Index

Abbott, Kenneth W. 12, 153, 286, 521, 525–44
Ackerman, F. 531
Aitken, Robert J. 15, 127, 183, 193, 195, 205–37, 576
Albrecht, R. 128, 129
Aldersey-Williams, H. 47
Alexis, F. 298
Altmann, Jürgen 372–87
Amato, I. 38, 42, 56
Anders, G. 33, 43
Anderson, E. 14
Andersen, T. 304
Andrews, R. 206
Applegate, J. 254, 258
Aprahamian, M. 128
Arabe, K. 321
Arnall, A. 416
Arnstein, S. 434–5
asbestos
and associated health effects 208–11
carbon nanotubes, similar structure to 121, 182, 195, 206–7
deaths associated with 208–20
disease related to, and latency period 210
eye case reports and epidemiology 212–20, 222, 223, 224, 225, 228, 232
and fibre toxicity 219–20
health risks, emergence of evidence concerning 211–20
high aspect ratio nanoparticles (HARN) 207
inhalation and exposure, diseases caused by 209–10
insurance, early 20
learning from 229–33
maximum permissible concentrations (MPCs) 223
production 207–8
regulation development 184–8, 216–17, 220–29

WHO asbestos fibre counting method 228
see also carbon nanotubes
AshaRani, P. 180
Asia NanoForum 89
Asia-Pacific Economic Cooperation (APEC) 103
Asian regulators
and business perspective 191
see also individual countries
ASTM International 8, 86, 538
atomic force microscope (AFM) 47, 49, 53
and measurement standards 103
Australia
Australian/New Zealand Standard for Risk Management 468
chemical risk assessment triggers 126
chemical safety campaigns 412
Department of the Environment and Water Resources (DEW) 350
environmental laws, media-specific 350–52, 358–9, 364, 365
Environmental Protection Authority 356
Environmental Protection and Biodiversity Conservation Act 350, 358–9
food contact materials (FCMs), regulatory aspects 337
Food Standards Australia and New Zealand (FSANZ) 186, 190, 334–7
Fuel Quality Standards Act 350, 351–2
gene technology and regulatory framing 154, 155–6
Hazardous Waste Act 350, 352
laboratory accreditation 100
liability insurance 158
medicinal products and Common Technical Document (CTD) quality aspects 296–8
nanomaterials as new versus existing substances 365
nanotechnology concern assessment surveys 491–2
National Industrial Chemical Notification and Assessment Scheme (NICNAS) 187, 190–91
NGO call for moratorium on commercial use 422, 423
NGOs, public trust in, and nanotechnology risks 434
novel food safety assessment 336
OECD database project 104
Pharmaceutical Inspection Cooperation Scheme (PIC/S) 300
quantity-based thresholds 360–61
regulatory reviews 11, 148, 150, 183, 186–7, 190, 351, 356
risk assessment triggers 126
Victoria environmental laws 351, 352
Ayres, I. 10, 73, 532

Baggott, J. 47
Bagley, M. 393
Bainbridge, W. 42, 410, 547
Baird, D. 19, 33
Balakrishnan, K. 312
Balbus, J. 127, 130
Baldwin, R. 73–4
Ballot, S. 305
Ballou, B. 128
Barar, J. 305
Barker, M. 156
Bartle, I. 10
Basel Convention on Transboundary Movements of Hazardous Wastes 364, 530
BASF AG code of conduct 453, 455, 467, 478
Bauer, M. 580
Bauera, C. 85
Bawa, R. 392
Bawarski, W. 291
Bayley, A. 501
Becker, R. 53
Beder, S. 434
Belting, H. 30
Bergeson, L. 183
Beyleveld, D. 78
Binks, Peter 144–62
Binnig, G. 42, 43, 49, 53
BIPM (International Bureau of Weights and Measures) 89, 98–9, 103
Bissett, D. 310
Black, J. 9, 10, 64, 73–4, 532, 541
Borm, P. 129, 212, 312
Bouchemal, K. 285
Bouwmeester, Hans 124–43
Bouwstra, J. 275, 276
Boxall, A. 130, 132
Bradley, Jurrion 177–204
Braithwaite, J. 10, 73, 532
Braithwaite, V. 436
Brazil, military R&D 380
Breggin, Linda K. 179, 284, 342–71, 508–24, 566
Brgles, M. 305
Brown, D. 207, 232
Brownsword, Roger 60–80
Brunnee, J. 539
Buccini, J. 541
Bueno, O. 52
Bullis, K. 447
Burke, D. 433, 434
business perspective 177–204
carbon nanotype providers and open risk-management model 192–7, 198
cosmetics and real risk research 180
data sharing 195–6
deaths claimed attributable to nanomaterial 183–4
and environmental, health, and safety (EHS) issues 177–8
health to environmental risk study shift 182
industry consortia, place for 196–7
material safety data sheet (MSDS), publication of 195–6
NGO concerns and perceptual risk 182–3, 189, 190, 193, 196
Index 589

perceptual risks and EHS 182–4, 189, 190, 193, 195, 196–7, 198
and pre-manufacturing notices (PMN) 187–8, 197
publications on real risks, rise in 179–80
published studies 180–81
real risk research and EHS 178–82, 193, 194, 195, 198
regulations and EHS 184–91, 193
regulators and producers working together 197
Significant New Use Rules (SNURs) 185–6, 188
substance of very high concern (SVHC) 185, 190, 197
voluntary data collection programs, call for mandatory 183
see also individual countries

c60 molecule see fullerenes
Cabrera, L. 415
Campbell, D. 37
Campbell, R. 305
Canada
asbestos insurance, early 20
asbestos production, early 208
asbestos-related disease 217
chemical risk assessment triggers 126
Environmental Protection Act (CEPA) 189
genetically modified organisms, patenting of 397
Harvard C. v Canada 397
medicinal products and Common Technical Document (CTD) quality aspects 296–8
OECD project on voluntary schemes and regulatory programmes 104
patent acquisition 390
Pesticide Action for North America 426
Pharmaceutical Inspection Cooperation Scheme (PIC/S) 300
Project on Emerging Nanotechnologies (PEN) 189
regulation reviews 189

carbon nanotubes 179–80
allotrope rule 253
and asbestos 121, 131
as carriers for nanopharmaceuticals 305–6
definition 115, 205
manufacturing consent order, first (US) 251–2
as new substances (US) 252–3
NGO concern over health risks 418, 429
pre-manufacturing notices (PMN) (US) 250–52
production techniques 194, 556
providers and open risk-management model 192–7
carbon nanotubes, regulation 205–37
asbestos comparison see asbestos
definition 205
and exposure levels 207–8, 231–2, 233
fibre toxicity and high aspect nature 219–20
health risks 206
high aspect ratio nanoparticles (HARN) 207
and in vivo and in vitro studies 207, 220
multi-walled carbon nanotubes (MWCNTs) 131, 205, 207, 251
occupational health studies, need for 232
potential uses 206
properties of 206
and respiratory toxicity 206–7
single-walled carbon nanotubes (SWCNTs) 205, 207
and toxicity 121
toxicology and pathogenic fibres 232
and WHO asbestos fibre counting method 228
Carothers, L. 344
Carr, K. 128
Carter, A. 377
Cedervall, T. 129, 305
ceramic nanoparticles 179–80
certification bodies see risk management frameworks and certification bodies
International handbook on regulating nanotechnologies

