Index

absorptive capacity 183, 211–19
academic entrepreneurship and incubation 452–4
Academic Ranking of World Universities 319, 324
adaptability of firms 185, 240–41, 243, 250, 257, 373
Africa 521, 568
agglomeration 31
disequilibrium theory and 61–3
economic activity spatially unevenly distributed 54
emphasis on localized knowledge spillovers 65
general equilibrium theory and 59–61
information-rich contact and 122
innovative outgrowth 29
internationalization and 30–31
location theory and 56–8
scale economies and 55–6
agglomeration economies, linkages across regions neglected 143, 148
agglomeration externalities, stem from specialization 144, 151
Airbus aeroplanes, servicing and 382–3
alliance formation, twofold motives 223
alternative model of economic development 65
Amazon.com 369
American competitiveness in international trade 68, 381
anchoring 105–6, 167, 170–76, 184, 267, 322
anti-nuclear energy discourse 11
Apple 30, 410, 582, 591, 594
Asia 8, 94, 323, 409, 521
asymmetric knowledge capabilities 50
ATMs (automatic teller machines) 366
Austin, Texas (green policies) 434
Australia 287, 521
Austria 161, 312, 355, 538
autopoiesis or self-organization 19
average wage, measure of productivity 127
behavioural economics, non-rational behaviour and 345
Belgium 321, 516
‘best practices’ 370, 600, 605–6
biotechnology 4, 6, 7, 106, 137–8, 148, 171, 385
clusters 294, 296, 307, 317, 320–34
firms 333, 385–9, 396, 411–12, 457
medical 412
black box 135, 140, 141, 230
Boston’s Route 128 248–50, 259, 315, 318, 498
bounded rationality, uncertainty and 534
Brazil 243, 408, 416, 440, 453, 516
broadband access, less populated places 286
budget airlines, service industry innovation and 381
‘building boom’ 378
business angels, investment capital 499, 502
business-cycle conference, Schumpeter (1949) 32–3
California 250, 283, 286, 549
Californian school 159, 248, 250
Cambridge 20, 319, 375, 386–7, 412, 415
biotech industry 170, 257, 324, 386, 481, 514
research 318–19, 321–2
Canada 412, 428, 434
capabilities accumulation, identification of commonalities 146
capitalism
emergence and evolution of 8
evolutionary development under 55
fuelled by innovation 3
regional varieties 183
waveform evolution of 12
capitalist system, new knowledge a zero-sum game 551
Cardiff University, Networks of Innovators 2
catastrophic agglomeration, overconcentrated spatial results 5
Cayman Islands 373
CBS Labour Force Survey employment data 125
Center for Information Technology Research in the Interest of Society (CITRIS) 375
centrality of learning, knowledge frontier moving rapidly 446
Centre for Innovation and Entrepreneurship (CIE) 507
Centres of Excellence 395
Chilean wine cluster 229
China 30, 91, 258, 320, 407, 410, 453
FDI 412, 414–15

Philip Cooke, Bjørn Asheim, Ron Boschma, Ron Martin, Dafna Schwartz and Franz Tödtling - 9780857931504
Downloaded from Elgar Online at 04/06/2019 12:29:20PM
via free access
Index

