Index

Abramovitz, M. 99
acid rain 53, 66, 85
acid rain control policies 66, 67, 129–30
administrative status
environmental protection agency 20, 21, 31, 33, 91, 120
environmental protection bureaus and offices 10, 13, 72–3
local environmental agencies 12, 20, 31, 120
State Environmental Protection Administration (SEPA) 11, 12, 13, 21, 66, 91, 120
‘Agenda 21’ 265
agricultural labor 7, 150, 151, 152, 153, 154, 161
agricultural land 148, 149, 270, 275, 282, 288, 290, 291
see also cultivated land; grain harvested land; irrigated land area
agricultural machinery 148, 150, 151, 153, 154, 161
agricultural sector
and experts’ judgment on the future perspective study 267, 274, 275, 280–81, 282–3
and forecasting pollution study 305
and stagnancy of energy-related CO₂ emissions study 199, 200, 201, 202, 203, 204, 211, 212, 215
see also water efficiency and agricultural production study
agricultural share of GDP 267, 274, 280, 288, 289, 291
Aigner, D.J. 174–5
AIM Project Team 264, 266
air pollution
and efficiency in environmental management study 53, 66
and efficiency in environmental management study II 83, 85, 91
and environmental Kuznets curve (EKC) study 33–4, 38–9
extent of 1, 19
and increasing returns to pollution abatement study 129–30
SEPA estimates 51, 83, 122
see also CO₂ (carbon dioxide) emissions; dust; SO₂ (sulfur dioxide) emissions; soot
air pollution control laws 12, 66, 67–8, 91, 129
air pollution control policies 1, 2, 19, 66, 129–30
air pollution control regulations 12, 129–30
air quality standards 12, 129
Aitken, B. 99
Allen, F. 5–6
Anastasi, C. 265, 268
Andreoni, J. 121–2
Ang, B.W. 192, 198, 212, 223, 229, 257–8
animal foodstuff consumption 270, 275, 282
Aoyagi, S. 42, 47–8, 49–50
Arellano, M. 128
Asian financial crisis 62–3
Auffhammer, M. 197
Balk, B.M. 47, 55
bargaining power of enterprises 14, 39, 72, 78
BAU perspective, in experts’ judgment on the future perspective study 293, 294, 295
Bayesian MCMC (Markov chain Monte Carlo) methods 139–43
Becker, G.S. 101, 106
Berman, E. 98
Chinese economic development and the environment

Bhattacharyya, A. 148, 149
bias, in experts’ judgment on the future perspective study 269, 271, 291–3
biomass fuel 71, 284, 288
Bjurek, H. 47
Blanchard, O. 5
Blundell, R. 27, 128, 129
Bolt, K. 1, 19
Bond, S. 128, 129
bottom-up forecasting approaches 264
Boussemart, J.P. 45, 63
Briec, W. 48, 49, 80
Brown, L.R. 266
Brunnermeier, S. 98
Bui, L.T.M. 98
capital accumulation 7, 214–16, 217
capital investment 173, 174, 182, 184, 188, 214
capital–labor ratio 214, 215–16, 217
capital stock
and efficiency in environmental management study 52, 53, 55, 56, 57, 58, 63
and efficiency in environmental management study II 83, 84, 86, 87
and foreign direct investment and environmental policies study 101, 102, 105, 106, 107, 108, 114, 116
and increasing returns to pollution abatement study 122, 123, 126, 127, 129
and iron and steel industry productivity study 169, 180–81
and stagnancy of energy-related CO₂ emissions study 205
see also agricultural machinery carbon intensity
and energy supply-side and demand-side effects study 232, 233, 234, 235, 236, 240–41, 245, 248
and stagnancy of energy-related CO₂ emissions study 199, 200, 201, 202, 203, 204, 208–11, 219
Carter, A.C. 148, 149
Caves, D.W. 43, 44–5, 46, 51, 80, 126
central planning 2, 3, 7, 59
Chambers, R.G. 42, 45, 46, 47, 51, 176, 178–9
Chang, C.C. 9
Changjiang 149–51, 152, 160, 161, 162, 167
Charnes, A. 175
chemical oxygen demand (COD)
and efficiency in environmental management study 53, 55, 56, 58, 63, 69
and efficiency in environmental management study II 84–5, 86, 87, 92
and environmental Kuznets curve (EKC) study 33, 34–5
and forecasting pollution study 298, 299, 300, 303–4, 306
Chen, B. 59
China Energy Balance Tables (CEBT) 191, 192, 205, 206
China Energy Databook (LBN/ERI) 197, 233
China Energy Statistical Yearbook (NBS) 180, 197, 205, 206, 233
China Environmental Statistical Data and Materials 114
China Environmental Statistical Yearbook (CESY) 24–5, 52, 53, 54, 84, 85, 123, 124
China Environmental Yearbook 169, 170
China Industrial Economy Statistical Yearbook (CIESY)
and efficiency in environmental management study 52, 54
and efficiency in environmental management study II 84, 85
and energy supply-side and demand-side effects study 237
and environmental Kuznets curve (EKC) study 24
and foreign direct investment (FDI) and environmental policies study 114
and increasing returns to pollution abatement study 123, 124
and stagnancy of energy-related CO₂ emissions study 198
China Industrial Water Conservation
Index

Report (CIWCR) 169, 170, 173, 180
China Iron and Steel Industry Fifty-Year Summary (Ministry of Metallurgical Industry) 179–80, 184
China Statistical Yearbook (CSY) and efficiency in environmental management study 52, 55
and efficiency in environmental management study II 84, 85, 86
and energy supply-side and demand-side effects study 237
and environmental Kuznets curve (EKC) study 24, 25
and foreign direct investment (FDI) and environmental policies study 114, 115
and increasing returns to pollution abatement study 123, 124
and iron and steel industry productivity study 180
and stagnancy of energy-related CO₂ emissions study 197–8
and water efficiency and agricultural production study 155
China Water Resources Bulletin (CWRB) 153, 154
China’s Statistical Yearbook on Science and Technology 114
Chongqing 271, 278, 285, 286
chromium six and efficiency in environmental management study 53, 55, 56, 58, 63, 69
and efficiency in environmental management study II 85, 86, 87, 92
and environmental Kuznets curve (EKC) study 21, 33, 36, 38
Chu, S.F. 174–5
cleaned coal and coking products 138, 226, 242, 243
Cleveland, W.S. 26–7
climate, and agricultural production function 148, 149
CO₂ (carbon dioxide) emissions and efficiency in environmental management study 53
and energy supply-side and demand-side effects study 227, 228, 229
and environmental Kuznets curve (EKC) study 37–8
and iron and steel industry productivity study 180, 181, 185, 186, 187
power plant scale effects 243
statistics 1, 191, 192, 197, 205–7, 223–4
see also energy supply-side and demand-side effects study; stagnancy of energy-related CO₂ emissions study
coal combustion 66, 71, 72
coal consumption and efficiency in environmental management study 53, 54, 55, 56, 57, 63
and efficiency in environmental management study II 80, 83, 85, 86, 87–9, 90
and energy supply-side and demand-side effects study 225–6
and environmental Kuznets curve (EKC) study 33, 37–8
and forecasting pollution study 298, 300, 304, 307, 308
and power plant scale effects 243–4
and stagnancy of energy-related CO₂ emissions study 199, 200, 201, 202, 210, 211, 214, 219
statistics 138, 191, 194, 195, 233
coal demand 194, 195
clean gasification technologies 71
carbonization technologies 71
coal mining 244, 245
coal production 191, 194, 195, 197, 244, 245, 303
carbon supply 194, 195, 225, 233
carbon washing 138, 226, 242, 243
Cobb-Douglas formulation 157–8, 175
Cohen, M. 98
coking products 199, 200, 201, 202, 210, 214, 226, 242, 243
collectively-owned enterprises 6, 213, 217
commercial sector 199, 200, 201, 202, 203, 204, 211, 212, 215
