25
monetary values, human health impacts 20, 25–6
monitoring, policy instruments 251, 252–6
monopsony wedge externality 86
Monte Carlo approach 53–5, 59, 62, 63, 65
Morgan, M.G. 54
Morthorst, P.E. 192–4, 248, 249, 250, 251
Moynet, G. 97, 98
Mueller, F. 107
Multi-Attribute Value Theory (MAVT) 234–5
Multiple Criteria Decision Analysis (MCDA) 233–5, 236–7, 256, 257, 264, 266–7, 268
Munoz, M. 195
Muthke, T. 44, 45
National Development and Reform Commission (NDRC), China 217
National Electricity Policy, India 220
national estimates, supply externalities 86–93
natural gas- and oil-fired power plants (CCGT) 127, 128
natural gas fuel cycles
Brazilian case study 168–9
Chinese case study 169–70
comparison and analysis 170–71
methodology 167
natural gas, policy objectives 115–16
Navrud, Ståle 39, 44, 48
negotiated agreements 205
Nellthorp, J. 28
Nese, G. 191
net present values (NPV) 31, 32–5
discounting to 33–4
Neuhoff, K. 248
New Energy Externalities Development for Sustainability (NEEDS) project 24, 28–30, 31, 156, 209, 277, 278
Nigeria, gas exports 93
Nijs, Wouter 209
nitrogen deposition, fertilisation effects 24
Nitsch, J. 186
non-classical pollutants
fate and exposure factors 27
human health impacts 25–6
impact factors 28
radionuclides 26–7
valuation factors 28–31
non-CO₂ externalities 239–40, 242–5
non-EU countries, social costs
assessment of 155–7
biodiesel fuel cycles 171–3
coil fuel cycles 157–66, 178
hydro fuel cycles 174–7
methodological challenges and data limitations 178–80
natural gas fuel cycles 166–71
overall cost results 177–8
non-market strategies, energy security 108, 115–20
non-renewable energy, subsidies 198–9
non-renewable resources, rules of depletion of 187
Nooij, M. de 80, 82
Nordhaus, W. 50
Nordic–Continental trade patterns 193
Northern Hemisphere, dispersion and chemical transformation of air pollutants 19
Northern Hemispheric dispersion model 14, 16–17
Norway
acidification 40–41, 42–3, 44
eutrophication 44
gas exports 93
hydropower projects 48
overhead transmission lines 48
wind parks 47
The Social Cost of Electricity

Norwegian Meteorological Institute (MET.NO) 12, 14, 15–16
NREL 218
nuclear accidents 143–4
nuclear energy chain 9–10
nuclear power plants 126–7
assessment of 262–7
private costs (2008) 130–33
private costs (2020) 133–4
nuclear technologies
fuel costs 97–8
social costs of 144–53

Odeh, N.A. 163
off-budget subsidies 198
offshore power plants 129, 137
Oikonomou, V. 199, 203
oil fuel costs 97
modelling macroeconomic impacts of 88–93
oil security 111–12, 115
on-budget subsidies 198
onshore power plants 129, 137
operating costs
fossil and nuclear power plants 130–35
renewable sources 135–8
operation and maintenance (O&M) expenses 123, 124
opportunity costs, emission rights 200
optimal allocation of resources 186–7
optimal level of pollution 197
Organisation for Economic Co-operation and Development (OECD) 112, 115, 123, 201–2
overhead transmission lines, visual impact 47–9
overnight construction cost (OIC) 123–4, 132, 138
overnight investment cost methodology 101
ozone, effects from 213