science parks 323

technological incubators 516

climate change crisis 304

‘Cluster Chairs’, to promote regional innovation transversality 311

cluster concept 246, 306

cluster development, policy planning at ‘governance’ level 51

cluster literature, role in bridging capabilities 149

cluster model, versus regional innovation platform model 565–6

cluster policies 175, 289

cluster renewal, regional regime governance and 267

cluster theory, challenged by role of innovations 569

cluster-management team 20

clusters 293–4, 298–9, 300

coevolutionary transition, envisages market niches 438

coevolutionary transitions, role of 138–9

cogeneration networks, role of 12, 21, 212–22

cognizance, role of 113–14

cognitive approach 107–8, 111–13, 115–16

cognitive, innovation transversality 311

communication cost, scale and 122

communication techniques 285–6

comparative advantage 13, 29, 224, 240–41

comparative statics, Schumpeter’s evolutionary version 35

comparing different networks 161

comparative advantage, link with comparative advantage 240

competition 10, 33, 35–6, 38–9, 48–9, 59–60, 241, 452

‘Competitive Capitalism’, ‘Trustified Capitalism’ 40

competitiveness 109, 185, 234, 238

computerization, ‘epochal’ innovation 14, 17

cumulative mutation/adaptation 206

dematuring IDs 86

democratization, personal computers 17

death of distance 285

Danish Technological Institute 444

delays, 86–7

democratization, personal computers 17

Democratization, personal computers 17

democratization, personal computers 17

Danish Technological Institute 444

delays, 86–7

democratization, personal computers 17

Danish Technological Institute 444

delays, 86–7

democratization, personal computers 17

Danish Technological Institute 444

delays, 86–7

democratization, personal computers 17

Danish Technological Institute 444

delays, 86–7

democratization, personal computers 17
Index 611
deregulation, deindustrialization and 588
design, definition 13–14
‘design paradigm’, speeds up application of what began life 19
design-driven innovation 8–9, 13, 30, 286, 449, 587–8, 590–91, 594
design-related activities (KIBS), service industries and 335
developing countries, could be innovative 258
digitization, credit cards and 28
diminishing returns from partnerships 310
direct-foreign-investment activities, so-called product cycle 69
dirigiste systems of governance 536–7
disadvantaged regions, lack diverse set of actors 544
discontinuous adjustment 84, 88
disruptive innovation, sustaining innovation and 13
disruptive technologies, ‘window of opportunity’ 538
distance, two basic features of 557
distance decay factor 71
diversity 104, 106, 143
division of labour 32, 54, 56, 58, 222–3, 246, 541
dominant design 69, 72, 75
domination thesis, key sectors of ‘industrie motrice’ 61
dominant firm, keeps temporary monopoly profit 62
dramaturgy 583–4, 590
Dublin, gendered work–life conflict in 257–8, 410
Dutch government, service innovation 367, 375
Dutch State Mining (DSM), diversification 16
dynamic competitiveness of a region, depends on adaptability 241
dynamic force of innovations, Schumpeterian understanding 61
dynamic forces, economies arrived through 54
dynamic knowledge exchange 459
dynamics of proximity in spatial innovation 272–7
‘ease of learning’ 212
East Germany, ‘regional experimentalism’ 19
Eastern Europe 8, 91, 218
economic activities, effect of proximity and human contacts 63
economic context of (2007–09) 309–10
economic crisis, connected to globalization 304
economic geographers, need to know conventions and knowledge 347
economic geography, future of 32
economic growth 61, 64, 107, 482
economic revolution, irreversibility of 28
economic and spatial planning 15
economy of cities, Jane Jacobs’s work 50, 143–4, 147, 151
electrification epoch, R&D labs and 18
embedded clusters, competitiveness of firms and competitive advantages 54
embeddedness 172, 174, 227, 251
emerging economies, innovative systems in 423
employees, most change jobs within same economic area 191
employment dynamics, caused by technological change 145
enabling and enhancing open innovation 397
‘end of mass production’ 541
endogenous growth 60, 104, 144, 601–3
energy crisis 304
ENP 505, 507, 511–12
entrepreneur active intermediary 15
in driver’s seat not the coach or mentor 509
entrepreneurial regional innovation systems (ERISs) 323, 457
entrepreneurs 484–6
entrepreneurship conduit of knowledge spillover 226
geography of 482
interaction of individuals with environment 490
key transfer mechanism 192
leads to economic growth 490
peers matter in two ways for 486
promoting done in different ways 506
risky business in dangerous environment 483
tolerance of failure necessary for 315
what it depends on 484
why clusters foster 487
Entrepreneurship and New Business Development Programme, see ENP
entrepreneurship and venture capital 451–2
entropic uniformity, milieu death and 114
‘environment’ 438
episodic radical innovations 14, 182–3
epochal passages of incremental innovation 13, 183
equilibrium, based on the railroad 37
EU 8, 69, 150, 211, 230, 290
academic commission 303
Community Survey 380, 384
Lisbon Strategy (2000), major trends 600
policies to ease firms’ access to capital 496
EU-25 proximity for 228
Europe 150, 158
decentralization (1980–2010) 50
distance knowledge can travel 228, 230
Eureka and development R&D 284
four major flaws deployed in regions 479–81
governance types in 536
incubators and 452, 516, 521
islands of innovation 318
low profile for venture capital 320
nanotechnology 317
policies to build cooperation and trust 282
regional policy 548
Silicon Valley reactions in 322
universities and open innovation and
collaboration with industry and 393
European Commission, three factors for
innovation 599
Euroregion 462
evolutionary economic geography 6, 120, 181,
194, 439
examples of service innovation 367–8
contract R&D services 371–2
financial innovation 372
logistic innovation 370
retail innovation 368–9
tourism innovation 370–71
user-led innovation 369–70
experiential learning 486
‘exploitation subsystem’, denotes variety 19
export flows 94
externalities in Perroux’s mind, dynamic force
62
failure, fear of might deter new firm set-up 489
failures at micro-level, social benefit at
aggregate level 483
FDI 82, 94–6
automotive industry and 409
China and 337, 430
conducted by multinational corporations
(MNCs), 406
inward and outward 149
magnetism of 424
policies and direct sponsorship 421
regions that have attracted 412
fifth Kondratieff wave 366
filtering down 73–4
financial capital, supply spatially skewed 495
financial crisis 304
Finland 17, 188
developmental policy trajectories in 304–5
innovative platform methodology 533
region of Lahti 308–9, 564–9, 568–9, 570,
578–9
Turku and 321
venture capital 499
firm-level studies 214–16
‘first-mover’ advantage 295
first-movers, clusters and 316
‘flagship catalysts’ 171
‘flexible specialization’ 30
foreign direct investment, see FDI
foreign partners 83, 88
fossil fuels paradigm, renewable fuels
paradigm and 1
framework, geared to EU ‘NUTS 2’ level 597
France 2, 16–17, 321–2, 516, 537, 597
IDs 80
Sophia-Antipolis 161
free-riders 223, 387
French research group (GREMI) 2, 157
French School of Proximity 269, 271–2, 277
function-based approach 109, 115
game theory and spatial competition, Harold
Hotelling and 60
gatekeepers 284
role in absorptive capacity 215, 218
general equilibrium modelling, evolutionary
dynamics of Marshall’s externalities and
60
geographical proximity
advantage to service platforms 387–8
coordination through proximity 271–2
ease of communication and 68
‘external economies’ of industrial clustering
58
favours collaboration and cooperation and
470
important for regional entrepreneurship
451
innovation and 48, 269
interinstitutional fit 29
local forms of learning and 553
matters for innovation 269–71
matters in mediating knowledge spillovers
139
may be determinate of M&As 191
moulded by relational proximity 265
productivity gain and 4
regional services innovation variations 382
Tacitness gives raison d’être 185
three key advantages for service industries
388
descriptive scale, weakness in understanding
by Porter 305
descriptive and socio-cultural proximity
31
descriptive space, major function of 145–6
Index 613

growth
 - land rent theory of 29
 - regional 74
 - regional innovation and 103
 - social process 3
growth ‘pole’ concept, focus on technological change 62