Communication Statistics on 50 Years of New China 52, 84, 123
competition 5–6, 232
competition law 20
competitiveness 6, 188
Comprehensive Statistical Data and Materials on 50 Years of Chinese Industry, Transportation and Energy (NBS) 237
Comprehensive Statistical Data and Materials on 50 Years of New China
and efficiency in environmental management study 52, 55
and efficiency in environmental management study II 84, 86
and environmental Kuznets curve (EKC) study 24
and foreign direct investment (FDI) and environmental policies study 114, 115
and increasing returns to pollution abatement study 122, 123
and stagnancy of energy-related CO₂ emissions study 198
construction sector 199, 200, 201, 202, 203, 204, 211, 211, 212, 215
consumption-side derived CO₂ emissions (C-TFEC) 224
Control Objectives in Acid Rain Zones and SO₂ Pollution Control Zones in 1999 (SEPA) 66
corruption losses 228, 232
corn production 146, 147, 152, 154, 159, 160, 163
cost efficiency 72
CPI (consumer price index) 23, 51, 83
crop rotation 147
crop yields 147, 270, 275, 282–3, 288, 290, 291
CRS (constant returns to scale) 59, 82, 205
crude oil 226, 246–7
crude steel production
and experts’ judgment on the future perspective study 270, 275, 284, 285, 288, 289, 291, 292, 294
and iron and steel industry productivity study 168–9, 171, 172, 179, 180, 181–2, 185, 186, 187, 188
cultivated land 150, 151–2, 153
culture 5, 264–5, 266, 267
current account convertibility 62
DDF (directional distance function) 46–7, 48, 49, 50, 176, 177–8, 180–82
DEA (data envelopment analysis) 8, 44, 82, 124–9, 156–7, 170, 174–6
Debreu, G. 43, 80
‘Decision on Issues Concerning the Establishment of a Socialist Market Economic Structure’ 62
desertiﬁcation 271, 279, 286, 287, 288, 290, 291
Desli, E. 45, 59, 126–7
Devlin, S.J. 27
distance function
in efﬁciency in environmental management study 43–4, 45, 46–7, 48, 49, 50, 51
in efﬁciency in environmental management study II 79–83
in foreign direct investment (FDI) and environmental policies study 101–8, 116–17
in iron and steel industry productivity study 174, 176, 177–8, 180–82
distribution losses 225, 228, 232, 233, 235, 236, 242
domestic energy supply 230, 231, 232, 233, 234, 236, 245–6
Dougherty, C. 9–10
Dowlatabadi, H. 265, 268
draft animals 148
Duncan, A. 27
dust
and efﬁciency in environmental management study 52, 55, 56, 57, 63
and efﬁciency in environmental management study II 86, 87, 91
and environmental Kuznets curve (EKC) study 33, 34
and forecasting pollution study 298, 300, 302–3, 304
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Asia</td>
<td>4, 7, 10</td>
</tr>
<tr>
<td>East–West Center</td>
<td>266</td>
</tr>
<tr>
<td>Eckholm, E.</td>
<td>11, 120</td>
</tr>
<tr>
<td>eco-efficiency</td>
<td>124</td>
</tr>
<tr>
<td>economic development, and future energy-technology strategies</td>
<td>71–2</td>
</tr>
<tr>
<td>economic forecasting</td>
<td>see experts’ judgment on the future perspective study</td>
</tr>
<tr>
<td>economic growth</td>
<td>use energy efficiency; energy efficiency; environmental efficiency; inefficiency; pollution abatement and environmental efficiency causal study; production efficiency; productivity indexes; technical efficiency; transformation efficiency; water efficiency; water use efficiency (WUE)</td>
</tr>
<tr>
<td>and efficiency in environmental management study</td>
<td>59, 70–71</td>
</tr>
<tr>
<td>and energy supply-side and demand-side effects study</td>
<td>238, 239, 249, 250</td>
</tr>
<tr>
<td>and environmental Kuznets curve (EKC)</td>
<td>23, 120</td>
</tr>
<tr>
<td>and experts’ judgment on the future perspective study</td>
<td>270, 273, 274, 280</td>
</tr>
<tr>
<td>and forecasting pollution study</td>
<td>298, 299, 306–7</td>
</tr>
<tr>
<td>and foreign direct investment (FDI)</td>
<td>99</td>
</tr>
<tr>
<td>and iron and steel industry</td>
<td>184</td>
</tr>
<tr>
<td>and market economy</td>
<td>2–6, 7, 20</td>
</tr>
<tr>
<td>and productivity growth</td>
<td>6–10</td>
</tr>
<tr>
<td>statistics</td>
<td>1, 19, 70, 265</td>
</tr>
<tr>
<td>economic policies</td>
<td>265, 280</td>
</tr>
<tr>
<td>economic reforms</td>
<td>1, 2–10, 59, 62–3, 91, 99</td>
</tr>
<tr>
<td>economic structure</td>
<td>91</td>
</tr>
<tr>
<td>and energy supply-side and demand-side effects study</td>
<td>223</td>
</tr>
<tr>
<td>and stagnancy of energy-related CO₂ emissions study</td>
<td>197–8, 199, 200, 201, 202, 203, 204, 205, 208, 209, 210, 213, 216</td>
</tr>
<tr>
<td>economists’ perspective, in experts’ judgment on the future perspective study</td>
<td>291, 292, 293, 294, 295</td>
</tr>
<tr>
<td>Economy, E.C.</td>
<td>1, 13, 14, 19, 33, 72, 78</td>
</tr>
<tr>
<td>efficiency</td>
<td>156–7, 174–6</td>
</tr>
<tr>
<td>see also cost efficiency; eco-efficiency; efficiency change; efficiency in environmental management study; efficiency in environmental management study II; end-use efficiency in environmental management study</td>
<td>45, 47, 48, 50, 51, 60–61</td>
</tr>
<tr>
<td>and efficiency in environmental management study II</td>
<td>78, 79, 82, 83, 88, 91, 92</td>
</tr>
<tr>
<td>and energy supply-side and demand-side effects study</td>
<td>224, 225, 226</td>
</tr>
<tr>
<td>and foreign direct investment (FDI) and environmental policies study</td>
<td>100, 102–4, 106–8</td>
</tr>
<tr>
<td>and iron and steel industry productivity study</td>
<td>178–9, 182, 183, 184</td>
</tr>
<tr>
<td>and TFP</td>
<td>8, 9</td>
</tr>
<tr>
<td>efficiency in environmental management study</td>
<td>data 51–5</td>
</tr>
<tr>
<td>discussion and conclusions</td>
<td>70–73</td>
</tr>
<tr>
<td>empirical results</td>
<td>55–70</td>
</tr>
<tr>
<td>environmental productivity</td>
<td>63–70</td>
</tr>
<tr>
<td>market productivity</td>
<td>59, 62–3, 64, 65</td>
</tr>
<tr>
<td>model</td>
<td>42–3</td>
</tr>
<tr>
<td>basic concept</td>
<td>50–51</td>
</tr>
<tr>
<td>environmental productivity index</td>
<td>47–8</td>
</tr>
<tr>
<td>Hicks–Moorsteen productivity index</td>
<td>48–50</td>
</tr>
<tr>
<td>Luenberger–Hicks–Moorsteen productivity index</td>
<td>45–7</td>
</tr>
<tr>
<td>Luenberger productivity index</td>
<td>43–5</td>
</tr>
<tr>
<td>Malmquist productivity index</td>
<td>86–92</td>
</tr>
<tr>
<td>background</td>
<td>78–80</td>
</tr>
</tbody>
</table>
Chinese economic development and the environment

data 83–6
discussion and conclusions 92
introduction 77–8
model 80–83
Electric Power Law (1996) 211
electricity consumption 199, 200, 201, 202, 208, 210, 211, 214, 219
electricity demand 225–6, 227
electricity generation 225–6, 227, 230, 244–5, 249
electricity regulations 211
Eleventh Party Congress 2
Ellerman, A.D. 99, 100
end-use energy efficiency
and energy supply-side and demand-side effects study 223, 237, 238, 239, 240, 249
and future energy-technology strategies 71–2
and stagnancy of energy-related CO₂ emissions study 211, 212, 214, 219
end-use processes 228, 229, 231, 232, 233, 234, 236, 237, 238–9, 240–41, 247, 248, 249
end-user sector 224, 228, 229, 231, 232, 233
energy 270, 275, 276–7, 283–4, 288, 289, 290, 291
see also stagnancy of energy-related CO₂ emissions study
energy consumption
and CO₂ emissions 191, 193
and efficiency in environmental management study 53