Chang, K. 52
Charnley, G. 430
Chaudhry, Qasim 11, 20, 124–43, 147, 149, 273, 279, 285, 321–41, 513
chemicals legislation 238–67
burden of proof 244, 255–9
carbon nanotube manufacturing consent order, first (US) 251–2
carbon nanotubes and allotrope rule (US) 253
carbon nanotubes as new substances (US) 252
data submission requirements 260–61
European approach 243–7
innovation and precautionary principle 259
labelling and safety reports proposal 246–7, 257
nanoregulation problems comparison 254–63
nanoscale substances as new chemicals, questions over (US) 252–3
nanospecific modifications, proposed (EU) 245–6
and phase-in and non-phase-in substances (EU) 245, 246, 260–61
pre-manufacturing notices (PMN) (US) 247, 248–9, 250–51, 252, 260, 262
precautionary principle (EU) 243–4, 255–9
records and health and safety data (US) 248, 253
registration dossier requirements (EU) 244, 245, 257, 261
regulatory frameworks, existing 240–54
risk assessment triggers, Europe 126
scientific advisory committees, role of 241
Significant New Use Rules (SNURs) (US) 185, 188, 247–8, 249, 251, 252
US approach 247–54
volume-based thresholds and exemptions 262–3
Chen, H. 510, 547
Chen, Z. 130
Chi, K.-T. 270
China
Academy of Sciences, Nanoscale Materials Lab 191
defeats claimed attributable to nanomaterial 183–4, 198–9
military applications funding 416
military R&D 380, 381
Standardization Administration 85–6
Choi, J. 512
Choi, K. 191, 259
Chong, D. 144, 149, 154
Chou, C.-C. 207
Clarke, S. 430
Cobb, M. 159
Cohen, F. 291
Colin, M. 435
Collier, T. 304
Comaneshter, H. 4, 579
Coroyannakis, L. 183, 280
cosmetics, and regulatory oversight of nanotechnologies 268–90
case study 269–77
cosmetic product definition 271–2
Cosmetic Regulation, Europe 268, 380, 381
Cosmetic Regulation, Europe and labelling 183, 186, 281, 519–20
and encapsulation systems 274–6
and health and safety risks 269–70, 271, 272–4, 276–7, 279
incremental approach 279–80
industry, government and activists joint regulatory efforts 277–8
labelling requirements 183, 186, 281, 519–20
and metal oxide nanoparticles 269, 270, 273, 274, 277
and nanomaterial definition 272
nanomaterials catalogue, call for 280–81
and nanospheres 270
penetration and control rates of cosmetics, improved 276
pre-market registration, lack of 272
and societal risks 282–3
vitamin A formulations 275
Index 591

Couvreur, P. 302
Crandall, B. 56
Crane, M. 127, 131

Datan, M. 386
Davies, S. 183
Davis, J. 220
Dawson, K. 129
Dayton, L. 7
De Jong, W. 128, 129, 312

deads
 associated with asbestos 210–12
 claimed attributable to nanomaterial 183–4, 198–9
Decker, J. 474, 476

definitions
 carbon nanotube 115, 205
 cosmetic product 271–2
 engineered nanomaterial 114, 282
 nano-object 93
 nanomaterial 113–14, 272
 nanoparticle 93, 115
 nanorod 115
 nanoscale 93, 94–5, 112–13
 nanosheet 114
 nanostructure 113
 nanotechnology 92–3, 94–5, 110, 489, 489–90, 546
 novel food 324–5
 ontology 91–2
 regulatory environment 60–65
dendrimers 305–6, 310
Denison, R. 254, 258, 261, 359, 447, 579
des Rieux, A. 128
Dingworth, K. 534
Dinwoodie, G. 390
Dittmer, D. 310
DNA forensics 73, 155–6, 538
Dobrovolskaia, M. 129, 304, 306
Dodds, S. 432
Doll, R. 210, 214, 218, 219, 223, 225
Donaldson, K. 127, 182, 206, 207, 212, 219, 220
Dooley, C. 254
Doubleday, R. 410, 411, 431
Downs, G. 530

Dreher, K. 14
Drew, R. 178–9, 194
Drexler, E. 46–7, 49, 50–52, 54, 55, 90
Druckman, J. 144, 149, 154

drugs
 and gene delivery materials 108, 118, 119, 120
 therapeutic see therapeutic drugs, and drugs and medical devices regulation
D'Silva, J. 146, 150, 286
Duncan, R. 291, 298, 302, 304, 312
Dupuy, J. 414

Eaton, M. 296
Edelman, M. 19
Eigler, D. 33–4, 47, 49, 53
Einsiedel, E. 78
electron microscope 38, 39, 40, 48, 53, 103, 206
Elgrably, D. 179
Elliot, E. 430
Emerich, D. 305
environmental laws see media-specific environmental laws
Epprecht, Thomas K. 163–74
Ethiopia, NGO involvement 412

Europe
 Advanced Therapies Regulation 311
 Air Quality Directive 348–9
 Chemical Abstracts Service (CAS) registry 185, 189, 248, 260
 chemicals legislation see chemicals legislation in EU and US
 Clinical Trials Directive 294
 Co-Nanomet 103
 Code of Conduct on Research 43, 453, 455, 456
 Committee for Standardization (CEN) 89, 110
 cosmetics industry see cosmetics, and regulatory oversight of nanotechnologies
 engineered nanomaterials definition 282
 environmental laws, media-specific 347–50, 358, 360, 362, 363–4
 European Chemical Industry Council (CEFIC) 195

Graeme A. Hodge, Diana M. Bowman and Andrew D. Maynard - 9781849808125
Downloaded from Elgar Online at 12/26/2018 05:50:17PM via free access
European Food Safety Authority (EFSA) 323, 326, 327, 328, 329–30
European Inventory of Existing Commercial Chemical Substances (EINECS) 245
European Medicines Agency (EMEA) 292–3, 308–10, 311
European Reference Method (ERM) and asbestos fibre counting 228
Existing Substances Regulation (ESR) 137
foods and food contact materials see foods and food contact materials
General Product Safety Directive (GPSD) 137–8
genetically modified organisms, patenting of 397–8
Innovative Medicines Initiative (IMI) 312
Integrated Pollution Prevention and Control (IPPC) Directive 358, 360, 560
‘International Dialogue on Responsible Research and Development of Nanotechnology’ 373
Joint Research Centre 89
Marketing Authorization Application (MAA) 293
In re Max-Planck-Gesellschaft 397
medicinal products and Common Technical Document (CTD) 296–8
Nano Communication (2008) 356, 358
Nano Risk Framework (Environmental Defense/DuPont) 278
nanomaterials, and data submission requirements 260–61
nanoregulation problems, comparison with US 254–63
nanoscale food additives, regulatory aspects 325–7
nanoscale materials, measurement of 360
Nanotechnology Capacity Building NGOs (NANOCAP) 194
nanotechnology classification systems 393
nanotechnology concern assessment surveys 491–2
NGO call for moratorium on commercial use 422
OECD project on potential environmental benefits of nanotechnology 104
patent acquisition 390, 391, 397–8, 399
and Pharmaceutical Inspection Cooperation Scheme (PIC/S) 300
Plastics Directive 327, 328, 329
Producers Associations of Carbon Nanotubes in Europe (PACTE) 194, 196, 197
Project on Emerging Nanotechnologies 278
Protection of Biotechnology Inventions Directive 398
REACH (Regulation on Registration, Evaluation, Authorization and Restriction of Chemicals) 125–6, 137–8, 185–6, 189–90, 197–8, 242–6, 255–63, 282, 360, 362, 364, 447, 490, 557, 565
Regulatory Aspects of Nanomaterials review 147, 350
regulatory framework gaps 138
Regulatory Frameworks Relevant to Nanotechnology 135–6
regulatory reviews 11, 146, 147, 153, 185–6, 189–90, 197, 242, 268, 322, 323, 350, 515
risk management frameworks see risk management frameworks and certification bodies
Safety at Workplace Directives 360
Scientific Committee on Consumer Products (SCCP) 269, 270, 273–5, 276, 280
Scientific Committee for Emerging and Newly Identified Health Risks (SCENIHR) 107–9, 110, 115, 126, 127, 140, 273
SHE quality protection 282–3
Significant New Use Rules (SNURs) 185–6, 261
subsidarity principle 532
substance of very high concern (SVHC) 185, 190, 197
Taking European Knowledge Society Seriously 35–6
therapeutic drugs see therapeutic drugs, and regulation of drugs and medical devices
Towards a European Strategy for Nanotechnology 102–3
Trans Atlantic Consumers and Business Dialogues 521
Treaty on Conventional Armed Forces in Europe (CFE) 376, 381
voluntary measures for manufactured nanomaterials 447–8, 453
Waste Directive 349–50, 358, 360
waste nanomaterials, disposal of 138
Water Directive 347–8, 363–4
see also individual countries
Falkner, Robert 286, 355, 508–24
Faunce, T. 145, 270
Ferretti, M. 433, 434
Feynman, R. 46–51, 55, 124, 546
Fidler, D. 152, 153
Fineberg, V. 502
Fleischmann, R. 310
Fleming, N. 7, 285
Florence, A. 128
Foladori, G. 432
foods and food contact materials 321–41
Food Additives Framework Directive (EU) 327–31
food contact materials (FCMs) 327–31, 332–4, 337
Food Law Regulation (EU) 323
food safety and consumer health protection 323–5, 331–2, 334–6
GM foods, resistance to 72
mandatory pre-market approval system for novel foods 323, 324–5
nano food contact products, difficulty in defining 328–9
nanomaterials, traceability of 323
nanoscale food additives, regulatory aspects 325–7, 332, 333, 336–7
novel food definition 324–5
risk assessment and risk management 326, 330–31
Forrest, D. 8
Foster, J. 53
France
government, lack of NGO discussion with 436
military R&D 380
nanotechnology regulation 190, 197
Franco, A. 135, 136, 355, 358, 359, 360, 367
Fuhr, M. 14
Fuller, L. 74
fullerenes 47, 180, 205, 250–51, 253, 360
future challenges
cautious approach to 580–81
consumer power 582–3
and differing opinions on nanotechnology 56
(eco)toxicological aspects 131–2
innovation and safety, balancing 17, 578–80
and knowledge gaps 576
and language 575–6
media-specific environmental laws 367–8
oversight system 551–68
regulatory gaps, identifying 577–8
stakeholder involvement 583
standards and metrology, developing appropriate 577
transparency and trust 581–2
International handbook on regulating nanotechnologies