‘hard’ agglomeration economies, ‘traded’ material linkages 246
‘hard’ economic institutions, patterns of economic growth 247
Harvard Multinational Enterprise Project 1965, FDI and 68

heterogeneity
 - leads to ‘creative abrasion’ 224
 - shown 91
‘high cultural’ hubs, culturally distinctive 335
high-income regions, produce ‘new’ products continuously 70
high-skilled labour, effects of 130
high-tech industries, cause less pollution than traditional 514
higher-skilled workers, lower costs and higher returns from migration 124
history of concept of absorptive capacity 211
 - in development literature 212
 - extensions to the concept 213–14
 - as firm-level concept 212–13
‘how radical is radical?’ 11, 182
HP and chipset designer Weitek, partnership between 392
human capital 119
 - decisions 122
 - effect 125
 - endogenous source of economic growth 123
 - ‘flow through’ role of university system 124
 - lagged effect of education 127
 - mobility is international 124
 - regional knowledge base and 129
human capital variable, often operationalized 215
Human Genome project 387
hydrocarbons
 - challenge of turning to clean technology 595
 - price rises in 304
IBM and Siemens, service activities 364, 367, 369
ICT 5, 96, 148, 170, 225, 272, 276, 311, 444, 587
Illinois Central Railroad 34–5
IM and MID models 168–9
imperfect competition, ‘dynamic effect’ 61
Index

‘increasing returns’, path-dependent positive ‘lock-in’ 29
increasing returns to scale, Marshall’s focus on 61
‘incubation hypothesis’, urban economies and 488
India 91, 258, 320, 393, 419, 425–30
Bangalore, international IT companies 428
Bollywood 354
brain drain with Silicon valley 337
car industry 583
education in English 425, 427
Foreign Exchange Regulation Act (FERA) 426
‘latecomer’ obstacles 424, 426
regions lack venture capital 430
semiconductor and software business 425
India’s innovation systems 424–5
IIS development 428–9
NIS development 425–7
RIS development 427–8
industrial agglomerations, three overlapping critiques 249
industrial districts
egalitarian societies 295
strength tied to exchange of information 283
industrial districts (IDs) 78–9, 87
firms in have two distinct typologies 94–5
internationalization of 92
lack of social and business consensus 87
modern and distance-learning processes 91
organizational form 90
industrial revolution, spatial concentration of economic activities 54
industrialized countries, polarization 110
industry-focused evolution from path-dependence 16
Information Age, universities and academic entrepreneurship 18
information and communication technology,
see ICT
Innovating Regions in Europe (IRE) network 599
innovation
across 15 nations 46–7
definitions 17, 531
‘democratization’ of 13
depends on growth 3–4
engine of economic growth 155
geographic proximity and 284
grounded in intergenerational transfers of know-how 252
inclusiveness spurs 290
interactive learning and 46
land use and transport interconnections 1
locational advantages in 394
measured by patents and competitive exports 318
neo-Schumpeterian perspective 184
new firms as useful devices for 482
nothing automatic about 38
Schumpeterian definition 148, 573
specialist professionals to manage 14
two forms to yield something new 597–8
where demand for new products highest 70
innovation governance, requires learning experience 543
innovation and growth 145
innovation system
relationships among components 45
seven functions 470
innovation systems: concept and scales 419–20
international innovation system 423
national innovation system 420–21
regional innovation system 421–3
innovation and technical progress, complex set of structures 43
innovative activity, returns on concentration of 110, 116
innovative capacities, do not operate in isolation 51
innovative ‘ecosystem’, gaining pace 468–9
innovative governance, four different dilemmas of RIS 542–3
innovative milieu, definition of 252
innovative milieux (IMs), ‘sets of localised players’ 168
innovative networks: new approaches 160–62
innovative networks 160
focus on regional networks 155, 162
‘innovative paradox’, place-based innovation and 607
innovative processes
many triggers 559
systemic nature of 109
uncertainty and 114
innovator, monopoly and scale economies, demand increases 68
inside technology clusters 316–17
advantages of urban areas 317–19
dispersion of R&D: centres of excellence 320–21
importance of venture capital 319–20
universities: key institutions of technology clusters 319
institutional proximity 462
institutional regional innovation systems (IRIS) 457
institutional thickness
four elements of 252
three overlapping frameworks 252–3
‘institutional turn in regional development
studies’ 540
institutional venture capital firms,
metropolitan areas 499
insurance services, innovation services and 381
intellectual capital reports, complement
financial reporting 29
intellectual property 371–2
intellectual property (IP) blocks 429
intellectual property rights 452
capabilities idea and 146
interactive learning 2, 29, 46, 90, 106–7, 143,
147–8, 187, 323, 394, 394–5, 587
interconnectedness of firms, increases over
time 194
internal scale economies, diminishing marginal
cost of production 58
internalization and recontextualization 184
International Association of Science Parks
(IASP) 322–3
International Computers Limited (ICL) 364
international innovation system (IIS) 423
internationalization, models of 94
international venture capital investments, done
in syndication 497
Internet and email 225
Internet, the 368–70
software designers and 590
interregional growth rates, more sensitive than
international 238
intra-industry spillovers 144–5
inward-looking RIS, negative lock-in
situations 301
Ireland 171, 408–11, 414, 416, 487, 521
Iron and Steel Trades Confederation in
Teesside 256
irreversibility, emerges from given situation 37
irreversibility, externalities and institutional
fit 28–9
‘isodapanes’, Weber and 57
Israel 124–5, 320, 385, 413–15, 452–3, 517–20,
522
biotechnology and software incubators
522–3
capital–labour ratios 125–7
high-tech mini-clusters 268
incubators 452–3, 519
Model 1 and homogenous specification 128
Model 2 human capital allowed to vary by
region 129
Model 3 the most heterogeneous form of
estimation 129
observations on six regions for 12 time
periods 127–8
private technological incubators 519–20
spatial panel data 125
venture capital 320, 518, 520
Israeli Public Technological Incubator
Program 517–18, 523
Italy 188
23 districts analysed 92–4, 97
ceramic tile industry 305
CERVED archive and IDs 92, 97
economies of scale in large corporations 2
Emilia-Romagna and Tuscany 2
empirical case studies 549
fashion designers 591
governance types 536
IDs 78, 80, 82, 85, 90–91, 95, 298, 322, 342
internationalization of 95
industrial districts 200, 293
Lombardy 9, 532, 590–94
Lux Ottica 92, 94, 95
Milan and personal relationships for design
286
north-east and central 247
northern and industry 282, 289
Piedmont 150
Prato Chinese district 306, 313, 337
‘real service’ to SMEs 530
study of industrial districts 158, 536
technological incubators 516
‘Tuscan’, ‘Emilian’ and ‘Marche’ models 267
Jacobian tradition, knowledge transfer and
119
‘Jacobs externalities’ 58–9, 104, 181, 187–8,
190, 373
Japan 74, 80, 217, 276, 409, 413, 428
Flamenco 359
ICT 410
lean production 383
point-of-sale (POS) system 368–9
technological incubators 516
JTH experiment, modified, citations of patents
of mobile inventors 138
JTH results 136–7
Jutland 11, 338, 444
energy 442–3
forestry 183
wind turbines 17, 442
k-innovations 40–41
‘Keep It Simple Stupid’ (KISS principle) 41
knowledge
bedrock of innovation 125
public nature of 224
Index