and efficiency in environmental management study II 85
and energy efficiency 192
and experts’ judgment on the future perspective study 264, 265, 292
increases 168
and iron and steel industry productivity study 168, 169, 171, 180, 181
and stagnancy of energy-related CO₂ emissions study 197, 199, 219, 220
statistics 1, 194, 196–7, 223, 224, 226
see also income elasticity of energy consumption
energy demand see energy demand-side policies; energy supply-side and demand-side effects study; sectoral approach
energy demand-side policies 228–9
energy efficiency
and energy consumption trends 192
and energy supply-side and demand-side effects study 223, 224, 225, 242, 243, 244–5
and experts’ judgment on the future perspective study 283–4, 291
and increasing returns to pollution abatement study 124
in iron and steel industry 168, 171, 181–2, 183, 184, 185, 187
and stagnancy of energy-related CO₂ emissions study 211, 212, 213, 214, 219
energy exports see secondary energy exports
energy imports see secondary energy imports
energy inefficiency 181, 184, 185–7
Energy Information Administration (EIA) 191, 192, 223
energy intensity
and energy supply-side and demand-side effects study 231–2, 233, 234, 236, 237, 238, 240, 248, 249
and stagnancy of energy-related CO₂ emissions study 199–200, 201, 202, 203, 204, 207, 208, 209, 210, 211–13, 216, 218, 219–20
statistics 191–2, 193, 223, 224
energy laws 211
energy policies 168, 211, 214, 219, 228–9, 243–5, 249, 250, 280
energy prices 213, 224, 245, 249, 286–7
energy production 54, 191, 193, 303
energy productivity 180, 181, 183, 184, 185–7
energy regulations 211, 219
energy resource sensitive technologies 185, 187
energy saving 22
energy shortages 168
energy supply 194, 196–7
see also energy supply-side and
Index 317

demand-side effects study; reference approach
energy supply-side and demand-side effects study
conclusions 249–50
introduction 223–6, 227
model specification and data
comparison between demand- and supply-side analyses 228–9
conceptual framework of energy system 226–8
data 233, 237
issues to be explored 229–30
overall energy system model 230–33, 234–6, 253–63
results and discussion
international trade impacts on C-TPES 245–7
performance of various effects in transformation and distribution processes 241–5
performance of various effects on energy demand 240–41
relative contributions to a-typical decline on C-TPES 247–8
relative importance of each process to changes of C-TPES 237–40
energy supply-side policies 229
energy-technology strategies 71–2
enforcement 10–11, 13–14
enforcement problems described 13–14
and efficiency in environmental management study 72–3
and efficiency in environmental management study II 78, 91, 92
and environmental Kuznets curve (EKC) study 39
and foreign direct investment (FDI) and environmental policies study 102, 109
importance 2, 19
engineers’ perspective, in experts’ judgment on the future perspective study 291, 292, 293, 294, 295
enterprises see collectively-owned enterprises; large enterprises; large-scale power plants; medium-sized enterprises; ownership of enterprises; privately-owned enterprises; small enterprises; small-scale power plants; state-owned enterprises
Environment and Resources Protection Committee (ERPC) 10
environmental compliance costs 98
environmental damage charges 12, 33
see also pollution levy
environmental demand-side policies 228–9
environmental deterioration and agricultural production function 149
environmental efficiency 156, 176, 185
see also environmental inefficiency; pollution abatement and environmental efficiency causal study; water efficiency; water efficiency and agricultural production study
environmental forecasting see experts’ judgment on the future perspective study
environmental inefficiency 102, 121, 130, 156, 157
environmental Kuznets curve (EKC) 120–22, 127
see also environmental Kuznets curve (EKC) study; forecasting pollution study
environmental Kuznets curve (EKC) study
background 20–23
conclusions 38–9
data 23–6
defined 19–20
models 26–7
results
detailed emissions 33–8
key indicators – wastewater, waste gas, solid waste 27–33
environmental laws
and efficiency in environmental management study 66
and environmental institutions 10, 12–13, 120
and environmental Kuznets curve (EKC) study 20, 21, 31
and foreign direct investment (FDI) and environmental policies study 99
and increasing returns to pollution abatement study 129, 130
environmental management
and environmental Kuznets curve (EKC) study 39
evaluation 13–14
and foreign direct investment (FDI) and environmental policies study 102, 108–9
and increasing returns to pollution abatement study 129, 130, 132, 134
perspective, in experts’ judgment on the future perspective study 293, 294, 295
and pollution abatement and environmental efficiency causal study 141
see also efficiency in environmental management study; enforcement; enforcement problems
environmental policies
and efficiency in environmental management study 41, 66, 67–8, 69–70, 72
and efficiency in environmental management study II 78, 89, 91, 92
and energy supply-side and demand-side effects study 228–9
and environmental Kuznets curve (EKC) study 19, 20–21, 38–9
and forecasting pollution study 306
and foreign direct investment (FDI) and environmental policies study 97–8, 99–100
future energy-technology strategies 71–2
history 1–2, 11–13, 19, 20–21, 31, 33, 120
and increasing returns to pollution abatement study 119–20, 124, 129–30
institutional structure 10–11, 119–20
and productivity growth 41, 77, 306–7
see also acid rain control policies; air pollution control policies; foreign direct investment (FDI) and environmental policies study; hazardous waste control policies; industrial pollution control policies; natural resource protection policies; SO2 (sulfur dioxide) control policies; solid waste control policies; waste gas control policies; wastewater control policies; water conservation policies; water management policies; water pollution control policies
environmental productivity
and efficiency in environmental management study 50, 60–61, 63–70, 72
and efficiency in environmental management study II 82–3, 88, 89–92
and foreign direct investment (FDI) and environmental policies study 100–101, 102–4, 106–8, 109
and increasing returns to pollution abatement study 125–6, 129, 130, 132, 134
and iron and steel industry productivity study 176, 187–8
and technological change 308
environmental productivity index 50–51, 125–6, 130, 132
environmental protection agency, national 20, 21, 31, 91, 120
see also State Environmental Protection Administration (SEPA)
environmental protection bureaus (EPBs) 10–11, 13, 14, 72–3, 99
environmental protection offices (EPOs) 10–11, 13, 14
environmental quality see
environmental Kuznets curve (EKC); environmental Kuznets curve (EKC) study; environmental standards
environmental reforms 51, 66
environmental regulations
and environmental Kuznets curve (EKC) study 20, 21, 31
and environmental technological innovation 97–8
and forecasting pollution study 302
and market productivity 98
from 1990s 12, 33, 120
and stagnancy of energy-related CO₂ emissions study 219
