Index

abatement costs 184
accumulation of damage 159–60
acid rain, killing of forests 122
agricultural crops, high-yield 111
agriculture and forestry
moved soil 176
agriculture share in economy, loss of environmental degradation 82
air
MF reduction 176
pollution damage costs (EAW) 152
quality reduction 85, 87
altruism, private 12–13
atmosphere, biogeochemical cycle of 99
attribution of resource depletion 142
Australia, biological diversity 120
backstop technologies 62
optimism and pessimism about 52
solar energy 50
bauxite and aluminium 50
beetle species 120
benefits, depreciation 38
biodiversity 4, 98, 110–13
and bio-industry
illness, cure finding 111
conservation 171
drastic loss 29, 48, 110–11
disappearance of forestry types 39
global public good 119
loss prevention 122
loss of conscious beings 121
biodiversity protection 75–6, 97, 105, 151, 190
value to human welfare 111
biological diversity in few nation states poorest of world 120
bioproducitive land area 174
biotic raw materials
MF reduction 176
bird death from exposure to DDT 48
boundedly rational individual 12
Brundtland Report
debate on sustainability 43
cadmium
pollution levels 88
calculation of sustainable national income (SNI)
assumptions 183–4
capacity maintenance 19
capital 7
man-made 8
capital gains 136
capital of traditional growth models 127
capital, utility-relevant 126
carbon dioxide
emissions 6, 76, 151, 161
sequestration possibilities 173
carbon monoxide 86
Carson, Rachel, *The Silent Spring* 48
categorical imperative 15–16
CFCs, detrimental effect 102
civil liberties
in lower air and water pollution countries 87
civil society, role of 87
climatic change 2, 13, 48
case example 28–42
costs of 159–61
damage for future 41
ignorance of 102
long-term future consequences 28
need for aggressive policies against 39
climatic change limitation
explicit policy objective 40
climatic change, loss of natural capital
beach erosion 39
carbon storage 39
coastal flooding and damage 39
damage for future generations 40
desertification increase 39
flood control 39
food provision 39
heat waves, increase and damage by 39
increase in transmission of malaria, yellow fever 39
loss of biodiversity 39
loss of food resources for indigenous people 39
need for ethical choices 41
recreation and tourism, loss of opportunities 39
salinity increase in freshwater 39
soil degradation 39
water purification 39
climate change policy, investments 32
climate change threat to sustainable development 113
closed economy 135
Club of Rome, 'Limits to Growth' report Beckerman comment 49
close concern on resource availability 47
Club of Rome reports environmental degradation 48
CO₂ emissions 142
damage to emitting country 142
crude oil prices 60
cost-benefit analysis of climate change 29, 32-3, 36
cost of preservation 76
costs of sustainability 100
crime against fellow sentient beings 111
cross-section analyses substitutability 67
crude oil prices 60
current value Hamiltonian 130
Daly, Herman Steady-state economics 23
dam construction developmental benefits 38
danger for future generations 113
DDT bird killer 48
detrimental effect 102
d'防御 expenditures' 152, 157-8, 184
in hybrid approaches 186
deforestation for agriculture or grazing land
cause of species extinction 112
for industrialization cause of species extinction 112
loss of topsoil 122
to collect fuel wood 80
democratic regimes lower pollution countries 87
deontological moral philosophy Immanuel Kant 16
depletion of natural capital ignorance about 25
desertification increase 39
destruction irreversibility 97
natural capital 98
developed and developing countries, large disparity between in fossil fuel burning 171
developing countries disasters to 40
export to developed country 170
future 37
pollution level estimates 88
poverty of 18