616

source of regional economic development and growth 222

‘sticky’ properties 122

transferred by individuals 136–7

knowledge capabilities, residing in networks and open innovation 396

knowledge circulation, complementary to that across regions 148

knowledge diffusion processes 110

knowledge economy 169

competitive advantage of nations 270
demise of Fordist model 160

economic development across the globe 606–7

regional development mixed 604

weightless products of 547

‘knowledge entrepreneurs’, dealing in intellectual property 416

knowledge externalities, source of regional productivity gains 129

knowledge filter theory 110

knowledge flow, decreases with social distance among inventors 138

knowledge flows

agglomeration externalities literature and 189

classified as spillovers 132

globally map of 174

increasingly international 424

not only spatial but socially bounded 140

reason they are spatially bounded 136

knowledge generation innovation 120

knowledge labour, major outflows and infows 30

knowledge links, four types 459

knowledge sharing, dilemmas of 223

knowledge spillovers 50, 103–4, 122, 182

agglomeration of economic activity and 63
difficult to trace 129

globally localized 187

localization of 137–8

mechanisms of 227–8

knowledge transfer, challenge to investigate key mechanisms 195

knowledge-based ‘gatekeeper’ firms, knowledge filters empirically through 184

knowledge-based innovation

territorially embedded process 226

three theoretical approaches 226–7

knowledge-intensive business services (KIBS) 335, 366, 384–6, 390, 588

importance of geographical proximity 388

Korea 321

labour market ‘churning’ mechanism 124

labour mobility 119, 124, 193

Lancashire, textile industry 540

Latin America 521

lead firms, role to ‘pollinate’ the local context 175

lead markets, healthcare and education 588

leadership, problem of overpersonalized 20–21

‘lean production’ 7, 15, 337, 383

learning

concept, institutional aspect 49

from both success and failure 605

in a milieu 113–14

outcome of social capital 290

learning by doing 5, 28, 121, 183, 346, 470, 489

‘learning by interacting’ 183, 470

‘learning’, ‘creative’ or ‘innovative’ region 121

learning regions 530–31

concept of endogenous regional development 552

contemporary views of 552

definitions 548

discussion and conclusions 552–4

founding fathers 548–51

TIMs 547

Lehman Bros 20

Leontief paradox 68

less-favoured region (LFR) 547, 550–51

lifelong learning 111

Limburg, coal mining region prospers 16

Linwood and Bathgate, path-dependence and 183

Liverpool–Manchester railroad 37

‘living laboratory’ 309, 532, 579

local amenities, to encourage socialization and networking 290

local milieu 113

local recentrage of social organization 80

localization economies, agglomeration 487

localization externalities, scale economies and 246

localized knowledge spillovers (LKS) 270–71

locally based determinants of entrepreneurship, neo-Schumpeterian accounts 251

location and ‘anchoring’ of lead firm, beneficial 173

location process, nature of tacit knowledge 270

location theory 55–6

locational evolution 27–8

‘lock-in’ 79, 104, 106, 201, 471, 576

‘lock-out’ of firms, not investing in absorptive capacity 184

London 144, 336, 385–6
long-wave-inducing innovation 13
low-wage destinations, production shifted to 68
lower communication costs 54
Lower Silesia 538
machine-tool industry, mobility of mature industries 72
macroeconomics growth literature (1960s) 212
‘Made in Italy’ districts 96
mail-coach firms 35–6
Management Leader Group, connected to ENP 511
manufacturing filières 81, 87
MAR 104–6
Mark I model, model of economic evolution 38, 40–41
Mark II model, innovative oligopolistic competition 38–40
‘market failure’, innovation debate and 460
‘market processes’, not suitable for sociological study 156
market relationships, networks and 159
‘Marshallian industrial district’ (MID) 78–80, 83–6, 87, 90, 168
Marshall’s triad of external economies of industrial localization 247
mass immigration, may not have adverse effect on manufacturing 124
Massachusetts
decline of computer business 283
services innovation 386
Massachusetts Biotechnology Council 20
Massachusetts Institute of Technology (MIT) and Stanford 315–16, 387
matrix thinking, use twofold 582–3
mature clusters, three characteristics 297–8
‘mature’ IDs 78–83, 86
mature Western IDs 91
measurement of knowledge flows 136
evidence from surveys 139
markets for technologies 137
mobility of skilled workers 136–7
social networks 137–9
use of patent citations 136
mergers and acquisitions (M&As), technologically related knowledge bases 190–91
Metropolis 1985 study 7, 67–9, 72
metropolitan areas, large have more inventors than smaller 139
metropolitan statistical areas (MSA), new products at level of 134
micro-nationals 416
microelectronics, Sematech and research 284
Middle West, railroadization 34
migration, human capital investment decision 123
milieu, ‘cognitive engine’ 113
milieu innovateur theory (1980s) 113–14
mobility 173, 175–6
Model ‘T’ Ford 37
‘mooring’, to access embedded knowledge 172
multilevel governance, long-term vision and strategy-making 606
multilevel governance systems, important role 537
multinational corporations (MNCs) 428
dominate marketplace for technologies 424
more ‘technical push’ than ‘market pull’ 589
multinational enterprises (MNEs)
generators of new knowledge 151
geographical reach by overseas subsidiaries 69
‘internal’ actors 149
new sources of cheap labour, capital and land 81
purchasing R&D 371–2
spur diversification of regional knowledge base 150
multinationals
concentrate FDI on sectors with low R&D 73–4
shift manufacture of products 69
nanotechnology, cutting-edge research and 317, 411
national competitiveness, move from obscurity to meaninglessness 235
national innovation system (NIS)
difference between countries 455
framework for science and technology 315
national innovation systems (NISs) 420, 463
national systems of production, national institutions and 45
national-specific factors, role in shaping technological change 420
neo-mercantile image of international trade, zero-sum game 235–6
neo-Schumpeterian, concerns about innovation and policy 182–3
neo-Schumpeterian perspective, commercialization of new knowledge 44
neoclassic theory, labour migration and rate of economic growth 123
neoclassical approach, innovation as an exogenous variable 43
neoclassical modelling, agglomeration and 61
neoliberal epoch 9, 588
Index