see also enforcement; enforcement problems; monitoring
environmental standards 12, 41, 77, 97, 306
environmental supply-side policies 229
environmental technologies
and environmental regulation 11, 97–8
and increasing returns to pollution abatement study 124, 127–8, 130, 131, 132, 133, 134
European Monetary Union (EMU) 3–4, 5, 54
evapotranspiration 147
experts’ judgment on the future perspective study
characteristics of the indices 286–91
conclusions 295–6
forecasting China’s future 265–6
introduction 264–5
methods 269–73, 287–8
objectives 267–9
perspectives of experts 291–5
result of forecasting indices
economic growth, industrial structure and urbanization 273–4, 280–81
energy 275, 276–7, 283–4
food production and consumption 274–5, 281–3
industrial production 275, 284
pollution and environmental problems 278–9, 285–6
transportation 277–8, 284–5
factor price indexes 153, 154, 162, 163
Fan, I. 26
Fan, J. 26
Fan, S. 148, 149
Färe, R. 8, 10, 42, 43, 44, 45, 51, 78, 79, 82, 125, 170, 176, 177
Farrell, M.J. 43, 174
Feng, Y. 59
fertilizers
and agricultural production function 148, 149
and water efficiency and agricultural production study 150, 151, 152, 153, 154, 161, 163
and water use efficiency (WUE) 147
Fifteenth Party Congress 62
firms see collectively-owned enterprises; large enterprises; large-scale power plants; medium-sized enterprises; ownership of enterprises; privately-owned enterprises; small enterprises; small-scale power plants; state-owned enterprises
fiscal system 2, 3, 6
Fischer, S. 5
Fisher-Vanden, K. 168, 192, 213, 223, 224
forecasting 71–2, 308–9
see also experts’ judgment on the future perspective study; forecasting pollution study
forecasting pollution study findings 305–9
foreign demand 233, 234, 236, 246, 247
foreign direct investment (FDI) 63, 98–9, 100, 101, 104–6, 108, 109, 114
see also foreign direct investment (FDI) and environmental

Shunsuke Managi and Shinji Kaneko - 9781849803434
Downloaded from Elgar Online at 01/22/2019 12:37:14AM
via free access
policies study; foreign investment
foreign direct investment (FDI) and environmental policies study
application 101–8, 116–17
background 97–100
data 114–15
discussion and conclusion 108–9
introduction 97
model 100–101
foreign investment 2, 5
see also foreign direct investment (FDI); foreign direct investment (FDI) and environmental policies study
foreign knowledge 99
Fourteenth Party Congress 59, 62
fresh water consumption
and efficiency in environmental management study 53–4, 55, 56, 58, 63, 69–70, 71
and efficiency in environmental management study II 80, 83, 85, 86, 87–9, 90
and environmental Kuznets curve (EKC) study 33, 37, 38
and forecasting pollution study 298, 300, 304–5, 308, 309, 310
and iron and steel industry productivity study 168, 170, 173, 179–80, 181
Fridley, D.G. 168, 193, 224
fuel prices 245, 249, 286–7
fuel structure
and energy supply-side and demand-side effects study 223, 231–2, 233, 234, 235, 236, 237, 238, 239, 240, 242, 245, 246, 248, 249
and stagnancy of energy-related CO\textsubscript{2} emissions study 199, 200, 201, 202, 203, 204, 207–8, 209, 210, 211, 213–14, 216, 219
fuel substitution 225–6, 233, 235, 236, 242
fuel type 199, 200, 201, 202, 203, 213, 225–6, 229
Fuentes, H.J. 77–8, 80, 81–2, 97
Fujita, M. 194
future perspectives see experts’
judgment on the future perspective study; forecasting
Gansu 299, 301, 302, 308
GDP (gross domestic product) 24–5, 300–301
GDP (gross domestic product) growth and energy consumption and production 191, 193
and experts’ judgment on the future perspective study 270, 273, 274, 280, 288, 289, 291, 292
international comparison 3–4, 104
GDP (gross domestic product) per capita
statistics 3
Germany 9, 98, 225
Gijbels, I. 26
global warming 265, 268
GMM (generalized method of moments estimator) 128–9, 130–32, 133
Gong, J.D. 147
government policies 264–5, 266, 267, 271
see also economic policies; energy policies; environmental policies; social policies; transportation policies
Gozalo, P. 26
grain harvested land 150, 151, 152
grain production 148, 149, 150–51, 152, 154, 159, 160
grain yield 147
Gray, W.B. 98
greenhouse gases 138
see also CO\textsubscript{2} (carbon dioxide) emissions; SO\textsubscript{2} (sulfur dioxide) emissions
Greif, A. 5
Griliches, Z. 92, 100, 108
gross unit energy consumption 233, 235, 236, 241–5, 249
Grosskopf, S. 81, 170
growth accounting methods 7–8
GRP (gross regional product)
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>and efficiency in environmental management study</td>
<td>52, 53, 55, 56, 57, 58</td>
<td></td>
</tr>
<tr>
<td>and efficiency in environmental management study II</td>
<td>80, 83, 84, 86, 87</td>
<td></td>
</tr>
<tr>
<td>and environmental Kuznets curve (EKC) study</td>
<td>25–6</td>
<td></td>
</tr>
<tr>
<td>and foreign direct investment and environmental policies study</td>
<td>100–101, 108, 114, 116, 117</td>
<td></td>
</tr>
<tr>
<td>and increasing returns to pollution abatement study</td>
<td>122, 123, 126, 127, 128, 129, 130–32, 133</td>
<td></td>
</tr>
<tr>
<td>GSP (gross state product)</td>
<td>24–5, 27, 121–2</td>
<td></td>
</tr>
<tr>
<td>GSP (gross state product) per capita and environmental Kuznets curve (EKC) study</td>
<td>25, 28, 29, 30, 31, 32, 33–4, 35, 36, 37–8</td>
<td></td>
</tr>
<tr>
<td>and forecasting pollution study</td>
<td>298, 299</td>
<td></td>
</tr>
<tr>
<td>Guangdong</td>
<td>299–302, 304–5, 307, 308, 309, 310</td>
<td></td>
</tr>
<tr>
<td>Haddad, M.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Harrison, A.</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Hastie, T.</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>hazardous waste control policies</td>
<td>2, 19</td>
<td></td>
</tr>
<tr>
<td>He, K.</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and energy supply-side and demand-side effects study</td>
<td>226, 227, 242, 243, 244</td>
<td></td>
</tr>
<tr>
<td>and stagnancy of energy-related CO₂ emissions study</td>
<td>199, 200, 201, 202, 208, 210, 214</td>
<td></td>
</tr>
<tr>
<td>heavy industries</td>
<td>101, 115, 250, 280, 303</td>
<td></td>
</tr>
<tr>
<td>see also pollution intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henrion, M.</td>
<td>268, 269, 294–5</td>
<td></td>
</tr>
<tr>
<td>heuristic forecasting approaches</td>
<td>266, 294</td>
<td></td>
</tr>
<tr>
<td>Hicks–Moorsteen productivity index</td>
<td>47–8, 50, 51, 55, 60–61, 62, 63, 64, 65</td>
<td></td>
</tr>
<tr>
<td>household income</td>
<td>199, 200, 201, 202, 203, 204, 208, 209, 210, 216</td>
<td></td>
</tr>
<tr>
<td>household numbers</td>
<td>199, 200, 201, 202, 203, 204, 208, 209, 210, 216</td>
<td></td>
</tr>
<tr>
<td>household responsibility system</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Hu, D.P.</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Hu, G.A.</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Huang, J.</td>
<td>148, 149</td>
<td></td>
</tr>
<tr>
<td>Huang, M.</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>humidity, average relative</td>
<td>154, 159, 160</td>
<td></td>
</tr>
<tr>
<td>Imura, H.</td>
<td>213, 265, 266, 267</td>
<td></td>
</tr>
<tr>
<td>income elasticity of energy consumption</td>