PAGE model 50, 53–4, 55
partial equilibrium MARKAL/TIMES model 209
performance-based command and control 204
photovoltaic (PV) electricity generation chain 9, 11
photovoltaic (PV) plants 129
assessment of 262–7
emissions per kWh 4
physical indicators
acidification 39–40
eutrophication 44–5
land use change 37
visual intrusion 47–8
Pigouvian tax 202
Plambeck, E.L. 55
Platts database 277
PM, uncertainties for 56–9
Poland, eutrophication studies 44, 45, 46
policy instruments assessment
multicriteria method and tool 233–7
to produce low carbon electricity in a sustainable way 237–45
to promote renewable energy sources 246–56
policy instruments for renewable energy sources
acceptability of 251–6
additional instruments 196–211
cost efficiency 248, 252–6
dynamic efficiency 241, 242–5, 249–50, 252–6
ease of introduction 250–51, 252–6
ease of monitoring 251, 252–6
effectiveness of 241–5, 248, 252–6
equity of 241, 242–5, 250, 252–6
EU states 185–96
flexibility of 240, 242–5, 248, 252–6
non-EU states 211–26
predictability of 240–41, 242–5, 249, 252–6
synopsis of 187–8
policy options, energy security beyond the market 115–16
ensuring security in liberalised electricity markets 113–14
European response 105–7
liquefied natural gas 110–11
market compatible strategies 107–8
non-market strategies 108
oil security 111–12
proposal to deal with import-dependency risks 109–10
risk assessment 103–4
security of supply as an externality 105
political risks, energy security 104
Pollutants Charge Standards (PCS), China 161, 169–70
Pomerantz, O. 91
Porchia, Roberto 275, 276, 280, 281
Preiss, Philipp 28, 275, 276, 280, 281
present background emissions 32
present damages 32–3
pressurised water reactors (PWRs) 126, 130–36
price-based instruments 187–8
price capping 203–4, 208
price fluctuations, as threat to security 103
PRIMES modelling system 273–5, 277, 283
priority customers 109–10
private costs 35
assessment of 258, 261–3
assumptions 124–6
combined heat and power (2020) 134–5
fossil and nuclear power plants (2008) 130–33
fossil and nuclear power plants (2020) 133–4
included in social costs 140–41
methodology 122–4
to reduce GHG emissions 239, 242–5
renewable sources (2008/2030) 135–8
technologies 126–30
production costs
equal to full social costs 242–5
fossil and nuclear power plants 130–35
renewable sources 135–8
Programme for Energy Development in State and Municipalities (PEODEEM), Brazil 212–13
Programme for the Commercialisation and Development of Small Hydroelectric Stations (PCH-COM), Brazil 213
Proost, S. 197, 207, 231
proxy methods 81–2
Prüss-Üstün, A. 175
Pulverised coal combustion (PCC) technology 127, 132–6
purchasing power parity (PPP) 35
pure rate of time preference (PRIP) 31
quantity-based instruments 188
Rabl, Ari 14, 24, 25, 54, 55, 56, 58, 59, 62, 63, 68, 71, 201
radionuclides 26–7
assessment of external costs 258, 261–3
fate and exposure factors 27
impact factors 28
valuation factors 28–31
Ragwitz, M. 194
Rathmann, M. 190, 191, 194
RATIO weighting method 236, 243, 244, 245, 253, 255, 261, 262, 264, 266
reactor technology 126–7
real prices 32
recovered thermal energy 125, 141
Reinaud, J. 191
Reis, M. 176
reliability contracts 114
renewable energy
fuel costs 97–8
subsidies 198–9
renewable energy plants 129–30
renewable energy producers, electricity market operations 192
renewable energy sources
EU states policies to promote 185–211
Non-EU state policies to promote 211–26
private costs (2008/2030) 135–8
renewable energy sources, policy instruments
multicriteria ranking of instruments 252–6
scoring of instruments on criteria 246–52
Renewable Portfolio Standard (RPS) mandates
China 217
India 220
renewable technologies
emissions per kWh 4
social costs of 144–53
rent capture 86
Resch, G. 248, 249, 250, 251, 252
research and development (R&D) 115, 127
research value, external costs 66–71
reserves-to-production (R/P) ratio 111
residential sector, energy security 82, 105
resource economics 186–7
restoration cost approach 38
revealed preference methods 80–81
Ringel, M. 195, 248
Rio Madeira Complex, Rondônia, Brazil 176, 177
Rio, P. 249, 250
risk assessment, energy security 103–4
Risoe DTU 159, 172
River Øvre Otta Development Plan, Norway 48
Roeger, W. 89
Röller, L. 116
Rousseau, S. 197, 207, 231
Rovere, E.L.L. 155, 167, 168, 177
Ruiz, B.J. 213
Russia, gas exports 93, 104, 109
Sanghvi, A.P. 81, 82
Sauda Project, Norway 48
Sauter, R. 89
Sawin, J.L. 211, 218
Scasny, M. 44, 45, 46
Schewe, P.F. 82
Schlomann, B. 185, 186
Schneider, S.H. 62
Scholz, R.W. 37
Scotland, acidification 39
Serra da Mesa Plant, Brazil 176, 177
Shukla, P.R. 155, 160, 162, 164
Sijm, J.P.M. 190, 208–9
Singh, A. 220, 222
Siskos, Y. 234
Skytte, K. 189, 190, 191, 192
Slovic, P. 257
SO₂:
effects from 21
uncertainties for 56–9
Social Cost of Carbon Project, DEFRA 53–4, 60
social costs, EU
external costs included in 141
external costs not excluded in 143–4
life cycle analysis 142–3
low social cost technologies versus
low external cost 206–7
lower social cost versus full
internalisation 206
marginal external costs 142
methodology and data description 140–44
private costs included in 140–41
results 144–50
technological comparison and trends 151–2
social costs, non-EU countries
assessment of 155–7
biodiesel fuel cycles 171–3
clean fuel cycles 157–66, 178
hydro fuel cycles 174–7
methodological challenges and data
limitations 178–80
natural gas fuel cycles 166–71
overall cost results 177–8
Socioeconomic Data and Applications Center (SEDAC) 14
Soderqvist, T. 45
solar thermal (Solar Trough) plants
129–30
emissions per kWh 4–5
private costs 140–41
source receptor matrices (SRMs) 12–13,
15, 18–19
South Africa, coal exports 93
South Western Electricity Plc (SWEB) 98
Spadaro, J.V. 14, 24, 25, 54, 55, 56, 58,
59
Spain
energy security 95–102, 117
wind parks 47
spot market prices 190, 191, 193
State Electricity Regulatory Commissions (SERCs), India 220
stated preference methods 41–2, 81
Stavins, R.N. 200
Stern J. 93
Stern Report 50–51, 53
Stewart, T.J. 234, 236
stockdraw policies 112
subsidies
distorting effects of 198–9
efficiency of 197
Sulphur Protocols 40, 42, 43
supply externalities
estimating historical costs 94–102
initial assessment of policy options 102–16
national and EU level estimates 86–93
Index