‘neolinear’ innovation models 8–10, 19, 587, 594–5
Netherlands 16, 188, 400–403, 412–13, 434, 600
network, reciprocal linkages and 49
network evolution over time, analysing 161
network paradigm, corporate and spatial dimensions of 48
network position, firms’ characteristics and 161
network systems of governance 536
networked regional innovation environment, five dynamic capabilities 568
networks
advantages in innovation processes 156, 161
benefits associated with 223
different forms and structures 231
dynamic systems 231
forms of learning in 228
four dimensions 105
knowledge diffusion and 193
knowledge-intensive exchange 227
proximate relations between economic actors 222
proximity and 225
spatially grounded 48
stronger strategic behaviour of firms within 224
networks of innovation 155–6
degree of formalization 156–7
geographic scope 157–8
method or approach to analysis 157
types of actors 157
‘Neutron Jack’ Welch (CEO General Electric) 19–20
‘new’, restricted sense of 72–3
new cluster theory, ‘old’ agglomeration theory and 63–4
new economic geography (NEG) 5, 60–61, 119–20, 265, 269
new equilibrium, mix of railroad and horses 35
new era of capitalist economic development (1970s) 246
new firms, entrepreneur with pre-entry background in industry 190
new forms of FDI in the knowledge economy 412–13
entrepreneurship by R&D FDI centres 414–15
financial FDI 413–14
micro-multinational firms 415–16
new growth theory (NGT) 6, 103, 119–20
‘new industrial districts’ 246
new industries, ICT and biotechnologies 170
new industry, anchoring, transforming mobile into immobile factors 172
new knowledge 63
new labour-saving devices 68
new Marshallian districts, learning systems 97
‘New Men’ 38
new millennium, culture as strategic resource 350
new path creation, path-dependent process 204
new principle, invention of is rare event 72
new products, enhancements of existing products 72–3
new regional development paths 203–4
‘new regionalism’ literature 227
new technology-based firms (NTBFs) 315, 319–20
‘new trade theory’ 60
New York
competitiveness, difficulties of explaining 67
failure of optronics cluster 594
newly developing countries, unspecialized IDs 95
newly industrialized countries, developed countries and 270
newly industrializing countries (NICs) 547
NIRAS consultants 443
non-governmental organizations (NGOs) 438
Nordic countries 8, 183, 296, 304, 570, 590
‘green innovation’ 17
North America, industrial districts 158
North Carolina, Research Triangle Park 315, 319
North Jutland 183, 443
North-Rhine Westphalia 536
Northern Ireland 487
Norway 299, 568
locally based TIM 550
OCS 517, 520, 523
OECD 218
OECD–EU policy model, high-income agglomerations and 72–3, 75
Office of the Chief Scientist, see OCS
Ohio greenhouse cluster 229
‘old institutionalism’ 251
old Marshallian model 90
open innovation
corporate outsourcing 336
importance of global competitiveness of RIS 395
relatively new model 403
opportunistic behaviour, isolation and punishment for 115–16, 534

Philip Cooke, Bjørn Asheim, Ron Boschma, Ron Martin, Dafna Schwartz and Franz Tödtling - 9780857931504
Downloaded from Elgar Online at 04/06/2019 12:29:20PM
via free access
orchestration 583
awareness that process may affect innovation
environment 412
model subject to continual review 580
regional innovation 450
role of 21, 30
organizational learning 228–9
organizational proximity 274
Oslo, lock-in favouring traditional oil-rigs 267, 299
outsourcing 14, 313, 395
cars 74
decentralized production 7–8
industrial R&D 365
international, strategy of diffusion 96
specific tasks and 75
Oxford’s Motorsport Valley 248, 253–4, 318, 321, 385

‘The Packaging Arena’ (TPA) 311
paradigm, denotes ‘dominance’ 19
‘paradigm shifting’ 7, 10–11
partial equilibrium model, Weberian model 57–8
Patent Act (1972) 426
patent citations 136
patent data 161
innovation and 133, 270
patenting activities 109
patents, only small proportion are commercized 285
path-dependence
across different industries, need not be isomorphism 200–201
arising in economic history 181
depth, memory in regional development process 202
‘foundational concept’ 198
identification of policy action 207
strength of historical causality 201
two main types 205
path-interdependence or holistic regional evolution 449
paths to cultural enhancement 352
cross-fertilization 355–6
cultural enhancement of economy 354
economic enhancement of culture 352–3
economic renewal 355
serendipity 256, 356
urban renewal 354–5
pecuniary externalities 59, 61–2, 103, 106, 135–6, 168