<td>37, 38, 191–2, 193, 223, 275, 284</td>
<td></td>
</tr>
<tr>
<td>income growth rate</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>income inequality</td>
<td>270, 273, 280–81</td>
<td></td>
</tr>
<tr>
<td>income per capita</td>
<td>120–21, 153, 154, 162, 163</td>
<td></td>
</tr>
<tr>
<td>see also environmental Kuznets curve (EKC); environmental Kuznets curve (EKC) study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>increasing returns to pollution abatement study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>background</td>
<td>119–22</td>
<td></td>
</tr>
<tr>
<td>conclusions and discussions</td>
<td>132, 134</td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>122–4</td>
<td></td>
</tr>
<tr>
<td>introduction</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>models</td>
<td>124–9</td>
<td></td>
</tr>
<tr>
<td>results</td>
<td>129–32, 133</td>
<td></td>
</tr>
<tr>
<td>index decomposition method</td>
<td>198, 223, 224</td>
<td></td>
</tr>
<tr>
<td>see also energy supply-side and demand-side effects study;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stagnancy of energy-related CO₂ emissions study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>industrial pollution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and experts’ judgment on the future perspective study</td>
<td>265, 271, 278, 279, 285, 286</td>
<td></td>
</tr>
<tr>
<td>statistics</td>
<td>51, 83, 122</td>
<td></td>
</tr>
<tr>
<td>see also air pollution; efficiency in environmental management study; efficiency in environmental management study II; environmental Kuznets curve (EKC) study; increasing returns to pollution abatement study; solid waste; waste gas; wastewater; water pollution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
industrial pollution control policies 1–2, 19
industrial production
and experts’ judgment on the future perspective study 270, 275, 284–5, 288, 289, 291
and forecasting pollution study 300, 301, 303
industrial structure 7, 270, 275, 280
industry sector
and energy supply-side and demand-side effects study 224
and experts’ judgment on the future perspective study 270, 274, 275, 280, 288, 289, 291
and stagnancy of energy-related CO\textsubscript{2} emissions study 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 211, 212–13, 215, 217, 218, 219
inefficiency 51, 59, 91, 92, 171, 174, 177, 178
see also efficiency; energy inefficiency; environmental inefficiency; production inefficiency; technical inefficiency; water inefficiency intensity effect, and stagnancy of energy-related CO\textsubscript{2} emissions study 202, 203, 204, 210
Intergovernmental Panel on Climate Change (IPCC) 180, 191, 197, 223, 228, 264
International Energy Agency (IEA) 191, 192, 197, 205, 206, 207, 228, 232
international trade
and economic reform 2, 4
and energy supply-side and demand-side effects study 225, 228, 235, 236, 237, 238, 239–40, 245–7, 248, 249
and forecasting pollution study 301–2
and productivity growth 7
iron and steel industry 168–70, 171–4, 181–2, 184–5, 303
see also crude steel production; iron and steel industry productivity study; steel products
iron and steel industry productivity study
background 171–6
conclusions 187–8
introduction 168–70
methods and data 176–82
results 182–7
irrigated land area 153, 270, 275
irrigation water
and agricultural production function 147–8, 149
and experts’ judgment on the future perspective study 283
and water efficiency and agricultural production study 150, 151, 152, 153, 154, 157, 159, 160, 161, 162, 163, 167
and water use efficiency (WUE) 147
J-statistics, and increasing returns to pollution abatement study 130, 131, 132, 133
Jaffe, A.B. 41, 71, 77, 98
Japan 3, 4, 5, 9, 10, 11, 54, 98, 171, 225, 266, 282
Japan Economic Planning Agency 266
Japan Science and Technology Agency 264, 266
Japanese experts see experts’ judgment on the future perspective study
Jefferson, G.H. 9, 102, 105, 109
Jin, H. 6
Jin, S. 148, 149
Jochem, E. 194, 229–30
Jorgenson, D.W. 9–10
Kalirajan, K.P. 9, 148, 149
Kaneko, S. 20, 51, 54, 72, 79, 83, 91, 122, 130, 169, 266, 267, 294
Katsuhara, T. 265
Keith, D.W. 265, 268–9
kernel non-parametric regression, in environmental Kuznets curve (EKC) study 26
Kerstens, K. 48, 49, 80
Koo, W.W. 148, 149
Kopp, R.J. 155
Krugman, P. 7, 9
labor
and agricultural production function 148, 149
and efficiency in environmental management study 51, 52, 53, 55, 56, 57, 58, 63
and efficiency in environmental management study II 83, 84, 86, 87
and foreign direct investment and environmental policies study 101, 105, 106, 107, 114, 116
and increasing returns to pollution abatement study 122, 123, 126, 127, 129
and iron and steel industry productivity study 169
and stagnancy of energy-related CO₂ emissions study 197–8, 199, 200, 201, 202, 203, 204, 205, 208, 209, 210, 216, 218
see also agricultural labor; capital-labor ratio; labor productivity; wages
labor productivity
and energy supply-side and demand-side effects study 224
and stagnancy of energy-related CO₂ emissions study 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 214–15, 216, 217, 218, 219
land see agricultural land; cultivated land; grain harvested land; irrigated land area
Landwehr, M. 194, 229–30
Lanjouw, J.O. 98
large enterprises 13, 108, 179, 184, 213, 224
large-scale power plants 211, 219, 243–4
Larson, E.D. 71–2
Lave, L.B. 268
Law on Air Pollution Prevention and Control of the People's Republic of China (1987) 12, 129
Law on the Prevention and Control of Pollution of the Environment by Solid Waste (1996) 68, 91
laws 265–6
see also air pollution control laws; competition law; energy laws; environmental laws; solid waste laws
lead
and efficiency in environmental management study 53, 55, 56, 58, 63, 69
and efficiency in environmental management study II 85, 86, 87, 92
and environmental Kuznets curve (EKC) study 33, 35–6, 38
Levinson, A. 121–2, 124
Li, F.M. 147
Li, X.Y. 147
Li, Z.Z. 147
lifestyle 265, 267
likelihood function, in pollution abatement and environmental efficiency causal study 139, 140, 141, 142
Lin, J.Y. 8, 148, 149
Ling, X.G. 211
Linton, O. 26
Liu, F.L. 198
Liu, M. 6–7
Liu, X. 99
LMDI (logarithmic mean divisia index method) 201–2
see also energy supply-side and demand-side effects study
Loader, C. 26
local environmental agencies 12, 20, 31, 120
see also environmental protection bureaus (EPBs); environmental protection offices (EPOs)
local environmental laws 12
local environmental regulations 10
local fiscal incentives 6
local governments 10, 13, 14, 99
local linear regression, and environmental Kuznets curve (EKC) study 26–7
local polynomial regression, and environmental Kuznets curve (EKC) study 27
local quadratic regression, in environmental Kuznets curve (EKC) study 27
LOESS (locally weighted scatterplot smoother) 27
Lovell, C.A.K. 47, 48, 81–2
Luenberger–Hicks–Moorsteen productivity index 48–51, 55, 60–61, 62, 63, 64, 65
Luenberger productivity index in efficiency in environmental management study 45–7, 50, 51, 55, 60–61, 62, 63, 64, 65, 66–7, 68–9
in iron and steel industry productivity study 176, 178–9, 182–5, 187
Luh, Y.H. 9
Ma, J. 175–6
Ma, X. 2, 13, 19, 33, 72–3