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>discount rate</td>
<td>30–35, 150</td>
</tr>
<tr>
<td>ethical grounds</td>
<td>32</td>
</tr>
<tr>
<td>low</td>
<td>36</td>
</tr>
<tr>
<td>diseases</td>
<td>36</td>
</tr>
<tr>
<td>disutility to humans</td>
<td>8</td>
</tr>
<tr>
<td>distributional issues</td>
<td>11</td>
</tr>
<tr>
<td>Domestic Material Consumption (DMC)</td>
<td>177</td>
</tr>
<tr>
<td>domestic process output</td>
<td>176</td>
</tr>
<tr>
<td>dominance of present generation</td>
<td>14</td>
</tr>
<tr>
<td>drinking water reservoirs</td>
<td>118</td>
</tr>
<tr>
<td>Dynamic Integrated Model of Climate and the Economy</td>
<td>29</td>
</tr>
<tr>
<td>dynamic optimisation model</td>
<td>126</td>
</tr>
<tr>
<td>ecological deficit</td>
<td>170</td>
</tr>
<tr>
<td>of some countries</td>
<td>172</td>
</tr>
<tr>
<td>‘ecological economics’</td>
<td>26</td>
</tr>
<tr>
<td>ecological footprint (EF) and deficit</td>
<td></td>
</tr>
<tr>
<td>of developed country</td>
<td>170</td>
</tr>
<tr>
<td>physical indicators of SS</td>
<td>6</td>
</tr>
<tr>
<td>selected countries and world</td>
<td>172</td>
</tr>
<tr>
<td>sustainability measurement by land area</td>
<td>169–74</td>
</tr>
<tr>
<td>‘ecological rucksack’ of consumer goods</td>
<td>175</td>
</tr>
<tr>
<td>ecological threshold safeguarding flexible sustainable management</td>
<td>106</td>
</tr>
<tr>
<td>econometric models, reduced-form in EKC literature</td>
<td>86</td>
</tr>
<tr>
<td>economic activity preference over environmental preservation</td>
<td>105</td>
</tr>
<tr>
<td>economic approach, traditional insufficiency of, in ignorance</td>
<td>103</td>
</tr>
<tr>
<td>Economic Aspects of Welfare (EAW)</td>
<td>Zolotas 152</td>
</tr>
<tr>
<td>economic growth</td>
<td>45–96</td>
</tr>
<tr>
<td>benefit for environment</td>
<td>78</td>
</tr>
<tr>
<td>effect on environment</td>
<td>77–8, 84</td>
</tr>
<tr>
<td>environmental degradation</td>
<td>3</td>
</tr>
<tr>
<td>and resource constraints</td>
<td>46</td>
</tr>
<tr>
<td>economic paradigm</td>
<td>12</td>
</tr>
<tr>
<td>of SD</td>
<td></td>
</tr>
<tr>
<td>weak and strong sustainability</td>
<td>7</td>
</tr>
<tr>
<td>of sustainability</td>
<td>12</td>
</tr>
<tr>
<td>economics</td>
<td>9</td>
</tr>
<tr>
<td>economic self-sufficiency</td>
<td>51</td>
</tr>
<tr>
<td>economic valuation techniques</td>
<td></td>
</tr>
<tr>
<td>doubt as reliable estimates</td>
<td>104</td>
</tr>
<tr>
<td>economists, mainstream lack of belief in limits to growth</td>
<td>48</td>
</tr>
<tr>
<td>on resource availability</td>
<td>47</td>
</tr>
<tr>
<td>economy</td>
<td></td>
</tr>
<tr>
<td>net rates of return</td>
<td>112</td>
</tr>
<tr>
<td>productive</td>
<td>20</td>
</tr>
<tr>
<td>economy growth periods</td>
<td>47</td>
</tr>
<tr>
<td>ecosystem protection</td>
<td>122</td>
</tr>
<tr>
<td>ecosystems</td>
<td>98</td>
</tr>
<tr>
<td>complexity of</td>
<td>111</td>
</tr>
<tr>
<td>finite</td>
<td>26</td>
</tr>
<tr>
<td>uncertainty and ignorance about</td>
<td>112</td>
</tr>
<tr>
<td>educational expenditures</td>
<td>135, 157</td>
</tr>
<tr>
<td>education, better, from rising incomes awareness of environment</td>
<td>78</td>
</tr>
<tr>
<td>elasticities of substitution, high and low</td>
<td>66, 68</td>
</tr>
<tr>
<td>electricity generation from nuclear power plants</td>
<td>171</td>
</tr>
<tr>
<td>El Serafy method 5, 147–9, 161</td>
<td></td>
</tr>
<tr>
<td>comparison with World Bank method</td>
<td>148</td>
</tr>
<tr>
<td>computation of natural capital depreciation</td>
<td>126, 141, 146</td>
</tr>
<tr>
<td>emission abatement</td>
<td>32</td>
</tr>
<tr>
<td>future beneficiaries</td>
<td>36</td>
</tr>
<tr>
<td>higher</td>
<td>38</td>
</tr>
<tr>
<td>emission intensity</td>
<td>88</td>
</tr>
<tr>
<td>emission reductions, optimal</td>
<td>32</td>
</tr>
<tr>
<td>emissions and waste</td>
<td>175</td>
</tr>
<tr>