Index 619

peripheral regions, less capacity to absorb knowledge 605
pharmaceuticals, direct supplier industry of public healthcare 588–9
place-based policies, support disadvantaged areas 601
‘platform’ concept, regional innovation and renewal 531
platform model, regional intercluster 577
‘platform’ model of regional innovation, characteristics of 532
‘pole’ concept, transformed from French to English connotation 63
poles of growth (‘pôles de croissance’), economic growth 61
policy-driven ties, networks and 159–60
Portland’s high-tech industries, Intel and Tek Tronix 171
Portugal 2, 80
positive externalities 54
post-Fordist economy 167, 246, 253, 259, 424
Post-it note, classic ‘useful innovation’ 576
post-Schumpeterian researchers 32
private incubators, differ from public ones 453
PRO INNO innovation policy initiative 600
process innovation, involves labour-shedding 4–5
Proctor & Gamble 395
product cycle
two Vernons 69
what is left of Vernon’s regional version 71
filtering down 73–4
new products and importance of dominant design 72–3
where does innovation occur? 71–2
product innovation, creates employment 4
‘product life cycle’ 30
product or process innovation of firms (2004–06) 384
product-cycle hypothesis 67, 75
Vernon and 68
product-cycle literature, demand elements in 70
production
concentrated in industrial districts 2
reagglomeration of 246
productivity gains, knowledge and commercial exploitation 4
productivity growth, between US and EU 5
proximities and internal–external interactions 277
proximities to proximities 277
proximity
deals with coordination 276
diverse forms 563
important to user-driven innovation and creativity 286
key concept 439
reduces uncertainty in innovative activity 123
‘umbrella’ concept, four functions 556–7
proximity and frameworks 560–62
proximity and innovation, relationship between 265
Proximity School 265
public sector support, cluster associations and 289
‘punctuated equilibrium’ 205–6
‘punctuated evolution’, ‘creative destruction’ and 15
pure and pecuniary externalities, distinction between 135
‘quality of place’ 393
questions and open debates
articulating approaches, articulating levels 278
determination of knowledge 278
local and the global 277
negative effects of proximity 277–8
proximity and internal/external interactions 277
proximity to proximities 277
QWERTY keyboard 12–13, 16, 201
R&D 7, 17, 50, 62, 96, 104, 109, 110, 112, 114–15
- based clusters 294–5
development 335
fine-tuning of national 598
functions of TNCs 549
geography proximity and 265
government centres 124
hypothesis 218
incubator projects and 126
industrial relations and 535
institutes 293
intensity 133, 135, 225
international 462
investment in 212–13, 216
laboratories 587
locations of new sites 320
low activity in Oslo firms 299
networks 395
organizations 211
pecuniary 266
private 134, 140, 217, 226
role in building absorptive capacity 214–15
services 429
of spillovers 132
teams 229
technological clusters and 316
university spending 135, 296
US consortia 284
radical innovation 10, 11–14, 146
‘railroadization’ 28, 33–4, 36, 40
RDPM 564, 567
eight phases 568
‘real services’ 539
recent developments and challenges 462–3
recent path-dependence, form of historicity 202
‘recombinant methods’ of innovation, spatial process concept 575
recombination, crossing ‘structural holes’ and filling ‘white spaces’ 577
‘Red Flag Act’ 12
‘regime-push’ 14
regional, focus of 49
regional absorptive capacity 149
regional advantage, regional competitiveness and open innovation 392
competitive advantage 393–4
interregional 393
intrag regional 392–3
regional anchors 167, 170–71
regional comparative advantage 172
regional competitive advantage clustering externalities and 239
theory of heavily criticized 237
regional competitiveness determined by productivity 236, 239
no clear definition 235
regional conditions of entrepreneurship 484
compositional factors 484–5
contextual factors influencing individual entrepreneurial decision 485
entrepreneurship as organized product 486
entrepreneurship as social (family) phenomenon 485
nature and localization of industries 487–8
regional access to financial capital 489–90
regional culture 488–9
Index 621

regional knowledge production 489
urbanization 488
regional cultural economy, learning, innovation and development 248
regional culture, ethereal and eternal 253 ‘regional culture of production’, dimension of comparative advantage 185
regional culture structures, innovative activity in some regions 253
regional development, stickiness of innovation 285
regional development agency (RDA), catalyst for innovation 312–13
Regional Development Centre Programme 568
regional development platform method 305–7
constructing regional advantage 309
regional development methodology 307–8
regional development platform implementation 308–9
regional development theory 307
regional dynamic comparative advantage 241–2
regional economies
competition and 235
subject to structural change 189 ‘unbounded view’ 605
regional governance
policy learning and 529–31
variability in powers of 18–19
regional governance structures, ‘output’
regional collective goods 542
regional governments, three key roles 538
regional growth 74
how open innovation can be identified 391–2
regional industrial agglomerations, threefold argument 248–9
regional industrial systems, gendering of innovation and learning 257
regional inequalities 121
regional initiatives, tied to EU’s innovation and competitive policy 597
regional innovation
role of social capital 266
Schumpeterian origins 27
taught in universities 1
regional innovation governance, challenges for 542–4
regional innovation intermediaries
role of 467–8
table 471–3
regional innovation intermediaries at work in Europe 474–5
case of regional innovation intermediaries in Wallonia 475–9
regional innovation platform model 556
regional innovation quadrants 581
Regional Innovation Strategies/Regional Innovation and Technology Transfer Strategies, see RIS/RITTS
regional innovation system, see RIS Regional Innovation and Technology Transfer Strategies (RIS-RITTS) programme 600
regional innovation theory
Marshallian and neo-Marshallian perspectives 30 and tailored empirical research 18
regional innovations systems issues 449–51
regional knowledge
anchoring capacities 174
contrasts in 450
generation 538–9
spillovers and 123
regional literature, filtering-down process 70
regional ‘lock-in’ 308
regional networks
not self-contained and self-sufficient entities 230–31
transregional flows of knowledge 230
regional open innovation, can be double-edged sword 402
regional path-dependence, ‘depth’ is of importance 207
regional path-dependence concept 199–200
regional policy and incentives 407–8
‘regional regime’, variety, cluster evolution and 267
regional science, regional innovation systems and 2
regional services innovation 380
regional socio-technical paradigm changes 16
regional specialization, regional anchor and 171
regional systems of innovation, see RSIs
regional variations in new firm formation, differences in regional industries 487, 490
regional variety, different forms of 147
regional venture capital, policies towards 501–2
regional worlds of innovation 336
regional worlds of production 341–5
regionally specific cultures, importance of 247
‘Regions for Economic Change’ (RfEC) 600
regions of high-related variety, ‘biotech clusters’ 387
related diversification, regional level 191
related variety allows higher absorptive capacity of regions 300
driver of innovative capability 563
implications of 574–5, 583
622 Index

