advocacy of emerging technology 46
Africa 116, 190
Alberth, S. 18, 270
Albrecht, J. 111
Argote, L. 37
Arrow, K.J. 10, 22
Asia 80, 190, 216
Atanasiu, B. 200
ATHENE model 118
Australia 161, 162, 194, 203, 217
Austria 120, 121, 231
autonomous sub-learning systems 32–3
Bahn, O. 52, 54
Balance of System (BOS) components 93, 101–102, 103, 113, 276
Barker, T. 56
Barreto, L. 52
Bass, F.M. 196–9, 200, 224
Belgium 79, 80, 82, 87
Berger, C. 228, 231
Berghout, N. 123, 126
Berglund, C. 59
Bertoldi, P. 200
Bevington, P.R. 30
biodiesel 121, 125
bioenergy
 carbon capture and sequestration (CCS) technologies 170
 components 266
 costs 122–5, 129–33, 134–7
 experience curves 122–9, 130, 131, 134–8, 257–8, 264, 277–9
 geographical constraints 267
 growth of 119–22
 policy 134
 pulverized coal-fired (PC) power plants 158
 technological innovation systems (TIS) 47
 technological learning, drivers of 277–9
 use of 119–22
biofuels
 cost reductions 129–33
 energy models 56–7
 progress ratio error 30
 technological innovation systems (TIS) 47
 for transportation 121, 122
biomass
 carbon capture and sequestration (CCS) technologies 170
 components 266
 costs 122–5, 129–33, 134–7
 experience curves 122–9, 130, 131, 134–8, 257–8, 264, 277–9
 geographical constraints 267
 growth of 119–22
 policy 134
 pulverized coal-fired (PC) power plants 158
 technological innovation systems (TIS) 47
 technological learning, drivers of 277–9
 use of 119–22
BioTrans model 52, 53, 56–7
Blanco, M.I. 76
Bosetti, V. 56
Boston Consultancy Group (BCG) 10, 19, 40, 141–2
bottom-up models
 and experience curves 48–54, 57–60, 61, 286
 photovoltaic (PV) technology 109–10
 boundaries, system 32–3, 266–7, 270, 284
Brazil 20, 121, 123, 127, 129, 207, 277
Buonanno, P. 56
Technological learning in the energy sector