Galison, P. 26, 35
Gammel, S. 43
Garinot, M. 304
Garland, A. 206
Gaskell, G. 434, 580
Gaspar, Rogério Sá 286, 291–320, 511
Gauchel, G. 305
Gaumet, M. 298
Gavelin, R. 435
Gee, D. 20, 36
genetic engineering (GE) 434, 476, 509, 528, 529
genetically modified organisms (GMOs)
Corn MON810, ban on 476
 crops, and regulatory framing 152, 154
 crops, and stakeholder and knowledge integration 497
 foods, resistance to 72
 oncomouse 397–8
 patenting of 397–8
 and risk assessment 15–16
Gerber, C. 47, 53
Gergely, Anna 14, 136, 183, 189, 190, 280, 321–41, 342, 490
Germany
 asbestos insurance, early 20
 BASF Responsible Nano Code 453, 455, 467, 478
 GM Corn MON810, ban on 476
 GMOs and risk assessment 15
 and MagicNano product 239, 527
 nanotechnology concern assessment surveys 492
 nanotechnology preliminary assessment tool 493, 494
 nanotechnology regulation 190, 197
 NGO call for moratorium on commercial use 422
 OECD project on research strategies for manufactured nanomaterials 104
 regulatory reviews 11
 risk assessment budget for nanomaterials 429
 voluntary measures for manufactured nanomaterials 453, 455
Ghanem, G. 305
Ghods, G. 10, 532
Gilligan, G. 153
Goldberg, L. 78
Goldstein, H. 47
Gordijn, B. 68, 69
Gough, C. 534
Grabosky, P. 20, 73
Gradishar, W. 310
Greenberg, M. 20, 36
Greenwood, M. 344–5, 565
Grinbaum, A. 414
Grobe, Antje 484–507
Groß, M. 36, 37, 43
Gruère, G. 582
Gubrud, M. 381, 386
Guerra, G. 76
Gunningham, N. 73, 532
Guterrès, S. 274, 275, 276, 284
Haas, P. 534
Hacking, I. 38
Hagens, W. 127
Hamad, I. 298, 304
Handy, R. 127, 131
Hanke, R. 144, 149–50
Hansen, S. 244, 419, 428, 430, 455, 457
Hanson, N. 37
Hardman, R. 305–6
Harré, R. 29, 43
Harris, T. 119
Hart, P. 491
Hattis, D. 14
Helland, A. 206, 429
Hepburn, J. 411, 431
Herndon, C. 311
Hertel, Rolf F. 124–43
Hillaireau, H. 302
Hillery, A. 128
Hillyer, J. 128, 129
Ho, Y.-P. 311
Höck, J. 454
Hodge, Graeme A. 3–24, 60, 73, 76, 144, 263, 351, 353, 433, 453, 455, 457, 458, 459, 500, 525, 526, 573–86
Hoeck, J. 493
Hoet, P. 128, 270
Holliday, C. 197
Holman, Michael 177–204
Holmes, P. 118
Honeywell-Nguyen, P. 275, 276
Howard, J. 177
Huang, L. 298
Hull, M. 179
Hurt, R. 182
IBM 52–4, 55
Iijima, S. 205
Illuminato, I. 286
India
 military R&D 380, 381
 NGOs and nanotechnology 412
innovation and risk management 17, 259, 503, 510–11, 551, 578–80
 therapeutic drugs 291–2, 295, 310–13
insurability and regulatory paradigms 20, 163–74
 Australia 158
 insurance role 165–6
 and liability framework 169–70, 171–3
 and loss, frequency and extent of 167
 and nanotechnology risks 168–9
 and oversight system 565–6
 private law 171–2
 and public acceptance 167
 public law 171, 172
 regulation, consequences for 172–3
 regulation principles 170–72
 regulation, purpose of 163–5
 and risk management 165
 and risk regulation, framing of 157–8
 and risk selection 168
 safety issues 163–4, 168
integrative approach see risk
governance and core challenges of integrative approach
intellectual property rights 388–405
 In re Anthony 396
 Diamond v Chakrabarty 397
 Ex Parte Drulard 395
genetically modified organisms, patenting of 397–9
 Harvard C. v Canada 397
 Juicy Whip, Inc. v Orange Bang 394–5, 396
In re Max-Planck-Gesellschaft zur Förderung der Wissenschaften eV 397
Mitchell v Tilghman 395
Monase drug application 396
morality, and utility as regulatory mechanism 394–5, 398
NGO involvement 418
Pittway Corp v Fymetics Inc 396
and risk assessment 400–402
safety, and utility as regulatory mechanism 395–6
subject matter and industrial application as regulatory mechanisms 391–2, 396–400
and TRIPS Agreement 399–400
utility as regulatory mechanism 394–6, 398
In re Watson 396
Whistler Corp v Autotronics 394
intellectual property rights and patents acquisition and requirements 390–92, 397–8, 399
nanotechnology patents, challenges of 392–3, 547
nanotechnology patents, economic value of 392
nanotechnology patents, and expertise in evaluation 392–3
nanotechnoly R&D, continuation of 401–2
oncomouse patent 397–8
patent system 389–93
process, slowing down of 401–2
and subject matter 391–2, 396–400
surgical procedures, patents for 399
system as regulatory mechanism 393–402
and technological progress 390
Intergovernmental Forum on Chemical Safety (IFCS) 428
Intergovernmental Panel on Climate Change (IPCC) 536
International Conference on Harmonization (ICH) 292, 296–8, 300–301, 537
international coordination and cooperation 508–24
commercial use of nanomaterials, reporting 518–19
and commercialization uncertainty 512
consumer labelling and risk management 519–21
and consumer product innovation 510–11
EHS risk research 518
global governance capacity, strengthening 521–2
and knowledge gaps 513, 515–16, 517–19
and legislative differences 509
market registers, need for 519
and media-specific environmental laws 368
and military applications 373, 374–5, 378, 382–4, 385, 386
nanomaterial market, economic value of 511
nanomaterial market, expansion of 510–11
policy recommendations and regulatory convergence 514–22
regulatory frameworks, uncertainty over suitability 513
regulatory and scientific resources, uncertainty over 513–14
risk assessment costs, estimation of 512
risk assessment and uncertainty 513, 515–17
risk management and regulatory challenges 511–14
and risk regulation framing 151–3
scientific building blocks, creation of 515–17
and technological change, rapid 512, 517
and terminology 516
see also transnational regulation, possibility of
International Council on Nanotechnology (ICON) 179
International Dialogue on Responsible Research and Development in Nanotechnology 373, 525–6, 537
International Electrotechnical Committee (IEC) 84, 88, 89, 90–91, 92, 92–3, 95, 100
International Measurement System 95, 97–102
International Organization of Legal Metrology (OIML) 100
International Risk Governance Council 485, 486–502, 503, 526, 567, 574
International Standards Organization (ISO) 8, 84–5, 94, 110, 416, 521, 538
and CENARIOS risk monitoring scheme 451–2, 455, 462, 465, 469–72, 473, 478
core definitions 54, 92–3
Joint Working Group 1 (JWG1) with IEC TC113 90–91, 92–3, 95, 100
nanoscale development, measurement of 359
nanotechnology definition 489
Technical Committee 229: nanotechnologies 87–9, 90–91, 92, 474–5, 478
Invernizzi, N. 432
Ireland, NGO call for moratorium on commercial use 422
Irwin, A. 435
Israel, military R&D 380, 381
Jani, P. 128
Japan
Air Pollution Control Law 353
chemical risk assessment triggers 126
environmental laws, media-specific 352–3, 354
medicinal products and Common Technical Document (CTD) 296–8
Ministry of the Environment (MOE) 352–3, 354–5, 356
Ministry of Health, Labour, and Welfare (MHLW) 187, 191
nanomaterial exposure guidelines 353, 354–5, 356
nanotechnology classification systems 393
nanotechnology concern assessment surveys 491–2
New Energy Development Organization 191