spatial externalities literature 188
treated as static and given 189
two things of importance to 303
relatedness, knowledge spillovers and 187
‘relative absorptive capacity’ 213–14
relocation, globalization challenges 82
Renfrewshire and East Lothian (Scotland), late path-dependence 182–3
revolutionary innovations, implemented in new agglomerations 71
Ricardian comparative advantage, incomplete explanation for competitiveness 238
RIS 169, 455, 541
consists of institutional infrastructure 64
differs from NIS 421–2
failures 460
governance and business structure 50
must be innovation-prone 315
narrow and broad definition 296–7
relevance of regional networks of firms 49
roots in innovation system approach 217
systematic framework for development of 569
two subsystems 293–4
types 463
risk capital proximity, ‘convention radius’ 452
risk-finance, dried up 310
RISS and nature and geography of knowledge flows 458–60
role of the state 460–62
rivalry and competitive advantage, Porter and 306–7
‘Romer externalities’ of urbanization 181–2, 187
rotating leadership 20
Royal Bank of Scotland 20
RSIs 149–50
rules and conventions, important for four reasons 602
S&T intermediary system in Wallonia 476–7
Salt Lake City 248
Mormon ethics and 254
San Diego and Boston, local universities anchoring players 170–71, 319
scale economies 54
externalities and 58–9
Marshall and 55–6
Schumpeterian disequilibrium and evolutionary perspectives 29, 451
science and technology (S&T) policy 51
science-based methodology, competence centre and 230
science-intensive innovation activities 4
Scotland 416, 487, 498
sectoral and functional approach 107–8
sectoral innovation systems (SISs) 463
sectoral system of innovation, definition 48
securitization, first collateralized mortgage bond (CMB) 9
self-employed parents, positive effect on offspring 485
semiconductor patents 136, 319
service industries, innovation in 335–6
service industry innovation, quite extensive 389
service innovation 363
expanding notion of innovation 366–7
R&D and service innovation 365–6
reverse product life-cycle theory 366
what is service innovation? 364–5
what is service? 363–4
service innovation and regions 372–4
services geographical proximity, enhances knowledge spillovers 386
services innovation, regional dimension 384, 386
services and manufacturing, borderline can be fragile 383
Services, Science, Management and Engineering (SSME) 375
services-oriented architecture (SOA) 367
Silicon Valley 4, 11, 18, 161, 182, 190, 199
active networking and 318
agglomeration of industries 514
biotechnology and 395
evolved through ICT 317
high-tech clusters 159
immigrants and open boundaries 393
innovative region 582
interpersonal world 342
learning region 552
new Argonauts 258
open information flow and learning 392–3
R&D 321
regional development 248–50
research university and 296
satellite status 385
services innovation 386
social capital and 287
successful growth of 253, 315
venture capital 320, 324, 498, 500
Silicon Valleys of dissimilar types 54
Silicon Valley’s exceptionalism 185–6
Silicon Valleys and Research Triangles 129–30
‘simultaneous engineering’, matrix management 8
Singapore 537
Slovenia 537
small and medium-sized enterprises, see SMEs
smart specialization 605–7
SMEs 2, 7, 30, 71, 78, 81–3, 85, 289, 474
Chinese in Italy 337
clustering and embedding practices of 598
collocation and 226
FDI and 407
quality products and 295
venture capital and 501
SNA, economic geographers and 162
social capital
can reduce transaction costs 297
embedded in memberships not community
or region 289
impact on learning and innovation 282
limitations and cost of 288
measurement of 266
must encompass global pipelines and local
buzz 291
outcome is innovation 284
racial inequality and? 288
societal actors and 535
stimulates cooperation 266–7
social capitalism, less-favoured and less-
populated regions 290
‘social filters’ 227
social network analysis (SNA) 157, 162
social ties, networks and 159
socio-cultural ‘innovative milieu’, ‘nexus of
untraded interdependencies’ 252–3
soft-institutional ‘conventions’ issues 449, 453
Software as a Service (SaaS), ‘virtual
businesses’ and 415
Software Technology Parks (STPs), India 427
solar energy, now uses thin-film polymers but
also silicon 310
Sophia-Antipolis 161
South East of England 150
South Korea 258, 516
Southeast Asia, consumer electronics and 74
Southern California 536
space, source of knowledge creation 113
Spain 2, 80, 188
Andalusian culture 334–5, 350, 357–60, 371
economia de la fi estas 357, 360
Feria de Abril 357–8
Museo del Baile Flamenco (Museum of
Flamenco) 358–9
Semana Santa festivities 358
technological incubators 516
Zara 368
spatial clustering, understanding goes back to
Marshall 64
spatial clustering of persons, advantages of 56
spatial externalities, labelled localized
economies 187
spatial proximity, venture capital and 489
spatial spillovers, Marshallian externalities and
122
spatially bounded knowledge 228
specialization, versus diversification 143
specialization and diversification, dynamics of
growth and agglomeration 181
specialization and diversity, cumulative path
150
specialization of venture capital fi rms, building
up competencies and 500–501
specialized knowledge, European and Japanese
fi rms 71
specialized labour markets, localized 56
Standard Industrial Classifi cation (SIC) 188
standardization phase, ‘less developed
countries’ start production 69
star scientist, external knowledge from 137, 228
static knowledge exchange 459
Stockholm, ICT cluster 318–19
‘strategic niche management’ 10–11
structural approach 107, 110–11, 115
‘structural holes’ or ‘white spaces’ 573
structural unemployment, if no increase in
variety of industries 483
subprime mortgage demand, Florida and
California 9
sustainability, regions seek 10
Sweden 2, 18, 188, 191–2
IDs 80
incubation and 453
knowledge-intensive industries 505
Packaging Arena laboratories 311, 383
Skåne and ‘white spaces’ concept 585
study of different sectors of 47
Värmland in 183, 311, 579
Switzerland 2, 106, 175, 251, 395, 553
system failures, four types 469–70
systems of innovation approach, nature of
systemic interactions 43–4
systems of innovation perspective 45
national systems of innovation 45–7
regional systems of innovation 48–51
sectoral and technological systems of
innovation 47–8
tacit knowledge 121, 172
Taiwan 258, 320–21, 393, 412
Hsinchu Science-based Industrial Park
(HSIP) 323
‘tangible’ and ‘intangible’ resources, culture
and 35
Tasmania 568
tautological reasoning 111
Index