Malmquist productivity index in efficiency in environmental management study 43–5, 50, 51, 55, 59, 60–61, 62, 63–4, 65
in efficiency in environmental management study II 80–83
in increasing returns to pollution abatement study 126–7
and international comparisons of productivity 126–7
Managi, S. 20, 23, 42, 44, 47–8, 49–50, 51, 54, 72, 79, 82–3, 91, 122, 125–6, 130, 176
Mao, W. 148, 149
marginal pollution abatement costs 121
MARKAL linear programming model 71–2
market economy 2–6, 20
market productivity and efficiency in environmental management study 50, 56, 57, 59, 62–3, 64, 65
and efficiency in environmental management study II 82–3, 87–9
and environmental regulations 98
and foreign direct investment (FDI) 98–9
and foreign direct investment (FDI) and environmental policies study 100, 101–5, 109
and increasing returns to pollution abatement study 125
and iron and steel industry productivity study 180–81, 182, 185, 186, 187–8
and pollution abatement technologies 72
and technological change 308
materials 271, 278–9, 285, 292
Mays, J.E. 26, 27
McCain, R.A. 41, 97
McMillan, J. 5, 148, 149
MCMR (Markov chain Monte Carlo) methods 139–43
McNally, C.A. 216, 219
Meadows, D.H. 264, 266
medium-sized enterprises 13, 108, 213, 224
Metropolis–Hastings algorithm, in pollution abatement and environmental efficiency causal study 140–41
Ministry of Metallurgical Industry 174, 179–80
MLE (maximum likelihood estimation) 140, 142, 158–9
Mody, A. 98
monitoring 11, 72–3
Morgan, M.G. 265, 268–9, 294–5
motorization 264–5, 267, 277, 283, 284–5, 286–7, 288
Movshuk, O. 175
Nadaraya–Watson regression, in environmental Kuznets curve (EKC) study 26, 27
National Bureau of Statistics (NBS) and efficiency in environment management study 54–5
and efficiency in environment management study II 86
and energy supply-side and demand-side effects study 223, 233, 237
and environmental Kuznets curve (EKC) study 25
and stagnancy of energy-related CO₂ emissions study 191, 192, 193, 195–6, 197–8, 205, 206
Index

and water efficiency and agricultural production study 153
National Committee for Environmental Protection 12
National Congress of Environmental Protection 11, 13, 20, 120
National Environmental Protection Agency (NEPA) 2, 19
National People’s Congress 10, 11, 12, 20, 21, 33, 63, 66, 91, 119–20, 129
natural gas consumption 199, 200, 201, 202, 210, 214, 226, 288
natural gas investment 244
natural gas supply 271, 276, 289
natural resource consumption 37, 265, 266
natural resource protection policies 2, 12, 33
natural water supply 147
new energy sources 138, 277, 288, 289, 292, 295
Ninth National People’s Congress 11, 12, 21, 33, 66, 91
non-energy end use 232, 234, 237, 238, 239, 240
nonmarket resources 77, 79, 147
nonparametric models 26–8, 29–30, 31
see also DEA (data envelopment analysis); efficiency in environmental management study; increasing returns to pollution abatement study; iron and steel industry productivity study
Northeast China 150, 151, 152, 160, 161, 162, 167
Northern China 69, 171, 283
Northwest China 150, 151, 152, 160, 161, 167
OECD 191, 197, 228, 232
oil consumption
and efficiency in environmental management study 53, 54, 55, 56, 57, 63
and efficiency in environmental management study II 80, 83, 85, 86, 87–9, 90
and environmental Kuznets curve (EKC) study 33, 37–8
statistics 138
OLS (ordinary least squares) 26, 154, 158, 159, 160
Ortolano, L. 1, 2, 10, 12, 13, 19, 20, 31, 33, 72–3, 77, 99, 100, 109, 119, 120
ownership of enterprises 212–13, 215–16, 217, 219, 224, 250
see also privately-owned enterprises; state-owned enterprises
Palmer, K. 98
Panel Code of the People’s Republic of China 12, 32–3
parametric models 26, 27, 28, 31, 32
see also efficiency in environmental management study II; foreign direct investment (FDI) and environmental policies study; SFA (stochastic frontier analysis)
Parker, E. 148, 149
Party Congress 2, 59, 62
passenger car ownership 264–5, 267, 270, 277, 284–5, 286–7, 288, 289
patents 98, 100, 104, 106, 109, 114
petroleum products 199, 200, 201, 202, 210, 214, 225
petroleum refining 242–3, 244, 245
Pittman, R.W. 79
pollutants 70, 71, 72, 77, 79, 80, 81, 91–2
see also chemical oxygen demand (COD); chromium six; CO₂ (carbon dioxide) emissions; dust; lead; pollution; SO₂ (sulfur dioxide) emissions; soot; TSP (total suspended particulate matter) pollution
pollution
and environmental Kuznets curve (EKC) 22–3, 120–21
and experts’ judgment on the future perspective study 265, 271, 278, 279, 285, 288, 289, 290, 291, 292, 293, 294, 295
see also forecasting pollution study; pollutants
pollution abatement see increasing returns to pollution abatement
study; pollution abatement and environmental efficiency causal study; pollution control; pollution levy

pollution abatement and environmental efficiency causal study
background 139–40
conclusions 143
data 145
estimation 140–41
introduction 138–9
results and discussion 141–3
pollution abatement cost and expenditure (PACE)
and efficiency in environmental management study 41, 51–3, 55, 56, 57, 58
and efficiency in environmental management study II 83, 84, 86, 87
and foreign direct investment and environmental policies study 100–101, 107, 109, 114, 116, 117
and increasing returns to pollution abatement study 123–4, 130
and pollution abatement and environmental efficiency causal study 141
and pollution abatement technological innovation 41, 77, 97, 110
pollution abatement effort 127–8, 130, 131, 132, 133, 134
pollution abatement technologies 11, 41, 71, 72, 77, 97, 110, 141
pollution control 11–12, 31, 39
see also increasing returns to pollution abatement study; pollution abatement and environmental efficiency causal study; pollution control; pollution levy
pollution costs 1, 10, 19
pollution intensity 101, 105, 106, 107, 108, 115
pollution levy 14, 78, 99–100, 101, 107–8, 109, 115
see also SO₂ (sulfur dioxide) levy; solid waste levy

population
and environmental Kuznets curve (EKC) study 24
and forecasting pollution study 298, 299
international comparison 4
Porter hypothesis 98
power substitution 229, 233, 234, 236, 242
precipitation 69, 146, 150, 153, 154, 159, 160, 162, 163
preferences, and experts’ judgment on the future perspective study 264–5
price deregulation 9, 20, 173–4, 182, 184
prices 77, 79, 149
see also CPI (consumer price index); energy prices; factor price indexes; fuel prices; price deregulation; shadow prices; steel price liberalization; water prices
primary energy carriers 228, 231
primary energy CO₂ emissions 230, 231–2
primary energy consumption
and energy supply-side and demand-side effects study 232, 235, 236, 242
and experts’ judgment on the future perspective study 270, 275, 283–4, 288, 289, 291
primary energy supply
and energy supply-side and demand-side effects study 233, 235, 236, 241, 246–8
and experts’ judgment on the future perspective study 270, 276, 284
privately-owned enterprises 5–6, 39, 62, 72, 213, 217
production efficiency 72
production frontier analysis see efficiency in environmental management study; efficiency in environmental management study II; foreign direct investment (FDI) and environmental policies
study; iron and steel industry productivity study
production inefficiency 181, 187