Graeme A. Hodge, Diana M. Bowman and Andrew D. Maynard - 9781849808125
Downloaded from Elgar Online at 12/26/2018 05:50:17PM via free access
Index 597

patent acquisition 390
and Pharmaceutical Inspection Cooperation Scheme (PIC/S) 300
regulatory reviews 187, 191
Waste Management and Public Cleansing Law 353
Water Pollution Control Law 353
Jarzyna, P. 118
Jasanoff, S. 15, 16, 36–7, 70, 152, 282, 398, 569
Jasper, R. 91
Jaspers, Nico 355, 508–24
Jean, M. 67
Jenning, V. 275
Jervis, R. 374
Jia, X. 130
Joly, P. 430, 432, 433, 434, 435, 436
Joner, E. 127, 129
Jones, Alan D. 205–37
Jones, R. 435, 568
Joy, B. 51, 56
Junk, A. 49
Kafi, R. 275
Kagan, R. 529
Kahlan, D. 491, 492, 527
Kandlikar, M. 15
Kane, A. 182
Karlsson, H. 179
Kates, R. 486
Katz, E. 6
Kaufmann, A. 430, 432, 433, 434, 435, 436
Kay, W. 72, 430, 431, 432
Kearnes, M. 411, 432, 438, 439, 583
Keiner, S. 450
Key, S. 528, 529
Keystone, E. 310
Kim, W. 304
Kimbrell, G. 285
Kinderlerer, J. 270
Kirchheimer, J. 292
Klein, Gerhard 462–83
Klein, H. 95, 96–7
Klijn, E.-H. 4
knowledge gaps
and future challenges 576
and integrative approach 492–3, 495–6
labelling 6–7, 16, 118, 119
chemicals legislation 246–7, 257
cosmetics industry 183, 186, 281, 519–20
Lab, J. 179
Lam, C.-W. 121, 207
Lang, P. 47
Lasswell, H. 19
Lazarus, R. 549
Leerenier, S. 278
Lee, E. 305
Lee, R. 190
Lemley, M. 392
Leong, K. 311
Lessig, L. 64
Levi-Faur, D. 4, 579
Lewinski, N. 130
Li, S. 298
Li, W. 179
Lin, A. 76
Liu, A. 179
Liu, Z. 118
Lloyd Davies, T. 217
Lobel, O. 532
Lockwood, D. 531
Lösch, A. 43
Lu, J. 305
598 International handbook on regulating nanotechnologies

Ludlow, Karinne 11–12, 14, 20, 144–62, 190, 279, 321, 335–8, 340, 350–52, 356, 358–9, 361, 364–5, 574, 578, 581
Lundqvist, M. 305
Lupo, M. 275
Lynch, I. 129
Lynos, K. 432, 579