<td>emissions of suspended matter</td>
<td>84</td>
</tr>
<tr>
<td>emissions per capita</td>
<td>88</td>
</tr>
<tr>
<td>Endangered Species Act, US</td>
<td>105</td>
</tr>
<tr>
<td>energy consumption primary</td>
<td>72</td>
</tr>
<tr>
<td>energy flows, accounting</td>
<td>170</td>
</tr>
<tr>
<td>energy, increased demand</td>
<td>73</td>
</tr>
<tr>
<td>energy intensity</td>
<td>71–2</td>
</tr>
<tr>
<td>energy resources</td>
<td>52</td>
</tr>
<tr>
<td>energy supply predictions</td>
<td>51</td>
</tr>
<tr>
<td>entropic process</td>
<td>78</td>
</tr>
<tr>
<td>environmental amenities</td>
<td>30</td>
</tr>
<tr>
<td>environmental assets, non-reproducible</td>
<td>38</td>
</tr>
<tr>
<td>environmental benefits, values of</td>
<td>38</td>
</tr>
<tr>
<td>environmental consequences of economic growth</td>
<td>26, 45</td>
</tr>
<tr>
<td>environmental costs and benefits</td>
<td>38</td>
</tr>
</tbody>
</table>
environmental damage 13, 79
and future generations 75
long-term 159–61
environmental degradation 25, 45, 74–89, 157
compensation for future generations 3
effects on welfare and sustainability 152
human activity 104
and per capita income 85
environmental destruction, irreversible
delaying of 103
environmental deterioration, irreversible 89
‘Environmental Kuznets Curve’ (EKC) 84, 88
environmental movement 48
environmental non-governmental
organisations (ENGO) 87
lobbying 87
environmental optimism 77–81
environmental pessimism, case for 81–9
environmental pollution 26
rights of future generations to freedom
from damage 119
environmental preservation preference 104
environmental problems of production
processes 178–9
Environmental Protection Agency (EPA) 87
US 87
environmental protection and rich
countries 79
environmental standards, pre-specified 182
environmental sustainability 169
biodiversity at current levels 180
countryside, unspoilt 181
emissions limitation 181
environmental security maintenance 181
non-renewable resource, no loss of
function 180
ozone layer intact 180
stable climate 180
sustainable harvest 181
environment exploitation in poor
countries 80
equations 131–2
equilibrium 17
equivalence factors, on land use 171
ethical conflicts 120
European Community research project
GREENSTAMP 182
European Union countries, material
flows (MF) 177
expenditure on sustainability 181
exportation of high-polluting industries
to lower-income countries 83
fecal coliforms, pollutants 151
female education, investing in 83
fires, increase, causes of climate change 39
Fisher, Irving
on resource availability 46
flows 10
food production 116–18
decline in Africa 117
food production and nature 118
forest land area required for sequestering
carbon 171
forest resources, disappearance in 19th
century 60
forestry types, disappearance of 39
forests, as renewable resource 151
fossil energy resources 51
fossil fuel burning 170–71, 173
human impact greatest 171
free ride on others’ efforts 119
fuel switches
oil to nuclear power and natural gas 86
‘fullworld’ economy 27
future, concern for 14–15
future generations 75
dependence on present 14
vulnerability of 14
gains and losses
expected utility, negative or positive 100
game-theoretic decision model 106
general equilibrium
effects 139
modelling approach 183
genерations
present and future 11
Genuine Progress Indicator (GPI) 5,
152–63
genuine savings (GS) 126–51, 164
actual valuations 139
in a closed economy
dynamic optimisation model 127–35
development of GS 143
indicator of weak sustainability (WS) 5, 127
in open economy 135–7
problems with measuring, in practice 137–41
rates for regions 144
rates of Saudi Arabia, sensitive analysis 149
rule complexity, constant population 141
geothermal technologies 51
Gini coefficient 158–9
global biocapacity, using up increase, since 1980s 171
Global Biodiversity Programme (UNEP) 105