Canada 80, 120, 161, 162
carbon capture and sequestration (CCS) technologies
bioenergy 171–3
components 266
costs 163, 164, 168–74
experience curves 162–8
growth of 147, 149–50, 160–162
integrated gasification combined cycle (IGCC) 163, 166–7, 168, 169–70, 171–3
natural gas combined cycle (NGCC) 163, 166, 168, 169, 171–3
policy 174–5, 279–80
pulverized coal-fired (PC) power plants 158, 163, 165, 168, 169, 171–3
technological innovation systems (TIS) 47
technological learning, drivers of 279–80
Carlson, J.G. 22
Castelnuovo, E. 55, 56
Chabbal, R. 97
chemical industry
costs 244–5, 266
experience curves 235–44, 245–6
growth of 232–5
policy 235, 246, 283
technological learning, drivers of 283
Chicago, University of 179, 180, 182, 187
China
bioenergy 122
chemical industry 244
household appliances 194
lighting technologies 206, 207, 215, 217–18, 281
nuclear power 177, 178, 183–4, 189–90
offshore wind energy 80, 90
onshore wind energy 65, 66
photovoltaic (PV) technology 94, 95, 276
pulverized coal-fired (PC) power plants 156, 158
space heating and cooling 227, 228
Claeson Colpier, U. 22, 141–2, 143, 144–5, 147, 259
Clair, D.R. 236, 237
coal-fired power plants
carbon capture and sequestration (CCS) technologies 158, 163, 165, 168, 169, 171–3
cost reductions 155–8
experience curves 42, 150–155, 251–4, 257, 264
growth of 149–50
policy 159, 279
technological innovation systems (TIS) 47
technological learning, drivers of 279
combined cycle gas turbine (CCGT) plants
cost reductions 143–7
experience curves 141–3, 144–5, 147–8, 251–4
growth of 139–41, 144
policy 279
technological learning, drivers of 279
see also gas turbine combined cycle (GTCC); natural gas combined cycle (NGCC)
compact fluorescent light bulbs (CFLs)
energy consumption 206–209
experience curves 209–14
policy 217–18
price reduction 214–16
technological learning, drivers of 281
Complex Product System (CoPS) 142
components see modular technologies
concentrating solar thermal electricity technology 115–18, 277
continuous processes (technology category) 33–4
cooling technology
cost reductions 227–30
energy consumption 219–20
experience curves 221–7, 282
policy 220–21, 230–31, 282–3
prices 221–30, 282
technological learning, drivers of 282–3
Cooper, D. 121
Cornland, D. 141–2, 143, 144–5, 147
Cory, K.S. 26
costs
bioenergy 122–5, 129–33, 134–7
carbon capture and sequestration (CCS) technologies 163, 164, 168–74
chemical industry 244–5, 266
combined cycle gas turbine (CCGT) plants 143–7
concentrating solar thermal electricity technology 118
and experience curves 41–2
household appliances 202–204
identification of 27–8
investment costs 134–6, 163, 164
lighting technologies 215–16
nuclear power 183, 184–90, 280
offshore wind energy 87–90, 91–2, 266, 275
onshore wind energy 73–4, 75–7, 266
as performance indicators 19–22, 269, 284
photovoltaic (PV) technology 41, 102–108, 111–13, 265–6
vs. prices 19–22, 75–7, 111–13, 262–3, 269
production costs 19–22, 27–8, 75–7, 111–13, 136–7, 269
pulverized coal-fired (PC) power plants 155–8
raw materials 265–6, 270, 284
space heating and cooling 227–30
Cowan, R. 179, 180
Crank, M. 235, 236, 237, 239, 240
Crassous, R. 56
Cuba 217
cumulative causation 44
Dale, L. 200
Dannemand Andersen, P. 38
data quality 110, 269–70, 285
DEMETER model 54, 56
Denmark
 bioenergy 121
 offshore wind energy 79, 80, 81, 82, 90
 onshore wind energy 21, 65, 66, 67, 68, 69, 71, 72, 75, 273
DESERTEC initiative 117
DLR model 118
DNE21+ model 52
downsizing technology 39
Duke, R. 213
Durstewitz, M. 69
Dutton, J.M. 23, 255
E3MG model 56
economies of scale 39, 155–6, 227, 280
ECOSTAR study 118
Edenhofer, O. 56
Ellis, M. 195, 200, 204, 211
endogenous learning
 bottom-up models 48–54, 57–60, 61, 109–10, 286
 exogenous parameters 55–8
 model evaluation 60–62
 top-down models 48–50, 54–5, 56, 59–60, 61
energy demand technologies 254–9
 see also household appliances; lighting technologies; space heating and cooling
energy efficiency
 biomass 137–8
 chemical industry 234–5
 combined cycle gas turbine (CCGT) plants 143–7
 experience curves 259–61, 267–8, 283–8
 household appliances 193–5, 200–202, 203–205, 260
 lighting technologies 206–209
 space heating and cooling 219–20
energy models
 bottom-up models 48–54, 57–60, 61, 109–10, 286
 evaluation of 60–62
 exogenous parameters 55–8
 experience curve applications 15–16
 top-down models 48–50, 54–5, 56, 59–60, 61
energy supply technologies 251–4, 255–9
see also bioenergy; combined cycle gas turbine (CCGT) plants; concentrating solar thermal electricity technology; nuclear power; offshore wind energy; onshore wind energy; photovoltaic (PV) technology; pulverized coal-fired (PC) power plants

energy technologies
experience curves 3–5, 9–10, 12–16, 251–9
progress ratio (PR) 251–2, 254–9, 283–4
technological learning in 1–5
see also names of individual technologies