McCray, W. 46
McDonald, C. 212, 213, 214–15, 217, 219
McKibben, B. 56
Maenaaghten, P. 411, 432, 438
McNeil, S. 299, 304
Macoubrie, J. 159, 492
Maeda, H. 304
MagicNano product 239, 527
Magrez, A. 179
Majone, G. 10
Malaysia, Food Act 337
Mandel, Gregory N. 76, 77, 152, 388–405, 434, 510
Mansour, M. 528, 529
Marchant, Gary E. 14, 158, 159, 190, 430, 434, 525–44
market, pre-market registration 272, 323, 324–5, 519
Maskus, K. 151
Massey, J. 156
Matsumura, Y. 303–4
Maynard, Andrew D. 3–24, 60, 73, 85, 125, 127, 144, 177–9, 183–4, 206, 270, 284, 428, 527, 548, 573–86
media-specific environmental laws 342–71
air pollutant monitoring 345–6, 348–9, 351–2, 353, 357, 359–60, 362
application and overview 343–53
Australian application 350–52, 358–9, 364, 365
challenges of 354–67
EU application 347–50, 358, 360, 362, 363–4
future direction for regulation 367–8
and international collaboration 368
Japan application 352–3, 354
knowledge and data gaps 355–9, 361
monitoring and detection 359–60
nanomaterials as new versus existing substances 364–5
next generation nanomaterials, unpredictability of 365–6
overlap and reliance on other laws 363–4
quantity-based thresholds 360–62
risk management and lack of metrology tools 359–60
time and resource investment 367
waterway pollutants 346, 347–8, 352, 353, 357, 363–4
medicine see therapeutic drugs, and drugs and medical devices regulation
Medley, T. 354
Mehta, M. 431
Meidinger, E. 532
Meier, J. 496
Meili, Christoph 187, 188, 189, 238–67, 342, 368, 446–61, 490, 500, 511
Meli, F. 103
Melnikova, I. 310
Merges, R. 403
metal nanoparticles 119, 179–80, 245
and cosmetics industry 269, 270, 273, 274, 277
Metre Convention 95, 98, 99
metrology 16–17, 55–6, 99–100, 103
Michaelis, K. 129
Milburn, C. 48, 50
Miles, John 83–106, 178, 359, 463, 474, 490
military applications 372–87
and arms control 374–5, 381
arms control agreements, non-compliance with 375–6
arms control, preventive 377–9, 380, 385
Biological Weapons Convention 376
and biological-technical hybrids 381, 383
central authority, lack of, and state security 374, 375
chemical or biological weapons 382, 384
Chemical Weapons Convention 376
and civilian regulation comparison 372–4
civilian uses and dual-use
technologies 377, 378–9, 380–81, 383
implants and body manipulation 381, 382, 384
and international harmonization of
technology laws 373, 374–5, 378
international regulation concepts 382–4, 385, 386
metal-free firearms 381, 382, 384
potential military uses 380–82
research and development 379–80, 416
and technology regulation 374–7
and terrorism 381
uninhabited weapons systems 381–2, 383
and verification of compliance 376, 384, 385–6
and voluntary agreements among
countries 374
Miller, Georgia 13, 20, 150, 199, 239, 269, 340, 409–45, 496, 577
Miller, J. 158
Mills, O. 393
Minko, T. 312
Mitchell, W. 30
Moen, M. 308
Moghimi, S. 298, 304
Mohamed, F. 298
Mohr, A. 411, 434, 435, 438
Moinard-Checot, D. 298
Monica, J. 182, 183, 184, 190
Mooney, P. 432
Moor, J. 77
Morais, P. 300
moratorium call on commercial use 125, 420–27, 429
Morgan, K. 132
Morganti, P. 275, 276
Morrison, M. 85
Mrózek, E. 302, 310
Muller, J. 206, 207
Muller, R. 275, 285
Mullins, S. 20, 182, 192
Mundargi, R. 298, 312
Murashov, V. 177
Murray, A. 63
Myrdal, A. 377
nano-object definition 93
nano-prefix, background to meaning of 111–12
NanoAction 145, 151, 158, 412–14, 416, 418, 419, 432
nanobots, self-replicating 51
nanomaterials
definition 113–14
nomenclature models for 93
surface area and behaviour of matter 94–5
nanoparticles
definition 93, 115
as discrete entities 114–15
interaction, and composition effects 119
interactions with living organisms, potential for 118–21
measurement 101, 103
solubility of 116, 119–20
nanoparticulate matter
and bulk substances, differing risk considerations 109–10
definition 115
nanorod definition 115
nanoscale
definition 93, 94–5, 112–13
materials, measurement of 359–60
and microscale distinction 109–10
substances as new chemicals, questions over 252–3
nanosheet definition 114
nanostructure, as integral feature of larger object 117
nanostructure definition 113
nanotechnology 83–106
anticipatory standards, problems with 88
classification systems 393
concern assessment surveys 491–2
core terms of base concepts 92–3
definition 92–3, 94–5, 110, 489, 489–90, 546
documentary standards 83–4
environmental, health and safety risks, concerns over 85, 88
international standards see International Standards Organization (ISO)
key words relevant to 112–15
laboratory accreditation 100–101
legal metrology 100
measurement standards 98–102
metrology, fundamental role of 96–7
nanometrology 95, 99–100, 102–4
nanoparticles and human health 85, 108–9
national documentary standards, published 85–6
national metrology institutes (NMI) 99–100, 103
national mirror committees 88
non-existence of 6–7
ontology definition 91–2
patents see intellectual property rights and patents
as phenomenon 6–8
physical standards 83
planning and development methods 88–9
standards 83–7
standards for terminology and nomenclature 90–91, 92
terminology 90–94
terminology, call for standardization 90
terminology and nomenclature, difference in meaning 91
nanotechnology regulation, current risk assessment paradigm 124–43
(eco)toxicological aspects 130–32, 133, 134–5
engineered nanomaterials (ENMs) 124, 128, 129–30, 133, 134
engineered nanoparticles (ENPs) 124, 132
and ENM surface area 127
ENMs and ENPs, novel or distinct properties, possible 127
ENMs and health and environment safety 125, 126–7
ENMs, waste, disposal of 138
ENPs, aspect ratios 124, 127–8
ENPs, biomolecular coatings, evidence of 129–30
ENPs and blood interaction 129
ENPs, call for moratorium on 125
ENPs, surface composition 129–30
exposure risk assessment 133
free ENPs, possible penetrative abilities 128–9
future testing and (eco)toxicological aspects 131–2
hazard risk assessment 133
health and environment safety 125, 126–7
knowledge gaps, current 132–3
mutagenicity 131
National Academy of Science risk assessment paradigm 125–7
physiochemical and toxicokinetic aspects 128–30
receptor risk assessment 133
regulatory aspects 133–9
reproductive toxicity 131, 134
risk assessment triggers 126
risk assessment paradigm shift 127–8
nanotechnology, tracing and disputing story of 46–59
and chemical basis 51–2
and Drexler, Eric 46–7, 49, 50–52, 54, 55, 90
fat fingers 51
and Feynman, Richard 46–51, 55, 124, 546
Feynman’s possibilities-in-principle 48
future outcomes, differing opinions on 56
and IBM 52–4, 55
and molecular manipulation 53
and molecular manufacturing 50–52
multidisciplinarity and scale of nanometer 55–6
nanotechnology as emerging technology 56
origin, determinants of story of 55–7
origins of word 54
real world applications and generalized technology platform 56–7
sticky fingers 51
nanotubes see carbon nanotubes
National Academy of Science risk assessment paradigm 125–7
Neches, R. 91
Nel, A. 127, 178, 305, 526
Nelson, R. 403
Nemmar, A. 129
Netherlands, military R&D 380
New Zealand
Australian/New Zealand Standard for Risk Management 468
chemical risk assessment triggers 126
food contact materials (FCMs) 336–7
Food Standards Australia and New Zealand (FSANZ) 186, 190, 334–6
Maximum Residue Limits 340
medicinal products and Common Technical Document (CTD) 296–8
novel food safety assessment 336
and Pharmaceutical Inspection Cooperation Scheme (PIC/S) 300
regulatory reviews 186, 190
NGOs role 409–45
benefits versus risks framework 410–11, 417–19
benefits versus risks framework, moving beyond 412–16
direct action protest 417
and global economic crises and inequities 415–16
governments, lack of dialogue with 436
health risks and nanotechnology manufacture 414–15, 418
industry surveys and consumer guides 416
and intellectual property rights 418
market dominance and nanotechnologies 414
moratorium call on commercial use 125, 420–27, 429
nano-product safety, scientific justification for demonstration of 428–9
and NanoAction 151, 158, 412–14, 416, 418, 419, 432
precautionary principle, economic reasons to resist 429–30
precautionary principle, erosion of 419–30
public engagement on nanotechnology, NGO frustration at 432–6, 438
public interest issues and NGO activity 416–17
public involvement recommendation 419
regulatory and governance proposals 417–19
and responsible development 428, 430
social, economic and democratic issues, concern over marginalization of 430–32, 438
stakeholder involvement recommendation 418, 433
technological advance and global inequity 414–16
and technological impacts on society 410–11, 414–16, 418
Nicolas, J. 302
Nightingale, S. 153
Nijhara, R. 312
Nixdorff, K. 376
Nohynek, G. 269, 285
Nordmann, Alfred 25–45, 56
Oberdörster, G. 8, 14, 15, 127–8, 178, 263, 270, 428, 481, 548–9
OECD and media-based environmental laws 368
nanotechnology definition 110, 489
NGO involvement 416
prolonged test methods 130–31
Working Parties on Nanomaterials and Nanotechnology 89, 103–4, 133–5, 373, 449, 491, 516–17, 521–2, 537, 566–7
Oliver, M. 305
Omidi, Y. 305
oversight system and nanotechnology regulation, new approach to 545–70
cap-and-trade programs 565
Defense Technology Review Board, suggested 562
Earth Systems Science Agency (US), suggested 562–3
effects data, lack of 548–9
and enforcement and liability 565–6
environmental monitoring 562–3
flexibility, need for 553
fragmentation hindering effectiveness 552–3
future of oversight 551–68
government involvement in
technology evaluation 563, 564
and human-health monitoring 562–3
and innovation 551
and institutional framework 552–5
and insurance 565–6
international cooperation 566–7
and knowledge gaps 549, 550
and manufacturers’ sustainability plan 557, 558–9, 566
and manufacturers’ testing and disclosure 557, 564, 565
nanotechnology characteristics relevant to oversight 546–9
nanotechnology definition 546
nanotechnology development and complexity 546–8, 550–51
nanotechnology oversight, rethinking of 549–51
nanotechnology patents 547
new agency, hypothetical depiction of 553–5
pollution control, integrated 559–60
product regulation 556–9
public involvement 567–8
public involvement in technology evaluation 562–3
risk assessment 549–51, 563–5, 567
scientific support and research, need for 553, 564
small business support 557
social impact statements 562
technology oversight and assessment 560–62, 567
see also nanotechnology regulation, current risk assessment paradigm; regulatory headings
Owen, R. 579