studies on value of lost load (VOLL) 78–85
supply interruptions 78–9
measurement of 80–82
results by country 82–5
value of 79–80
surface water, exceedance of critical loads 40–41
Sweden
nuclear power 278
renewable energy 193
wind parks 47
Switzerland, energy security 97
Szklo, A.S. 214
Szolgayova, J. 203, 204
Tarrasón, L. 12, 14
taxation
assessment of 237–56
based on technology mix 203
definition of 201–2
taxation incentives 189
technical risks, energy security 104
technological comparison and trends
full costs assessment (2005–2010) 151
full costs assessment (2010–2030) 141–2
technologies
Brazil 212–15
China 215–18
India 218–23
Turkey 223–5
technologies assessment
indirect monetisation of impacts 263–7
introduction 256–7
multicriteria ranking 261–3
scoring on criteria 257–60
technology characterisation
combined heat and power (CHP) plants 128–9, 130
hard coal and lignite fired power plants 127–8
indirect monetisation of impacts 263–7
multicriteria ranking of 261–3
natural gas- and oil-fired power plants 128
nuclear power plants 126–7
renewable plants – hydro 129
renewable plants – solar thermal (Solar Trough) 129–30
renewable plants – wind 129
scoring on criteria 257–60
technology development 130
technology mix, taxation based on 203
tendering system 188–9, 193, 199–201, 205
effectiveness of 248–56
Thakur, T. 220
Toke, D. 248
Tol, R.S.J. 51–2, 55, 60
Toman, M.A. 88
Tönjes, C. 110
Torfs, R. 20, 28, 201, 202
Tourkola, Chriostos 231–68
Township Electrification Programme (TEP), China 216
tradable green certificates (TGCs) 189
assessment of 248–56
interaction with emissions trading 191–4
transmission system operators (TSOs), cooperation between 116
trigger price 203
TUBITAK 155, 160, 165, 173
Tuchschmid, M. 11
Tucurui plant, Brazil 176, 177
Turkey 211–12
bio-diesel fuel cycle 171–3
lignite fuel cycle 163–6, 178, 179
policy instruments to promote renewable energy sources 223–5
UK
economic loss from outages 85
energy security 104
Government ‘Green Book’ 53
nuclear power 278
uncertainties
effect of 63–6
external costs 54–5
greenhouse gases 59–63
PM, NOx and SO2 56–9
Unger, T. 190, 191, 193
uniform world model (UWM) 56–7
Union for the Co-ordination of Transmission of Electricity (UCTE) 78, 104, 277
United National Economic Commission for Europe (UNECE) 40
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 27, 30–31
US economic loss from outages 82, 85
price capping 204
US Energy Information Administration (EIA) 156
US Environmental Value Standard numbers (ES EVS) 161, 169–70
Utilisation of Renewable Energy Resources for the Purposes of Generating Electricity Energy law (2005), Turkey 224–5