Enermodal model 117
entrepreneurship 45
Epple, D. 37
EREC (European Renewable Energy Council) 115
ERIS model 52
ETC-RICE model 56
ethanol 121, 124, 129–32

Europe
bioenergy 121
chemical industry 236
household appliances 194
lighting technologies 207, 281
nuclear power 190
offshore wind energy 275
photovoltaic (PV) technology 94, 95
pulverized coal-fired (PC) power plants 156
space heating and cooling 228

European Union (EU)
bioenergy 121, 122
carbon capture and sequestration (CCS) technologies 160–61, 162
concentrating solar thermal electricity technology 117
data monitoring 110
household appliances 194
lighting technologies 206, 209, 217
nuclear power 178
photovoltaic (PV) technology 99, 113, 276
pulverized coal-fired (PC) power plants 157
space heating and cooling policy 220–21
Excel (software) 29–31
exogenous parameters 55–8
experience curves
applicability 32–4
applications 9–10, 12–16, 48–9
bioenergy 122–9, 130, 131, 134–8, 257–8, 264, 277–9
bottom-up models 48–54, 57–60, 61, 286
carbon capture and sequestration (CCS) technologies 162–8
chemical industry 235–44, 245–6
combined cycle gas turbine (CCGT) plants 141–3, 144–5, 147–8, 251–4
concentrating solar thermal electricity technology 117–18, 277
costs 41–2
critique 40–42
efficiency 259–61, 267–8, 283–8
efficiency technologies 3–5, 9–10, 12–16, 251–9
exogenous parameters 55–8
extrapolation 18, 26–7
formula 10–12
history of 9–10
household appliances 195–202, 204–205, 254–9, 269
indicators, choice of 18–22
and innovation systems theory 44–7, 271
and the learning process 25–7, 36–9
lighting technologies 209–14, 217
meaning of 3
methodological considerations 18–27, 262–9
model evaluation 60–62
national vs. global 113
natural gas combined cycle (NGCC) technology 251–4, 264
nuclear power 179–88, 191–2, 280
offshore wind energy 83–6, 91–2, 251–4, 257, 264
Index