Park, Y. 305
Parr, D. 413, 433
Parsons, W. 19
Patel, H. 305
patent law see intellectual property rights
Peer, D. 291
Pelley, J. 189, 350, 526
Pendergrass, John 342–71, 508–24
Percival, R. 347
Pereira, M. 305
Peters, K. 121
Peters, Sheona A.K. 205–37
Peto, J. 210, 214, 217, 218, 219, 223, 225, 228
Petre, C. 310
Petry, T. 531
pharmaceuticals see therapeutic drugs, and drugs and medical devices regulation
Phelps, T. 76
Philippines, NGO involvement 412
Phillips, W. 305
Pillai, S. 304
Pitt, J. 39
Plosker, G. 308
Poland, C. 131, 179, 182, 192, 207, 238, 429
Pollack, M. 525, 529
Porta, M. 530
Porter, Read 344, 355, 369, 508–24
Powell, M. 435
pre-manufacturing notices (PMN) 187–8, 197, 247, 248–9, 250–52, 260, 262
precautionary principle 243–4, 255–9, 419, 428, 494
Pricl, S. 300
Probst, K. 347
Qin, L. 305
quantum dots 90, 118, 305–6, 313
Rademaker-Lakhai, J. 310
Radetzki, M. 74
Raj, B. 380
Randles, S. 432
Rao, S. 582
Ratner, M. and D. 546
Ravetz, J. 414
Index 603

Ray, P. 526
Reed, M. 35
Regis, E. 50
regulatory challenges 3–24
chemicals see chemicals legislation
effectiveness of new regulation 17
and enforcement pyramid 10–11
and future innovation 17
gaps and triggers in current regulation 17
independent regulation 10
institutional aspect 10
metrology and standards, development of 16–17
multidisciplinarity of 4, 9, 10–11
nanotechnology as phenomenon 6–8
nanotechnology as set of scientific and technological frontiers 8–9
NGOs role see NGOs role
oversight system see oversight system and nanotechnology regulation, new approach to
regulation language 9–12
regulation as political activity 11
regulation as public control 10
regulation as wicked problem 4
regulatory frontiers 12–13
regulatory impact statements 13
regulatory reviews 11–12, 14
risk assessment and democratic participation 15–16, 17
risk assessment, and mass rather than particle size 15, 28
risk assessment and nanotechnologies 13–16
scientific knowledge gaps 16
systems, design of 10
three languages 5–12
transnational see transnational regulation, possibility of and transparency and trust 17
regulatory governance 60–80
and corruption and capture 74
and dignity and democracy 68–9, 77
law, definition of 64–5
legitimacy and regulatee participation 71–2
legitimacy of regulatory means 71–3
legitimacy of regulatory purposes and standards 67–9
and noncompliance by regulatees 74–5
and personal privacy 73
precautionary approach and risk management 69–71
prudence of regulatory position 69–71
and regional regulation 66
regulation, definition of 63–4
regulatory competition 63
regulatory connection 75–7
regulatory environment definition 60–65
regulatory strategies 62, 63, 64
right kind of regulatory environment, properties of 65–77
risk management and regulatory connection 76–7
and technological development stage 77
Rehmann-Sutter, C. 39
Reiss, F. 49
Rejeski, D. 547
Renn, Ortwin 484–507, 525
Renwick, L. 120–21
Resnik, D. 529
Rickerby, D. 85
Riha, I. 304
Rihova, B. 304
Rio Declaration on Environment and Development, precautionary principle 419, 428
Rip, A. 25
risk assessment, current see nanotechnology regulation, current risk assessment paradigm
risk governance and core challenges of integrative approach 484–507
accountability and good governance 500–501
and case-by-case approach 491

Graeme A. Hodge, Diana M. Bowman and Andrew D. Maynard - 9781849808125
Downloaded from Elgar Online at 12/26/2018 05:50:17PM
via free access
codes of conduct and accountability 500, 501
communication, and identity loss, danger of 496
contextual aspects, importance of 487
effectiveness and good governance 500
and good governance 487
innovation appraisal 503
intellectual property rights and transparency 494–5
International Risk Governance Council 485, 486–502, 503, 574
knowledge categorization 487
and knowledge gaps 492–3, 495–6
manufactured and naturally-occurring nanoparticles, differences between 489
nanotechnology applications, and differing risks 492
nanotechnology concern assessment 491–2, 498
nanotechnology definition, problems with 489–90
and NGOs 496, 497, 498, 500
and precautionary principle 494
shared strategic focus and good governance 501
social and communicational integration 486, 491–2, 495–6, 498–9
and stakeholder inclusiveness 486–7, 491–2, 494–6, 498–501
stakeholder involvement 497–502, 503
and sustainability 501
transparency and good governance 499
see also voluntary measures in nanotechnology risk governance
risk management, and innovation see innovation
risk management frameworks and certification bodies 462–83
BASF AG code of conduct 453, 455, 467, 478
and CENARIOS 451–2, 455, 462, 465, 469–72, 473, 478
certification bodies and consultants, conflicting roles 472–4, 475, 476
certification bodies, role of 472–8
certification comparability, importance of 479–80
certification properties 463–4, 465
code of conduct assessment matrix 468, 471, 473
codes of conduct 466–9, 478
Environmental Defense/DuPont’s NanoRisk Framework 429, 451, 455–6, 467–71, 478, 538–9, 557
independent information sources 475–7
partner of industry role 477–9
process and product certification 480–81
risk management and assessment in nanotechnology 464–6
stakeholders and mediators 474–5
toxicology studies, limited publication of 477, 481
and voluntary self-regulation 465, 474
risk regulation, framing of 144–62
benefit versus risks framing 150–51
evolution of framing 154–7
framing nanotechnology regulations 148–50
framing of nanotechnology risks as being issue of harm 157–8
framing as national or international concern 151–3
framing reviews 145–8, 149–50
gene technology and regulatory framing 154, 155–6, 157
and knowledge of nanotechnology risks, lack of 149–50
and liability insurance 157–8
and moral and ethical beliefs 148, 149, 152, 154
national health law regulation and trade 153
and research funding 151
social needs and nanotechnology design 151
Rizzuto, P. 565
Robbins, J. 47
Robinson, D. 574
Index