Vågnes, M. 48
valuation factors, non-classical pollutants 28–31
valuation, ‘missing’ externalities 35–6
value added tax (VAT) 189, 202, 218, 250
value of a year of life lost (VOLY) 25, 34
value of lost load (VOLL) 78–80
results by country 82–5
ways of measuring 80–82
van der Zwann, Bob 62, 71
van Dril, A.W.N. 190, 208–9
Van Regemorter, D. 209, 210
vector transmissible diseases (VTDs) 175
Verband der Großkessel-Besitzer (VGB) 128
Vigotti, R. 224
Village Electrification Programme, China 216
visual intrusion
cost of 144
linking physical and economic indicators 47–8
potential for benefit transfers 48–9
Vollaard, B. 80

voluntary agreements 187, 205
assessment of 237–56
water-borne diseases (WBD) 175
Water Framework Directive, EU 46
WATSON model 14, 25
weighting techniques 236–7
Weitzman, M.L. 27, 50–51, 52, 53
Wesselink, B. 201
wholesale prices 190–91, 194
Wigley, T.M.L. 61
willingness to accept (WTA) 81
willingness to pay (WTP)
energy security 81, 85, 114
health impacts/biodiversity 28, 31, 32, 33, 34–5, 42, 44
land use change 37–8
visual impacts 47–8, 49
water quality 45–6
Wind, P. 14, 19
wind parks, visual impact 47–9
wind plants 129
assessment of 262–7
emissions per kWh 4
private costs 14–41
Wind Power Concession Programme, China 216
WITCH model 50
World Bank 89, 198, 211
World Energy, Technology and Climate Policy Outlook (WETO), EC 273–6, 277

year of lifetime lost (VOLYchronic) 28, 29, 32
years of life lost due to disability (YLD) 25, 26
years of life lost due to mortality (YOLL) 20, 22, 25, 26, 32–3, 34–5
Yoda, S.K. 97
Yohe, G. 62
Zeng, Y. 216