onshore wind energy 67–72, 77–8, 251–4, 257, 273–4
and policy 12–16, 74–5
prices 270
pulverized coal-fired (PC) power plants 42, 150–155, 251–4, 257, 264
recommendations 269–71
space heating and cooling 221–7, 282
technical considerations 27–31
and technological learning 3–5, 9–10, 12–16, 48–9, 283–8
top-down models 48–50, 54–5, 56, 59–60, 61
Extool project 21, 68, 74–5
feed-in tariffs 67, 96
FEEM- RICE model 56
Feroli, F. 23, 33
fertilizers
 costs 244–5, 266
 experience curves 242–4, 245–6
 policy 235, 246, 283
 production of 232–5
technological learning, drivers of 283
Finland
 bioenergy 120–121, 127
 nuclear power 177, 181–3, 189
 offshore wind energy 79, 82, 90
 onshore wind energy 67
 Fischer-Tropsch liquids 124
France
 nuclear power 177, 180–81, 183, 185, 188, 189
 offshore wind energy 79, 87
 fuel cells 40, 47
Garud, R. 38
gas turbine combined cycle (GTCC) 164, 166–8, 169, 172
 see also combined cycle gas turbine (CCGT) plants; natural gas combined cycle (NGCC)
GENIE model 51, 52
geographical constraints 32–3, 266–7, 270, 284
Gerlagh, R. 56
Germany
 bioenergy 120, 121
 carbon capture and sequestration (CCS) technologies 161
 chemical industry 236, 237
 concentrating solar thermal electricity technology 115
 lighting technologies 212
 nuclear power 181, 188, 190
 offshore wind energy 80, 82, 87, 89, 90, 91
 onshore wind energy 21, 65, 66, 67, 68, 69, 70, 75, 267, 273
 photovoltaic (PV) technology 94, 96, 99, 111, 113, 276
 space heating and cooling 222, 228, 231, 282
 GET-LFL model 52
 global experience curves 113, 263, 285, 286
 Goldberg, J. 126, 128
 Goulder, L.H. 55
 Green, M.A. 104
 Gritsevskyi, A. 52, 59
 Grübler, A. 22, 38, 49, 52, 180–81
Hamilton, M.R. 253
Harmon, C. 97
heating technology
 cost reductions 227–30
 energy consumption 219–20
 experience curves 221–7, 282
 policy 220–21, 230–31, 282–3
 prices 221–30, 282
 technological learning, drivers of 282–3
Hedenus, F. 52
Hettinga, W. 127, 128, 259
Holan, P. de 188
Hoppe-Kilpper, M. 69
household appliances
 cost reductions 202–204
 energy efficiency 193–5, 200–202, 203–205, 260
 experience curves 195–202, 204–205, 254–9, 269
 policy 201, 204–205, 280–281
<table>
<thead>
<tr>
<th>Concept</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>price reduction</td>
<td>202–203</td>
</tr>
<tr>
<td>technological learning, drivers of</td>
<td>280–281</td>
</tr>
<tr>
<td>HVDC (High Voltage Direct Current) cables</td>
<td>89</td>
</tr>
<tr>
<td>hype cycle</td>
<td>41–2</td>
</tr>
<tr>
<td>Ibenholt, K.</td>
<td>26</td>
</tr>
<tr>
<td>IMACLIM- R model</td>
<td>56</td>
</tr>
<tr>
<td>India</td>
<td>66, 140</td>
</tr>
<tr>
<td>innovation, and the learning process</td>
<td>37</td>
</tr>
<tr>
<td>innovation systems theory</td>
<td>42–7, 271</td>
</tr>
<tr>
<td>integrated gasification combined cycle (IGCC)</td>
<td></td>
</tr>
<tr>
<td>carbon capture and sequestration (CCS) technologies</td>
<td>163, 166–7, 168, 169–70, 171–3</td>
</tr>
<tr>
<td>coal-fired power plants</td>
<td>149–50</td>
</tr>
<tr>
<td>combined cycle gas turbine (CCGT) plants</td>
<td>147</td>
</tr>
<tr>
<td>policy</td>
<td>279</td>
</tr>
<tr>
<td>technological learning, drivers of</td>
<td></td>
</tr>
<tr>
<td>investment costs</td>
<td>134–6, 163, 164</td>
</tr>
<tr>
<td>Ireland</td>
<td>79, 80, 81, 82, 87</td>
</tr>
<tr>
<td>Isles, L.</td>
<td>83, 85, 86, 87</td>
</tr>
<tr>
<td>Italy</td>
<td>189, 190</td>
</tr>
<tr>
<td>Iwafune, Y.</td>
<td>210, 211, 213</td>
</tr>
<tr>
<td>Jäger-Waldau, A.</td>
<td>111</td>
</tr>
<tr>
<td>Jakob, M.</td>
<td>223, 226, 228, 230, 231</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>bioenergy</td>
<td>120</td>
</tr>
<tr>
<td>carbon capture and sequestration (CCS) technologies</td>
<td>162</td>
</tr>
<tr>
<td>combined cycle gas turbine (CCGT) plants</td>
<td>140</td>
</tr>
<tr>
<td>household appliances</td>
<td>194, 203</td>
</tr>
<tr>
<td>lighting technologies</td>
<td>207, 209</td>
</tr>
<tr>
<td>nuclear power</td>
<td>177, 178, 187</td>
</tr>
<tr>
<td>photovoltaic (PV) technology</td>
<td>94, 95, 98, 111, 113, 276</td>
</tr>
<tr>
<td>pulverized coal-fired (PC) power plants</td>
<td>156</td>
</tr>
<tr>
<td>Jorgensen, U.</td>
<td>40</td>
</tr>
<tr>
<td>Joskow, P.L.</td>
<td>150–54</td>
</tr>
<tr>
<td>Junger, M.</td>
<td>68, 70, 83, 84, 87, 89, 90, 125–6, 127, 128, 136, 163, 274</td>
</tr>
<tr>
<td>Kammen, D.</td>
<td>213</td>
</tr>
<tr>
<td>Kamp, L.</td>
<td>38</td>
</tr>
<tr>
<td>Karnoe, P.</td>
<td>40</td>
</tr>
<tr>
<td>Kitous, A.</td>
<td>158</td>
</tr>
<tr>
<td>Klaassen, G.</td>
<td>52</td>
</tr>
<tr>
<td>knowledge</td>
<td>45</td>
</tr>
<tr>
<td>Köhler, J.</td>
<td>26</td>
</tr>
<tr>
<td>Korea 178, 187</td>
<td></td>
</tr>
<tr>
<td>Kouvaritakis, N.</td>
<td>52</td>
</tr>
<tr>
<td>Krohn, S.</td>
<td>67</td>
</tr>
<tr>
<td>Kypreos, S.</td>
<td>52, 54</td>
</tr>
<tr>
<td>Laitner, J.A.</td>
<td>196–9, 200, 202, 210, 213, 223, 224, 226</td>
</tr>
<tr>
<td>Lako, P.</td>
<td>83, 84</td>
</tr>
<tr>
<td>learning</td>
<td></td>
</tr>
<tr>
<td>from experience</td>
<td>184–8</td>
</tr>
<tr>
<td>investments</td>
<td>14–15</td>
</tr>
<tr>
<td>learning curve</td>
<td>9–10</td>
</tr>
<tr>
<td>local vs. global</td>
<td>263</td>
</tr>
<tr>
<td>process of</td>
<td>36–9</td>
</tr>
<tr>
<td>rates</td>
<td>22, 23–4</td>
</tr>
<tr>
<td>and research and development (R&D)</td>
<td>37–8, 272</td>
</tr>
<tr>
<td>see also technological learning</td>
<td></td>
</tr>
<tr>
<td>learning-by-doing</td>
<td></td>
</tr>
<tr>
<td>bioenergy</td>
<td>130</td>
</tr>
<tr>
<td>in bottom-up models</td>
<td>51–3</td>
</tr>
<tr>
<td>carbon capture and sequestration (CCS) technologies</td>
<td>174</td>
</tr>
<tr>
<td>experience curves</td>
<td>25–7, 38–9</td>
</tr>
<tr>
<td>nuclear power</td>
<td>179</td>
</tr>
<tr>
<td>technological innovation systems (TIS)</td>
<td>45</td>
</tr>
<tr>
<td>in top-down models</td>
<td>55</td>
</tr>
<tr>
<td>learning-by-interacting</td>
<td>39</td>
</tr>
<tr>
<td>learning-by-searching</td>
<td>38, 45, 53–4, 55</td>
</tr>
<tr>
<td>learning-by-using</td>
<td>39, 45, 135–6</td>
</tr>
<tr>
<td>light-emitting diodes (LEDs)</td>
<td>206, 207, 216, 217, 281–2</td>
</tr>
<tr>
<td>lighting technologies</td>
<td></td>
</tr>
<tr>
<td>cost reductions</td>
<td>215–16</td>
</tr>
<tr>
<td>energy consumption</td>
<td>206–9</td>
</tr>
<tr>
<td>experience curves</td>
<td>209–14, 217</td>
</tr>
</tbody>
</table>
Index