Rocks, S. 126, 127, 131, 132, 133, 285
Roco, M. 42, 102, 410, 525, 547
Rodemeyer, M. 517, 564
Rogers-Hayden, T. 432, 435
Roszek, B. 128
Rotblat, J. 386
Rothen-Rutishauser, B. 128
Rothstein, M. 73
Russia
\hspace{20ex}\text{Federal Agency for Technical Regulations and Metrology}\n86–7
\hspace{20ex}\text{military R&D} 380, 416
Sadauskas, E. 129
Sadrieh, N. 298
Sandler, R. 6, 72, 430, 431, 432
Saner, M. 189, 350, 526
Sass, J. 183, 429
scanning tunnelling microscope (STM)\n38–9, 40, 47, 49, 53
Schaefer, M. 562
Schellekens, M. 392
Schuñeke, D. 492
Schierow, L. 242, 344, 560
Schipper, M. 305
Schlyter, C. 268, 278, 279
Schoemaker, N. 310
Schwarz, A. 35, 37
Schweizer, E. 34–5, 47, 49, 53
scientific basis for regulating 107–23
\hspace{20ex}\text{and definitions of terms} 109–15
\hspace{20ex}\text{and drug and gene delivery materials} 108, 118, 119, 120
\hspace{20ex}\text{and EC Scientific Committee for Emerging and Newly Identified Health Risks (SCENIHR)}\n107–9, 110, 115, 126, 127, 140, 273
engineered nanomaterial definition 114
free nanoparticles and health risks 117
human inhalation of nanoparticles 119, 120, 121
interactions between nanoparticles and living organisms, potential for 118–21
key words relevant to nanoscience and nanotechnology 112–15
nano prefix, background to meaning of 111–12
nano prefix, meaning in nanoscience and nanotechnology 112
nanocomposites 117
nanomaterial definition 113–14
nanoparticle definition 115
nanoparticle interaction, and composition effects 119
nanoparticles as discrete entities 114–15
nanoparticles and environmental risks 116
nanoparticles and health risks 116
nanoparticles, solubility of 116, 119–20
nanoparticulate and bulk substances, differing risk considerations 109–10
nanoparticulate matter definition 115
nanorod definition 115
nanoscale definition 112–13
nanoscale and microscale distinction 109–10
nanosheet definition 114
nanostructure definition 113
nanostructure as integral feature of larger object 117
nanotube definition 115
nanotubes and toxicity 121
and oversight system 553, 564
and physics of exposure and translocation 120
risk assessment, and shape and size considerations 112–15, 121
risk-benefit balance 109–10
society, impact on, and need for regulation 116–18
toxicity mediators and surface to volume ratio 120–21
toxicity and shape 121
toxicology of nanoparticles 120
\textit{see also} technoscience philosophy in regime of vigilance
Scrinis, Gyorgy 150, 199, 239, 409–45, 496
Seaton, A. 179, 182
Sekiya, M. 491
Selin, C. 56
Senjen, R. 13, 20, 269, 286, 340
Service, R. 564
Seymour, L. 310
Shackley, S. 534
Shaffer, G 525, 529
Shand, H. 410
Sharkey, N. 384
Shats, K. 270
Sheetz, T. 433
Shelley-Egan, C. 25
Shenoy, D. 304
Shew, A. 19
Shmeeda, H. 302
Shvedova, A. 121, 207
Siegrest, M. 159
Significant New Use Rules (SNURs) 185–6, 188
Silva, G. 129
Šimon, P. 127, 129
Singer, J. 310
Singer, M. 156
Singh, R. 128
Sinnot, S. 206
Slaughter, A.-M. 533
Smalley, R. 51–2
Smolen, J. 310
Smrcka, K. 238
Snidal, D. 533, 534, 535, 541
Soll, D. 156
Somsen, H. 60
Song, Y. 183, 184, 198–9
Soppimath, K. 274, 275, 276, 285
South Africa asbestos-related disease 216
military R&D 380
Sparrow, R. 6, 411, 431
Standage, T. 69
Stephenson, N. 52
Stern, P. 502
Stilgoe, J. 411, 431, 434, 435
Stokes, E. 190
Stone, Vicki 205–37
Strange, T. 501
Strohm, B. 14
Subramanian, V. 366
Sweden, military R&D 380
Sweet, L. 14
Switzerland Action Plan for Synthetic Nanomaterials 454
CENARIOS risk management system 451–2, 455, 462, 465, 469–72, 473, 478
medicinal products and Common Technical Document (CTD) 296–8
Pharmaceutical Inspection Cooperation Scheme (PIC/S) 300
Precautionary Matrix guidelines 454, 455, 456, 493–4
regulatory review 241–2
risk assessment budget for nanomaterials 429
Swiss Retailer Association nanotechnology code of conduct 453, 466–7, 493–4
voluntary measures for manufactured nanomaterials 453, 454, 455
Sylvester, Douglas J. 158, 159, 278, 525–44
Szebeni, J. 304
Tait, J. 580
Takagi, A. 207, 429
Takemura, M. 191
Talbott, M. 73
Taniguchi, N. 6, 54, 90
Tassinari, Oliver 177–204
Taylor, A. 539
Taylor, M. 14, 20, 147, 148, 188, 269, 332, 334, 337, 338, 340, 578
technoscience philosophy in regime of vigilance 25–45
available theories, tension between 27–8
classical or quantum physics, choice between 27–8
collective experimentation 34–7, 39
collective experimentation and clinical trials 36–7
and delocalization 34–5
knowledge claims and capability development 32–4
and magical thinking 30–31
nanocosm, use of images of 29–30, 31
novelty and surprise elements 27, 28
objects, domain of 31–2
observatories and other agencies 37–40
permanent vigilance regime 34–40
philosophy of nanotechnoscience 26–34
property and underlying structure 31–2
qualitative reasoning and method analysis 28–31
quantitative method, unsuitability of 29
and scanning tunnelling microscope (STM) 38–9, 40, 47, 49, 53
social experimentation and informed dissent 37
social experimentation with new technologies 35–7, 39
theories as tools 27–8
unknown, dealing with 28, 32
see also scientific basis for regulating
See ten Have, H. 67
thanos, C. 305
therapeutic drugs, and drugs and medical devices regulation 291–320
biocompatibility and toxicity, differences between 298
and biological molecules 295, 299, 305
biosimilar medicinal products, demand for 295, 296
and common technical document (CTD) 296–8, 302–3, 307
doxorubicin example 302, 310
enhanced permeability and retention effect (EPR) 303–4
ethical issues 306
and generic versions of drug delivery systems 296
and global regulatory cooperation 294, 296, 299–300
good practices 293
historical overview 292–4
and immunological properties 304
innovative technologies 291–2, 295, 310–13
manufacturing phase and major challenges 299–301
manufacturing, scaling-up exercises 300
medicinal products approved or in development 308–10
and new chemical entities (NCEs) 295
nonclinical studies, general guidelines for 302–3
Pharmaceutical Inspection Cooperation Scheme (PIC/S) 300
polymer therapeutics 304
process analytical technologies (PAT) 300
product quality and safety assessment studies 298
and quality by design aspects 300–301
science challenges within regulatory framework 311–14
scientific basis for regulating 108, 118, 119, 120
and surface modification 304–5
translational research 302–6
therapeutic drugs, nanopharmaceuticals
biodistribution 302–4
challenges 295–6
clinical development and current status 307–10
compatibility with immune system 306
detection limitations 305
measuring levels in blood and tissue 305
new materials as carriers for 305–6
and physico-chemical characteristics 298–9
and polymer therapeutics 310
quality guidelines 296–9, 300
Thomas, T. 47
Tickner, J. 455, 457
Tiede, K. 138
Timbrell, V. 219
Tomellini, R. 42
Toope, S. 539
Torchilin, V. 305, 312
Toumey, Chris 19, 46–59
toxicity (eco)toxicological aspects 130–32, 133, 134–5
mediators and surface to volume ratio 120–21
risk assessment 28
and shape 121
toxicology of nanoparticles 120
Toxic Substances Control Act (TSCA) see under US
Tran, C. 129, 207
transnational regulation, possibility of 525–44
commercialization and self-regulation 534, 538–9
and cross-border environmental risk 529, 530–31
expert bodies, role of 535–6
and framework convention 539–40
and global commerce 528
health and safety measures and global compliance 528
and HSE risk assessment 527
international coordination, appeal of 526–9
International Dialogue on Responsible Research and Development in Nanotechnology 373, 525–6, 537
international harmonization, challenges to 529–31
international harmonization, diminishing opportunities 531
international harmonization, short-term mechanisms for 535–9
International Risk Governance Council (IRGC) 485, 526, 567
medium term approaches 539–40
and nanotechnology epistemic community 532–3
phased approach 540–41
private codes of conduct 538–9
and private ‘soft law’ 533
production level benefits 528
protectionism, constraint of 528
public–private partnerships and self-regulation 534–5
realistic possibilities 532–40
regulation, new governmental approaches to 532–3
and self-regulation 534–5, 538–9
soft law and flexible regulation 535
sovereignty and international soft law 533
traditional treaty regimes, weaknesses of 530
transaction costs of international agreements 530
transgovernmental dialogue, challenges of 536–7
see also international coordination and cooperation
Trubek, D. and L. 532
Tsuchiya, T. 129
Udhrain, A. 308
Uhlir, N. 393
UK
and asbestos see asbestos
British Occupational Hygiene Society (BOHS) 224
British Standards Institution (BSI) 86, 110, 538
BSE outbreak 17
Department for Environment, Food, and Rural Affairs (Defra), Voluntary Reporting Scheme (VRS) 186, 190, 448–9, 455, 494
and EU Novel Foods Regulation 325, 338–9
genetic engineering (GE), and NGO involvement 439
government, lack of NGO discussion with 436
military R&D 380
nanotechnology engagement programme 435
NGO call for moratorium on commercial use 420, 422
NGOs and public engagement on nanotechnology 434
Notification of New Substance Regulations 137, 417, 436
OECD project on co-operation on risk assessment 104
regulatory reviews 11, 146, 147, 186, 517
Royal Commission on Environmental Pollution (RCEP) 508, 517, 556, 567
Royal Society Responsible NanoCode 453, 456, 538