productivity 100–101, 104, 105, 106, 108
productivity growth 6–10, 41, 77, 306–7
productivity indexes 176
see also Hicks–Moorsteen productivity index; Luenberger-Hicks-Moorsteen productivity index; Luenberger productivity index; Malmquist productivity index
productivity modeling 42–3, 78–80, 156–7, 174–6
productivity spillover 98–9, 101, 104–5, 106, 107, 108, 109
profits 45, 63, 98, 174, 182
property rights 62, 77
proportional distance function 46–7, 48, 49, 50
provinces 23, 298, 299–303, 304–5
provincial aggregated statistics, reliability of 194, 195–6, 197
Provincial Energy Balance Tables (PEBT) 197, 205, 206–7
purchasing power parity (PPP) 4, 5
quantitative forecasting approaches 266
railways 270, 277, 283, 285
Ray, S.C. 45, 59, 126–7
R&D expenditure 213, 224
R&D programs 11
re-use effect, in energy supply-side and demand-side effects study 225, 231, 232, 233, 234, 236, 242
recycled water 22, 170, 173
reference approach 192, 197, 206, 228
regional agricultural production 149–52
relationships 5
reliability of data 25–6, 53–4, 86, 193, 194–7, 207, 224, 233
renewable energy 71, 138
reputation 5
reservoirs, capacity of 153, 159, 160, 163
reservoirs, number of 153, 154, 159, 160, 162, 163
residential sector
and experts’ judgment on the future perspective study 271, 278, 285, 288, 290, 292
and stagnancy of energy-related CO₂ emissions study 198, 199, 200, 201, 202, 203, 204, 205, 208, 209, 210, 211, 216
Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC/OECD/IEA) 191, 197
rice production 146, 148, 150, 152, 154, 159, 160, 163
roads 270, 277, 284–5, 286–7, 288, 289, 291
Rozelle, S. 148, 149
rural pollution 72
rural–urban income gap 270, 274, 280–81
Russia 188
Sachs, J. 7
sales system, steel products 174
Sargan test, in increasing returns to pollution abatement study 130, 131, 132, 133
scale effects
and efficiency in environmental management study 47, 50
and energy supply-side and demand-side effects study 225, 231–2, 233, 234, 235, 236, 237, 238–9, 240, 243–4, 245, 246, 248, 249, 250
and environmental Kuznets curve (EKC) 23, 39, 120, 121
and environmental Kuznets curve (EKC) study 23, 39
and increasing returns to pollution abatement study 120, 121
and stagnancy of energy-related CO₂ emissions study 203–5, 214–17
scientists’ perspective, in experts’ judgment on the future perspective study 291, 292–5
secondary energy carriers 225, 228, 231
secondary energy CO₂ emissions 230, 231, 232
secondary energy consumption 231–2
secondary energy exports 228, 230, 231, 232, 233, 235, 236, 246, 247
secondary energy re-use 225, 231, 232
secondary energy supply 233, 234, 235, 236, 246–7
sector-specific activity intensity effect 202, 203–5, 207, 210, 214, 218
sector-specific activity size effect 202, 203–5, 207, 210, 214, 219
sectoral approach 192, 197–8, 206, 228
services sector 25, 55, 274, 280, 288, 289, 291
SFA (stochastic frontier analysis) versus DEA (data envelopment analysis) 156–7, 174–6
and efficiency in environmental management study II 81–2, 86–92
and foreign direct investment (FDI) and environmental policies study 101–8, 116–17
and water efficiency and agricultural production study 154–8, 161, 162
Shadbegian, R.J. 98
shadow prices 51, 79
Shanxi 302, 303, 304, 309
Shephard, R.W. 43, 177
shortage function, in efficiency in environmental management study 46, 51
Sichuan 302–3, 304
Sinkule, B.J. 1, 10, 12, 19, 20, 31, 77, 99, 100, 109, 119, 120
Sinton, J.E. 168, 192, 193, 194, 211, 212, 223, 224, 233
small enterprises 6, 108, 109, 184, 250
small-scale power plants 211, 214, 219, 243–4, 250
SO₂ (sulfur dioxide) abatement costs 68, 91, 130
SO₂ (sulfur dioxide) control policies 66, 67–8, 91, 129–30
SO₂ (sulfur dioxide) emission standards 66, 67–8
SO₂ (sulfur dioxide) emissions and coal combustion 66
and efficiency in environmental management study 52, 53, 55, 56, 57, 63, 66–8
and efficiency in environmental management study II 85, 86, 87, 91
and environmental Kuznets curve (EKC) study 21, 22, 33–4, 38
and forecasting pollution study 298, 299, 300, 301, 302
and increasing returns to pollution abatement study 124
and power plant scale effects 243
SO₂ (sulfur dioxide) levy 66, 67, 91, 130
social development 71–2
social factors 264–5
social infrastructure 291
social institutions 265–6
social policies 281, 291
sociologists’ perspective, in experts’ judgment on the future perspective study 291, 292–3
solid waste
and efficiency in environmental management study 52, 53, 55, 56, 57, 63, 65, 68, 70, 71, 72
and efficiency in environmental management study II 83, 84, 86, 87, 88, 89, 90, 91, 92
and environmental Kuznets curve (EKC) study 21–2, 24, 28, 29, 31, 32, 33, 38, 39
and experts’ judgment on the future perspective study 271, 279, 285, 288, 289, 293
and foreign direct investment (FDI) and environmental policies study 101, 102, 109, 114, 116, 117
and increasing returns to pollution abatement study 123–4, 126, 127, 129, 130, 131, 132, 133, 134
see also chromium six; lead
solid waste control policies 1, 11–12, 19, 68, 91
solid waste laws 68, 91
solid waste levy 21, 22
soot
 and efficiency in environmental management study 52–3, 55, 56, 57, 63
 and efficiency in environmental management study II 84, 86, 87, 91
 and environmental Kuznets curve (EKC) study 33, 34, 35, 38
 and forecasting pollution study 298, 299, 300, 303, 304, 305, 306
South Coast of China 150, 151, 152, 160, 161, 162, 167
South Korea 273, 281, 284
Southern China 146
Southwest China 150, 151, 152, 160, 161, 162, 167
stagnancy of energy-related CO₂ emissions study
 conclusions 218–20
 introduction 191–3
 methodology and data
 methodologies for three-level perfect decomposition 198–202
 significance of pre-defined determinant effects 203–5
 specification on data issues 194–8
 results and discussion
 contributions of driving forces in CO₂ emissions: 1985–1999 207–8
 contributions of driving forces in CO₂ emissions: stagnancy period, 1996–2000 208–18
 stagnancy versus decline of CO₂ emissions: new evidence from provincial aggregation 205–7
State Economic and Trade Commission (SETC) 11
State Environmental Protection Administration (SEPA)
 administrative status 11, 12, 13, 21, 66, 91, 120
 and industrial pollution 1–2, 19, 51, 83, 122
 role 1–2, 10, 20, 120
 and SO₂ (sulfur dioxide) emissions 66, 67, 129–30
State Environmental Protection Commission (SEPC) 10, 20, 119–20
state-owned enterprises 6, 7, 39, 62, 72, 212–13, 216, 217, 219
State Planning Commission (SPC) 2, 19
statistical imbalance 232–3, 235, 236, 237, 238, 239, 240, 248, 249
Statistics on Investment in Fixed Assets of China (1950–2000), The (NBS) 237
steel demand 184
steel price liberalization 173–4, 182, 184
steel production see crude steel production; iron and steel industry; iron and steel industry productivity study; steel products
steel products 174, 175, 184
stock changes 230, 231, 232, 235, 236, 237, 238, 239, 240, 248
structural effect
 and energy supply-side and demand-side effects study 224, 225
 and stagnancy of energy-related CO₂ emissions study 202, 203, 204, 207–8, 210, 213–14, 219
Stulz, R. 5
Sugimoto, T. 174
sunshine, monthly hours 153, 154, 159, 160, 162, 163
supply-side derived CO₂ emissions (C-TPES) see energy supply-side and demand-side effects study