policy 217–18, 281–2
price reduction 214–16
technological learning, drivers of 281–2
Lipman, T.E. 210, 212
Londo, M. 52
Lund, P.D. 69
MacGregor, P.R. 143, 144
Mackay, R.M. 69
macroeconomic analysis 48–50, 54–5, 56, 59–60, 61
Maddon, R. 223, 226, 228, 230, 231
Maltepe, M. 76, 77, 112
Manne, A.S. 52, 53
MARKAL model 15, 16, 52, 60, 266
market prices see prices
markets 39, 45, 46–7, 103–4
Martinus, G.H. 222, 225
Mathai, K. 55
Mattsson, N. 15, 17, 51, 52, 99
Maycock, P.D. 30, 96
McDonald, A. 12, 22, 23, 28, 97, 224, 255
MERGE model 52, 53
MERGE-ETL model 52, 54
MESSAGE model 51, 52
MESSAGE-MACRO model 52
Messner, S. 51, 52, 58
methanol 124
Mexico 140
Miketa, A. 52
Milborrow, D. 69
MIND model 56
model evaluation 60–62
modular technologies 33–4, 93–4, 264–5, 266, 270, 284
see also photovoltaic (PV) technology; wind energy
monitoring energy technology markets 14
Morthorst, P.E. 75
Nakicenovic, N. 52, 59
National Aeronautics and Space Administration (NASA) 10
national experience curves 113, 263, 285, 286
natural gas combined cycle (NGCC) carbon capture and sequestration (CCS) technologies 163, 166, 168, 169, 171–3
experience curves 251–4, 264
properties 33
see also combined cycle gas turbine (CCGT) plants; gas turbine combined cycle (GTCC)
NEED (National Energy Education Development) project 12, 109
Neij, L. 18, 33, 68, 69, 70, 71, 77, 118, 232, 257, 264
Nemet, G.F. 23, 31, 68, 70, 77, 78, 96, 97, 98, 104, 107–8
Netherlands carbon capture and sequestration (CCS) technologies 161
household appliances 195, 196–9, 201
lighting technologies 212, 214, 215
offshore wind energy 79, 80, 81, 82, 90, 91
onshore wind energy 65, 66, 67
photovoltaic (PV) technology 99
pulverized coal-fired (PC) power plants 156
space heating and cooling 222, 225, 226, 230, 282
Newell, R. 223, 224
Nielsen, E.K. 89
Normark, B. 89
Norway 162
nuclear fusion 40
nuclear power costs 183, 184–90, 280
experience curves 179–88, 191–2, 280
policy 190–91, 280
prevalence of 176–8
technological learning, drivers of 280
offshore wind energy components 266
costs 87–90, 91–2, 266, 275
experience curves 83–6, 91–2, 251–4, 257, 264
geographical constraints 267
growth of 79–82
policy 90–92, 274–5
Index