‘technical push’ and ‘market pull’ 587

technological change
 cumulative and irreversible character 44–5
 foreign firm and 171
 formal economic modelling 63
 technological change and economic growth, neo-Schumpeterian approach 65
 technological complexity, renewal frequency of knowledge base 271–2
 technological development, cyclical process 205
 technological externalities 59, 63
 technological fi lières 108–9
 technological incubators idea 515–17
 technological paradigm shifts 16, 169
 technological relatedness, might be relevant 189
 technological specialization 55
 technological systems, focus of 47–8
 technologies
 common structure 44
 transferred to subsidiaries are about ten years old 71
 technology, key elements of knowledge, skills and artefacts 44
 technology clusters
 complex 324
 immature stages of ‘cluster life cycle’ 268
to early stages of industry life cycle 315
 ‘well-functioning’ RISs 316
 technology spillovers 145
 technopoles, ‘cathedrals in the desert’ 171
 technopolis, 20 to 30 years to develop 324
 territorial innovations models, see TIMs
 theoretical perspectives 435
 co-evolutionary transition theory 437–9
 urban regime and ecological modernization theory 435–7
 theory of land rent 54
 ‘Third Italy’ 2, 30, 79, 266–7, 295, 297
 TIMs 547–8, 550, 551, 554
towards regional innovation platforms 560–69
 Regional Development Platform method in Lahti Region Finland 564–9
two models of regional innovation 560–64
 Trade Related Intellectual Property Rights (TRIPS) 423, 429
 translocal specific public goods 86–7
 transmission of ideas, interfirm mobility of workers 283
 transnational companies (TNCs) 549
 transnational corporations (TNCs) 427, 429
 transversality 106, 182–3, 309–10
 ‘joined-up governance’ 268
quest for found new literature on ‘policy mix’ 310
 role of RDAs 313
 source of useful interaction among firms 580
 spatial process concepts and 573, 583
 variety of types 310–13
 transversality and platforms, two elements of regional innovation thinking 303–4
 ‘Triple Helix’ 396, 411–12, 421, 512
 Turkey 188, 453, 516
tweeting, important complement but does not replace talking 291
 Twente 317

UK 188
 automobile sector 199
 clean energy clusters 204
 light industry in old industrial regions 16
 media companies in East and West Sussex 286
 Merseyside Rainhill Trials 383
 National Endowment for Science, Technology and the Arts (NESTA) 384
 regional policy 389, 548
 spillovers and 218
 technological incubators 516
 technology transfer a third stream for universities 321
 Training and Enterprise Councils (TECs) 588
 West Midlands automotive industry 8, 183
 West Midlands and North West 150
 uncodified knowledge, imitation and reverse engineering 109
 United Nations 191, 360, 406
 universities
 anchor tenant 170
 entrepreneurial opportunities 110, 489
 important mechanisms, convention sets not profit-motivated 453–4
 three functions of 319
 universities and venture capital, role of 316
 University of Birmingham, Services and Enterprise Research Unit 375
 University of California
 semiconductors and computer science 296
 SSME program 375
 university laboratories, localized knowledge spillovers 133
 university research, 50 miles from MSA 134
 US 68–9, 94, 321
 automobile industry 199
 banks buy more computers than European 381
Index 625

basic spatial unit of analysis 133–4
‘bioscience megacenters’ 317, 415
Capitol biotechnology cluster in Maryland 295
clean energy clusters 204
clusters of innovation in five metropolitan areas 284
distance knowledge can travel 228, 230
foreign investment mainly from 408–9
high-tech locations 186
Private Industry Councils (PICs) 588
Stanford Industrial Park 322
Technological incubators 452, 453, 516, 531–2
Troubled Relief Programme (TARP) 20
US–India Bi-National Science and Technology Endowment 429
US–India Defense Relationship 429
user needs, marketing manager and 8
user producer innovation 14–15
user-driven innovation 10, 589
venture capital, geographically skewed 320, 452, 495, 497–8
venture capital market, certain inertia 502
Wal-Mart, ‘every-day-low-price’ (EDLP) 368, 373, 440
Wales 384, 408–9, 439, 487, 498, 538, 550
Wallonia, regional intermediaries in 475–9
waste recycling 434, 588, 595
waveform economic evolution 28, 33
‘white spaces’ or ‘structure holes’ 576
‘work–life balance’ (WLB) arrangements 257–8
workshop systems, Industrial Age 18, 28, 79
World Trade Organization (WTO) 423, 429
worlds of production 334, 339, 340, 347–8