sustainable development 265
System of National Accounts (SNA) 24, 26, 55, 86, 122
tax deductions 109
technical change see technological change
technical efficiency 41, 77, 154–5, 157, 158, 159–61, 162, 163, 167
technical inefficiency 82, 91, 161–2
technique effects 23, 39, 120, 121
technological change
and agricultural production function 149
and efficiency in environmental management study 45, 47, 48, 50, 51, 59, 60–61
and efficiency in environmental management study II 78–9, 82, 83, 87, 91, 92
and energy supply-side and demand-side effects study 244–5, 249
and environmental productivity 308
and experts' judgment on the future perspective study 267, 291, 292, 294, 295
and forecasting pollution study 305–7, 308–9
and foreign direct investment (FDI) and environmental policies study 97–8, 100, 102–3, 104–5, 106–8
and iron and steel industry productivity study 169, 171, 172, 173, 174, 178–9, 182, 183, 184–5, 187, 188
and market productivity 308
and stagnancy of energy-related CO₂ emissions study 213
and TFP 7, 8, 9
technology 43–4
see also agricultural machinery; coal gasification technologies; energy resource sensitive technologies; energy-technology strategies; environmental technologies; pollution abatement technologies; technical efficiency; technical inefficiency; technological change; transformation technologies; wastewater treatment technologies
temperature 69, 146, 153, 154, 160, 162–3
tertiary industries 25, 55, 274, 280, 288, 289, 291
TFP (total factor productivity) and economic growth 6–10
and foreign direct investment (FDI) and environmental policies study 102, 103, 104–5, 106–7, 109
and household responsibility system 148–9
and stagnancy of energy-related CO₂ emissions study 214
see also efficiency in environmental management study; efficiency in environmental management study II; productivity indexes
Thailand 273, 285
thermal power generation 229, 233, 234, 236, 242, 243
Tian, H.Z. 66
Tobit analysis, in water efficiency and agricultural production study 154, 157, 158–9, 161–3
top-down forecasting approaches 264, 266
total final energy consumption (TFEC) 224–5, 228, 230, 232
total primary energy supply (TPES) 224, 225, 227–8, 229, 230–32, 233, 247, 249
transformation efficiency 211, 214, 219, 242–5, 249
transformation losses 225, 228
transformation sector 224, 225, 226, 228, 231, 232, 233
transformation technologies 244–5, 249
transition, and experts' judgment on the future perspective study 287, 288–91
translog function 81–2, 175
transportation, and experts' judgment on the future perspective study 264–5, 266, 267, 270, 277–8, 283, 284–5, 286–7, 288, 289, 290, 291, 292, 293, 295
transportation policies 286–7
transportation sector 198, 199, 200, 201, 202, 203, 204, 205, 208, 209, 210, 211, 216
TSP (total suspended particulate matter) pollution 53, 85
see also dust; soot
Tyteca, D. 126
uncertainty 264–5, 267, 268, 286–91, 295, 309
UNCTAD 99
unit root test, in increasing returns to pollution abatement study 130, 131, 132, 133
United Kingdom 225
United States 1, 3, 4, 5, 9, 11, 53, 54, 98, 121–2, 225
urban air pollution 138
urban pollution 1, 10, 19
urban–rural income gap 270, 274, 280–81, 288, 289, 291
urbanization 270, 274, 288, 289, 291
value added 25, 174, 175, 180, 181, 182, 184, 185, 186, 187
van Asselt, M.B.A. 264–5, 268
van der Linde, C. 98
vehicle numbers 199, 200, 201, 202, 203, 204, 208, 209, 210, 216
vehicle traveling distance 199, 200, 201, 202, 203, 204, 208, 209, 210, 216
VRS (variable returns to scale) 59, 60–61, 126–7
wages 51, 52, 83, 84, 122, 123, 180, 181, 182, 184, 185, 186, 187
van Asselt, M.B.A. 264–5, 268
Wang, C. 99
Wang, H. 14, 39, 72, 78, 100, 146
Wang, J. 148, 149
Wang, Y. 13, 14, 26, 55, 86, 122
waste gas
and efficiency in environmental management study 52, 53, 55, 56, 57, 63, 65, 66–7, 71
and efficiency in environmental management study II 83, 84, 86, 87, 88, 89, 90, 91, 92
and environmental Kuznets curve (EKC) study 21, 22, 23, 24, 28, 29, 30, 31, 32, 33
and foreign direct investment and environmental policies study 101, 114, 116, 117
and increasing returns to pollution abatement study 123–4, 126, 127, 129–30, 131, 132, 133, 134
see also CO2 (carbon dioxide) emissions; SO2 (sulfur dioxide) emissions
waste gas control policies 11–12
wastewater
and efficiency in environmental management study 52, 53, 55, 56, 57, 58, 63, 65, 68–9, 70, 71, 72
and efficiency in environmental management study II 83, 84, 86, 87, 88, 89, 90, 91, 92
and environmental Kuznets curve (EKC) study 21, 22, 24, 28, 30, 31, 32, 33, 38
and experts’ judgment on the future perspective study 271, 278, 287
and foreign direct investment (FDI) and environmental policies study 101, 102, 109, 114, 116, 117
and increasing returns to pollution abatement study 123–4, 126, 127, 129, 130, 131, 132, 133, 134
and iron and steel industry productivity study 170, 171, 173, 179–80, 181, 185, 186, 187
wastewater control policies 11–12
wastewater treatment technologies 185
water conservation policies 187, 285
water consumption 168, 170, 171, 271, 278, 285
see also fresh water consumption
water efficiency
defined 155
and efficiency in environmental management study 69–70, 71, 72
and environmental Kuznets curve (EKC) study 22
and increasing returns to pollution abatement study 124
in iron and steel industry 168, 171, 173
and iron and steel industry productivity study 169, 182–4, 185, 186, 187
variable, in water efficiency and agricultural production study 155–6, 157, 159–63, 167
and water management policies 168
see also water efficiency and agricultural production study
water efficiency and agricultural production study conclusions 163
data 153
introduction 146–9
methodology 154–9
regional agricultural production 149–52
results 159–63, 167
water inefficiency 161–2, 181, 184, 185, 186, 187
water management policies 69–70, 89, 146, 168
water pollution
and efficiency in environmental management study 69–70
and efficiency in environmental management study II 83
and environmental Kuznets curve (EKC) study 34–6, 38, 39
and iron and steel industry productivity study 169, 173
SEPA estimates 51, 83, 122
see also chemical oxygen demand (COD); chromium six; lead
water pollution control policies 1, 2, 19
water prices 185, 187
water productivity 180, 181, 182–4, 185, 186, 187–8
water recycling 22, 170, 173
water scarcity 69–70, 89, 146, 168, 171, 282, 283, 285
water supply 146, 147
water use efficiency (WUE) 146–7
Watson, R.T. 265
wheat production 146, 147, 150, 152, 154, 159, 160
Wheeler, D. 14, 78, 100
Williamson, R. 5
WLS (weighted least squares), in environmental Kuznets curve (EKC) study 26
Woo, W.T. 7, 168
World Bank 1, 6, 10, 11, 19, 70, 168
World Business Council for Sustainable Development 124
Wu, L.B. 168, 223, 224, 240
Wu, Y. 8, 9, 148, 149, 171, 175
Yang, D. 146
Yao, Y. 26, 55, 86, 122
Ye, G. 174, 184, 185
Yearbook of the Iron and Steel Industry in China (Ministry of Metallurgical Industry) 174, 179
Yellow River 69, 70, 146, 149–50, 151, 152, 160, 161, 162, 167
Young, A. 7, 59, 87
Zhang, B. 148, 149
Zhang, F.Q. 198, 223, 229, 258
Zhang, X. 148, 149
Zhang, Y. 147
Zhang, Z.X. 191–2, 211, 212, 223
Zhejiang 305, 309, 310
Zhou, J.P. 219