photovoltaic (PV) technology 21, 111–13
space heating and cooling 221–30, 282
subsidies, effect of 20–21
Probert, S.D. 69
production costs 19–22, 27–8, 75–7, 111–13, 136–7, 269
progress ratio (PR)
 accuracy 27–31, 263, 270–271
 bioenergy 125–9, 130, 131, 136, 257–8, 264, 278
calculation of 11
carbon capture and sequestration (CCS) technologies 162–8
chemical industry 235–44, 246, 283
combined cycle gas turbine (CCGT) plants 142, 143, 144–5, 251–2
concentrating solar thermal electricity technology 118, 277
constancy of 19, 22–4, 263–4
development stages 40
in energy models 53, 61
energy technologies 251–2, 254–9, 283–4
experience curve extension 24–7
household appliances 195–202, 204, 254–5, 281
lighting technologies 210–14, 217, 281
natural gas combined cycle (NGCC) technology 251–2, 264
nuclear power 179–88
offshore wind energy 83, 251–2, 257, 264, 275
onshore wind energy 30, 68, 69, 70, 71, 77–8, 251–2, 257, 274
photovoltaic (PV) technology 30, 96–102, 105–6, 109, 251–2, 257, 264, 276
pulverized coal-fired (PC) power plants 150–155, 251–2, 257, 264, 279
space heating and cooling 221–7
and technology type 264–5
pulverized coal-fired (PC) power plants
 carbon capture and sequestration (CCS) technologies 158, 163, 165, 168, 169, 171–3
cost reductions 155–8
experience curves 42, 150–55, 251–4, 257, 264
growth of 149–50
policy 159, 279
technological innovation systems (TIS) 47
technological learning, drivers of 279
quality of technology 28, 268–9
Ramírez, C.A. 238, 242–3, 245, 246, 259, 283
RAND Corporation 10
Rao, S. 52
raw materials costs 265–6, 270, 284
REFUEL project 132–3, 138, 267, 278
Reisdorf, J.B. 143, 144, 150, 151, 179, 182
research and development (R&D)
 bioenergy 130, 277, 278
carbon capture and sequestration (CCS) technologies 160–161, 175
 in energy models 15–16, 53–4, 55, 59–60
 experience curve extension 25–7
 innovation systems theory 45
 and the learning process 37–8, 272
 and market support 103
 nuclear power 178
 one factor experience curves (OFEC) 12
 policy 1, 3
 pulverized coal-fired (PC) power plants 150, 159
research, development and demonstration (RD&D)
 experience curve extension 25–7
 learning-by-searching 38
 learning investment costs 15
 onshore wind energy 66, 75, 273
 photovoltaic (PV) technology 94–5, 113, 276
resource mobilization 46
Riahi, K. 170, 175
RICE model 55, 56
Richels, R. 52, 53
Roodt, M. 97
Rogol, M. 105
Technological learning in the energy sector