Toxic Substances in Factory Atmospheres 223

voluntary measures for manufactured nanomaterials 448–9, 453, 518

United Nations Environment Programme (UNEP) 368, 522, 536, 566, 567

Stockholm Convention on Persistent Organic Pollutants 530

US

21st Century Nanotechnology Research and Development Act 567

Alliance for NanoHealth 189

In re Anthony 396

asbestos insurance, early 20

asbestos production 209, 210, 253

asbestos-related disease 216, *see also asbestos*

ASTM International 8, 86, 538

carbon nanotube manufacturing consent order, first 251–2

carbon nanotubes and allotrope rule 253

carbon nanotubes as new substances 252–3

Center for the Environmental Implications of NanoTechnology (CEINT) 182

Chemical Abstracts Service (CAS) registry 248

chemical risk assessment triggers 126

chemicals legislation *see chemicals legislation*

Clean Air Act (CAA) 344, 345–6, 357, 359–60, 362, 549

Clean Water Act (CWA) 344, 345, 549

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) 347, 361, 362, 363, 365, 565

Consumer Product Safety Commission (CPSC) 185, 555, 559

Diamond v Chakrabarty 397

Ex Parte Drulard 395

Earth Systems Science Agency, suggested 562–3

Environmental Defense/DuPont’s NanoRisk Framework 429, 451, 455–6, 467–71, 478, 538–9, 557

follow-on biologics 295

Food, Drug and Cosmetic Act 272, 331, 332–3, 549, 578

food contact materials (FCMs), regulatory aspects 332–4

Food and Drug Administration (FDA) 292, 295, 296, 308–10, 312, 331–4, 396

Food and Drug Administration (FDA) Nanotechnology Task Force 147, 148, 185, 188–9, 197, 332, 526–7, 553, 559

GMOs, patenting of 397, 398–9

GMOs, risk assessment 15, 16

Grocery Manufacturers Association 333–4

Harvard C. v Canada 397

Innovative Medicines Initiative (IMI) 312

Investigational New Drug Application (INDA) 293

Juicy Whip, Inc. v Orange Bang 394–5, 396

medicinal products and Common Technical Document (CTD) 296–8

military R&D 379, 380, 416

Mitchell v Tilghman 395

Monase drug application 396

Nanomaterials Environmental and Health Implications (NEHI) Working Group 189
nanomaterials, identifying, and data submission requirements 260–61
nanopharmaceutical regulation 292, 295, 296, 308–10, 312
nanoregulation problems, comparison with EU 254–63
nanoscale materials, measurement of 359–60
nanoscale substances as new chemicals, questions over 252–3
nanotechnology classification systems 393
nanotechnology concern assessment surveys 491–2
Nanotechnology White Paper 356
National Cancer Institute Nanotechnology Characterization Laboratory 306
National Nanotechnology Initiative (NNI) 42, 51, 102, 379, 546, 567
National Science Foundation (NSF) 56, 182, 547, 567–8
New Drug Application (NDA) 293, 296
NGO call for moratorium call on commercial use 421, 422, 424
NGO involvement 412
Occupational Safety and Health Administration (OSHA) 185, 555
OECD projects on safety testing 104
oversight system see oversight system and nanotechnology regulation, new approach to patent acquisition 390, 391–2, 394–7, 398–9
Pesticide Action for North America 426
Pittway Corp v Fymetics Inc 396
pre-manufacturing notices (PMN) 187–8, 197, 247, 248–9, 250–51, 252, 260, 262, 332
precautionary principle 256
Project on Emerging Nanotechnologies 72, 148, 333–4, 344, 354, 446, 510, 511, 519
quantity-based thresholds 361–2
records and health and safety data (US) 248, 253
regulatory reviews 11, 147–8, 151, 153, 185–9, 242, 254, 515
Resource Conservation and Recovery Act (RCRA) 344, 346–7, 357, 361–2, 363, 549
risk assessment budget for nanomaterials 429, 431
Significant New Use Rules (SNURs) 185, 188, 247–8, 249, 252
Toxic Substances Control Act (TSCA) 184–8, 242, 247–54, 256, 363, 450, 549, 555–6, 560, 565
TransAtlantic business and Consumers Dialogues 521
TSCA and burden of proof 257–9
TSCA and Chemical Substance Inventory 248, 260–61
TSCA and Inventory Update Rule (IUR) 250, 262
TSCA and new and existing substances, identification of 260–61, 364
TSCA, volume-based thresholds and exemptions 262–3
voluntary measures for manufactured nanomaterials 447–51, 518
In re Watson 396
Whistler Corp v Autotronics 394
Uschold, M. 91
Uversky, V. 311
van Calster, Geert 14, 146, 153, 159, 183, 189, 190, 259, 268–90, 342, 490, 511, 531
Van de Walle, S. 11
van der Walle, C. 298
Vasey, P. 310
Vass, P. 10
Vauthier, C. 302
Veiseh, O. 119
Verhoff, R. 154, 159
Vogel, D. 529, 582
voluntary measures in nanotechnology risk governance 446–61
and benchmarking criteria 457
CENARIOS risk management system 451–2, 455, 462, 465, 469–72, 473, 478
codes of conduct 452–3
codes of conduct, evaluation problems 453
data collection programs, call for mandatory 183
government agency involvement 455 guidelines and auxiliaries 454 and implementation times 455–6 mandatory regulations, coexistence with 458–9 official statistical data, lack of 446 private enterprise involvement 455 Project on Emerging Nanotechnologies (PEN) 72, 148, 333–4, 344, 354, 446, 510, 511, 519 and public consultation and stakeholder inclusion 456 and regulatory resistance 447 success and failure 454–7 voluntary reporting schemes 448–51 voluntary risk management systems 451–2, 455
see also risk governance and core challenges of integrative approach von Poel, I. 35 von Schomberg, René 43