global biodiversity protection costs 119
global climate 4
protection 97
fundamental life support resource 113
global environmental resources 113
global pollution 136–7
governance, environmental, on air pollution levels 87
governance, role of 86–8
'green awareness' in rich countries 79
Greened National Statistical and Modelling Procedures (GREENSTAMP) 6, 179, 182–3
modelling approach 186
greened Net National Product (gNNP) comprehensive consumption minus GS 153
greenhouse gas abatement 28–9, 105
greenhouse gas concentrations in atmosphere stabilization 41
greenhouse gas emissions 137
excessive 113
marginal social costs 160
Nordhaus policy recommendations 29
reduction cost 185
green parties, influence of in countries with lower pollution levels 88
Green Revolution in India cereal production increase 117
GREENSTAMP see Greened National Statistics and Modelling Procedures
gross domestic product (GDP) 152
gross national income (GNI) GS see Genuine Savings (GS)
habitat areas, sustainable management 106
habitat destruction 106
harm doing, good doing 26
Hartwick, John, Nobel Prize winner 21
Hartwick rule 21
harvesting 'ecological rucksack' of consumer goods 175
harvesting at maximum yield 25
health expenditures, defensive 157
heat waves, increase and damage by 39
Hicks-Kaldor test welfare economics 23
Hicks-neutral technical progress 140
Hotelling rule 56, 136
more complex model 202–5
resource rent 57
on resource rents, value of 53–5
simple general equilibrium model 198–201
summary 57–8
household labour, value of 152
hydrogen use for energy 51
Hueting, Roefie, Netherlands 179–80
sustainable national income (SNI) 183–5
human capital 8, 127, 128
depreciation 142
human economic activity 169
human hubris 111
human impact on ecosystems animal grazing for meat, hides, wool, milk 170
crop growing for food, animal feed, etc. 170
fishing in oceans and freshwater 170
harvesting of timber 170
infrastructure for housing, industrial production 170–71
human impact on environment 'new scarcity' 179
human life and existence enabled by
nature 99
human life at risk 111
human population rise 13
human protection of species
and natural forces 106
human resource appropriation 13
human valuation of nature 8
hunting of whales
reduction of extraction costs 60
hybrid indicators 6, 179–87
hydro-electric power 170
hyperbolic discounting 33

ignorance
about biodiversity destruction 101–2
about climate change 102
of value of undiscovered species made
extinct 101–2
income and price elasticities 184
income growth
environmental protection in high-
income countries 78
income inequality 153
Gini coefficient 158–9
incomes, rise of
‘rich consumers’ demands 81
incomes, unequal distribution 157
index of GDP, GPI for the United States
163
Index of Sustainable Economic Welfare
(ISEW) 5, 152–63, 165–6
industrialisation, detrimental side-effects
realisation about 48
inequality and civil society 86–8
inequality, impact of
on environmental outcomes 86
infectious diseases, increase in
transmission 39
insurance game
payoff matrix 107
species protection 106–7
insurance value of biodiversity 111
inter-generational distribution 27
inter-generational equity
and intra-generational equity 11
inter-generational fairness questions 11
International Energy Agency (IEA) 86
International Society for Ecological
Economics (ISee) 23
inter-temporal context 137
 intra-generational conflicts 11
investment in human capital 142
investment options
in emissions abatement 37
investments
higher, for future benefit 32
inefficient 37
ISEW and GPI studies
undertaken for list of countries 154

Japanese manufacturing sector, increase
83
Kant, Immanuel 16
deontological moral theory 15
Krutilla-Fisher approach 38
climate change 38
labour input 69
labour supply 184
land area
bioproductive 170
carrying capacity 170
land availability, scarcity 46