Rose, N.L. 150–54
Rothwell, G.S. 179, 186, 187
Rubin, E.S. 150, 152, 154–5, 163, 174, 175
Russia 177, 178, 192
Rust, J. 187

Sallenave, J.-P. 242
Sano, F. 52
Sanstad, A.H. 196–9, 200, 202, 210, 213, 223, 224, 226
Schaeffer, G.J. 98, 99, 100–101, 102–104, 113
Schiellerup, P. 200
Schrattenholzer, L. 12, 22, 23, 28, 52, 97, 224, 255
Seebregts, A.J. 52, 58, 69
Shum, K.L. 101, 113
silicon 104, 112
Simon, T. 236, 237, 238, 239, 240, 242, 244, 246
Smekens, K. 15, 16
Söderholm, P. 26, 59
solar power see concentrating solar thermal electricity technology; solar PV (photovoltaic) modules
solar PV (photovoltaic) modules components 266
costs 41, 102–108, 111–13, 265–6
experience curve extension 26–7
growth of 94–6
learning rate stability 23–4
policy 94–6, 109–11, 275–6
prices 21, 111–13
progress ratio error 30
quality 28
research, development and demonstration (RD&D) 94–5, 113, 276
system boundaries 32–3
technological innovation systems (TIS) 43, 44
technological learning, drivers of 275–6
South Africa 189

space heating and cooling
cost reductions 227–30
energy consumption 219–20
experience curves 221–7, 282
policy 220–221, 230–231, 282–3
prices 221–30, 282
technological learning, drivers of 282–3
Spain
concentrating solar thermal electricity technology 115, 116
offshore wind energy 79, 90
onshore wind energy 66, 67, 68, 72
photovoltaic (PV) technology 94
Sperling, D. 210, 212
Staffhorst, M. 99
Strategies Unlimited 96
sub-learning systems 32–3
subsidies 20–21, 67, 95
Sundqvist, T. 26
super-critical coal-fired power plants 156
Swanson, R.M. 98
Sweden
bioenergy 120, 127, 131, 277
nuclear power 190
offshore wind energy 79, 80, 81, 82, 253
onshore wind energy 66, 67, 72, 75, 273
space heating and cooling 229, 232
Switzerland 222, 223, 226, 228, 229, 231, 282
system boundaries 32–3, 266–7, 270, 284
Taiwan 177
tax credits 67
Taylor, M. 68, 70, 71
technological development 36–9, 42–7
technological innovation systems (TIS) 43–7
technological learning
bioenergy 277–9
bottom-up models 48–54, 57–60, 61, 286
carbon capture and sequestration (CCS) technologies 279–80
chemical industry 283
Index

combined cycle gas turbine (CCGT) plants 279

concentrating solar thermal electricity technology 277
energy technologies 1–5
exogenous parameters 55–8
experience curves, use of 3–5, 9–10, 12–16, 48–9, 283–8
household appliances 280–81
integrated gasification combined cycle (IGCC) 279
lighting technologies 281–2
mechanisms 36–9
model evaluation 60–62
nuclear power 280
offshore wind energy 274–5
onshore wind energy 273–4
photovoltaic (PV) technology 275–6 and policy 272–3, 283–8
pulverized coal-fired (PC) power plants 279
space heating and cooling 282–3
top-down models 48–50, 54–5, 56, 59–60, 61

see also learning technology, properties of 28, 33–4, 264–5, 268–9
Teller, A. 181
Terzian, G. 97
Thomas, A. 23, 255
Thornley, P. 121
time horizons 286
top-down models 48–50, 54–5, 56, 59–60, 61
Trancik, J.E 179, 180, 188
transformation bias 29–31
Travecedo, C.G. 75
Tsuchiya, H. 98
two-factor experience curve (TFEC) 25–7, 37, 51

umbrella phase 20, 76, 105, 284–5, 287
United Kingdom (UK)
carbon capture and sequestration (CCS) technologies 161, 162
combined cycle gas turbine (CCGT) plants 140
household appliances 203
lighting technologies 207
nuclear power 189

offshore wind energy 79, 80, 81, 82, 87, 89, 91
onshore wind energy 66, 68, 72
United States of America (USA)
bioenergy 120, 121, 122, 125, 127, 130
carbon capture and sequestration (CCS) technologies 161, 162
chemical industry 236, 237
combined cycle gas turbine (CCGT) plants 140, 144
concentrating solar thermal electricity technology 115, 116
household appliances 193, 194, 195, 196–9, 203
lighting technologies 207, 209, 211, 213, 217, 281
natural gas combined cycle (NGCC) technology 253
nuclear power 178, 179–80, 181, 182, 189
offshore wind energy 79, 80, 90
onshore wind energy 65, 66, 67, 68, 69, 71, 253
photovoltaic (PV) technology 94, 95, 97, 111, 113, 276
pulverized coal-fired (PC) power plants 150, 151, 152, 153, 253
space heating and cooling 223
University of Chicago 179, 180, 182, 187
upsizing technology 39, 77–8
Ürge-Vorsatz, D. 220
Utterback, J.M. 38

Van Bentham, A. 101–102
Van den Broek, M. 141, 145, 147, 150, 153, 155, 158, 163, 171
Van den Wall Bake, J.D. 126, 127, 128
Van der Zwaan, B.C.C. 54, 56
Van Sark, W.G.J.H.M. 30, 98, 100, 271
Venezuela 217

Watanabe, C. 101, 113
Weiss, M. 196–9, 200, 202, 204, 210, 212, 221, 222, 225–6, 227, 229, 230, 259
Wene, C.-O. 15, 17, 23, 34, 52, 99, 123, 126, 264
Williams, R.H. 97, 181
Technological learning in the energy sector

wind energy
components 266
costs 73–4, 75–7, 87–90, 91–2, 266, 275
development stages 40
experience curves 12, 33, 67–72, 77–8, 83–6, 91–2, 251–4, 257, 264
geographical constraints 267
growth of 65–7, 79–82
learning rate stability 23–4
prices 21, 75–7, 273–4
progress ratio error 30
system boundaries 32

technological innovation systems (TIS) 47

wind turbines 32, 72
Wolf, M. 97
Worrell, E. 238, 242–3, 245, 246, 259, 283
Wright, T.P. 9

Yeh, S. 150, 152, 154–5, 174, 175
Yu, C.F. 26–7

Zaleski, C.P. 181
Zimmerman, M.B. 179–80, 182, 187