land degradation
unsustainable agriculture 118
land, intensive use of 117
land protection 87
landscape protection 76
lead 86
pollution levels 88
League of Conservation Voters, US 87
less developed countries (LDCs)
rising emissions 88
lexicographic preference 75–6
life-support functions 97
natural capital 98
life-support resources
climate and ozone layer 122
global protection 4
non-substitutable 99
life-support systems for human beings
global climate 190
literacy rates, increased, lower pollution
levels 87
losses, wetlands, glaciers, coral reefs,
forests 40
lottery game
cure or no cure 108
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>disease cure 108</td>
</tr>
<tr>
<td>payoff matrix 108–9</td>
</tr>
<tr>
<td>regret matrix 109</td>
</tr>
<tr>
<td>low-probability extreme-impact outcomes 32</td>
</tr>
<tr>
<td>macroeconomy as subsystem of ecosystem 26</td>
</tr>
<tr>
<td>macroeconomy scale 27</td>
</tr>
<tr>
<td>Malthus, on land scarcity and food consumption 46</td>
</tr>
<tr>
<td>man-made capital 62, 69, 128</td>
</tr>
<tr>
<td>declining resource stock 63, 69 and natural capital 27</td>
</tr>
<tr>
<td>man-made capital, share of ratio, to resources 68</td>
</tr>
<tr>
<td>manufacturing share in economy, increase</td>
</tr>
<tr>
<td>heavy polluting manufacturing 82</td>
</tr>
<tr>
<td>marginal abatement costs 134</td>
</tr>
<tr>
<td>marginal and average cost 148</td>
</tr>
<tr>
<td>marginal revolution 46</td>
</tr>
<tr>
<td>marginal social costs 134, 161</td>
</tr>
<tr>
<td>value of tonne of emissions 160</td>
</tr>
<tr>
<td>market failures 137</td>
</tr>
<tr>
<td>market rates of return climate change 32</td>
</tr>
<tr>
<td>Marshall, Albert</td>
</tr>
<tr>
<td>on resource availability 46</td>
</tr>
<tr>
<td>material flows (MF) 6, 174–9</td>
</tr>
<tr>
<td>intensity, 1975–1996 177</td>
</tr>
<tr>
<td>physical indicators of SS 6</td>
</tr>
<tr>
<td>reductions</td>
</tr>
<tr>
<td>critique 178</td>
</tr>
<tr>
<td>size of 175</td>
</tr>
<tr>
<td>material goods, people’s preferences for 82</td>
</tr>
<tr>
<td>Materials Policy Commission, US</td>
</tr>
<tr>
<td>President’s 47</td>
</tr>
<tr>
<td>on solar energy 52</td>
</tr>
<tr>
<td>material welfare, increased</td>
</tr>
<tr>
<td>as compensation to future generations 26</td>
</tr>
<tr>
<td>maximin criterion 109</td>
</tr>
<tr>
<td>maximin rule 18</td>
</tr>
<tr>
<td>utility of worst-off generation, maximisation 17</td>
</tr>
<tr>
<td>maximisation, present-value</td>
</tr>
<tr>
<td>leading to extinction 196–7</td>
</tr>
<tr>
<td>measurement of weak sustainability 164</td>
</tr>
<tr>
<td>Measure of Economic Welfare (MEW)</td>
</tr>
<tr>
<td>Nordhaus and Tobin 152</td>
</tr>
<tr>
<td>metals in earth’s crust 74</td>
</tr>
<tr>
<td>Middle East</td>
</tr>
<tr>
<td>greatest negative GS rates 141, 143</td>
</tr>
<tr>
<td>weak sustainability (WS) 164</td>
</tr>
<tr>
<td>mineral and energy resources</td>
</tr>
<tr>
<td>abiotic raw materials 176</td>
</tr>
<tr>
<td>monetary analysis 170</td>
</tr>
<tr>
<td>monetary valuation 6</td>
</tr>
<tr>
<td>of environmental degradation 175, 179</td>
</tr>
<tr>
<td>moral philosophy 16</td>
</tr>
<tr>
<td>moral principles</td>
</tr>
<tr>
<td>John Rawls on 15</td>
</tr>
<tr>
<td>multilateral agreements 87</td>
</tr>
<tr>
<td>national accounting system, greening 138</td>
</tr>
<tr>
<td>National Council for Sustainable Development 87</td>
</tr>
<tr>
<td>natural capital 3–8, 127</td>
</tr>
<tr>
<td>allowing no further decline 120</td>
</tr>
<tr>
<td>into consumption goods 22</td>
</tr>
<tr>
<td>distinctive features 98–9</td>
</tr>
<tr>
<td>individual aversion to degradation of 25</td>
</tr>
<tr>
<td>life-support functions 25</td>
</tr>
<tr>
<td>loss, irreversible 25</td>
</tr>
<tr>
<td>and man-made capital 63</td>
</tr>
<tr>
<td>preservation of which forms 6, 25, 97–125</td>
</tr>
<tr>
<td>substitutability of 21, 45–96</td>
</tr>
<tr>
<td>natural gas 144</td>
</tr>
<tr>
<td>natural gas reserves in world 114</td>
</tr>
<tr>
<td>natural-resource commodities, non-renewable</td>
</tr>
<tr>
<td>scarcity 59</td>
</tr>
<tr>
<td>natural resources</td>
</tr>
<tr>
<td>depreciation 5</td>
</tr>
<tr>
<td>extraction, regions with greatest negative GS rates 143</td>
</tr>
<tr>
<td>for production 114–16</td>
</tr>
<tr>
<td>substitution with man-made capital 45</td>
</tr>
<tr>
<td>nature, preservation of 24</td>
</tr>
<tr>
<td>nature, value of 8</td>
</tr>
<tr>
<td>negative ecological deficit</td>
</tr>
<tr>
<td>ecological surplus 172</td>
</tr>
<tr>
<td>negative (GS) rates 127</td>
</tr>
<tr>
<td>neoclassical economics, rise of 46–7</td>
</tr>
<tr>
<td>coping with risk, uncertainty and ignorance 102</td>
</tr>
</tbody>
</table>
neoclassical welfare economics 22, 23, 27
net adjusted savings
World Bank term 21
Netherlands SNI
zero dehydration, zero soil contamination 184
net investment, total 21
Net Primary Productivity (NPP) 170
destruction by human activity 116
of earth 117
net savings rates 143
nitrogen oxides, pollutants 151
non-declining utility 18
non-declining versus constant utility 19
non-energy efficiency techniques 86
non-methane volatile organic compounds 86
non-renewable resources 24, 129
non-substitutability assumption 2, 41
Nordhaus, William, approach
climate change 28–9
critique 32–7, 37–40
discount rate 32
explicit policy objective 40
North African region
greatest negative GS rates 141, 143
weak sustainability (WS) 164
nuclear fusion 50
nuclear power
highly damaging by-products 114
nuclear waste
storage for future generations 114
toxic radiation
for tens of thousands of years 114
ocean of world, absorption of carbon 171
offspring concern 14
oil and carbon 144
oil and gas reserves
over-reporting of 116
oil drilling costs 162
oil price rise, 1970s
scarcity 59
oil prices in world 47
oil reserves in world 113
oil wells, over-exploitation 116
open economy and GS 135–7
opportunity costs 98, 118–21, 123
optimal growth model 126
optimal path 137–9
optimal Pigouvian tax 134, 137
optimism or pessimism, environmental 92–3
option values 97
risk premium 102–3
Organization of Petroleum Exporting Countries (OPEC)
over-reporting of 116
over-fishing
un sustainable agriculture 118
over-harvesting, restriction of 122
over-mining
un sustainable agriculture 118
over-population 170
ozone layer 4
depletion 48, 99
intact 190
protection 97
fundamental life support resource 113
partial equilibrium approach 185
passenger pigeons, hunting 61
pathogens, increase, causes of climate change 39
per capita utility
for infinity 11
non-declining 11
perfect competition 127
pests, increase, causes of climate change 39
photovoltaic generators 173
physical indicators 6
and monetary valuation 179
physical indicators of SS 169–79
political freedom, impact of
on environmental outcomes 86
political rights, high
in lower air and water pollution countries 87
pollutants, restriction of 4
pollution
ever-rising 75
higher in poor countries 79
intensity 81
and modern capital 79
utility reducer 10
pollution-causing 132
pollution effect 139
pollution levels rising
predictions for developing countries 88
pollution restriction 97
pollution sink 25
pollution stock 22
population
expansion 119
growth 11
  in 19th century 46
growth limits 117
rates and per capita income 80–81, 141
reduction of 83
population size, sustainable 170
positive GS rates 127
environmental degradation 139
unsustainable resource exploitation 139
poverty
environmental consequences 80
everal, by sticking to sustainable
development (SD) 17
for humankind through time 17, 18
precautionary measures, need for 113
precautionary principle 4, 97, 104–5, 175
present-value maximisation
zero utility 23
preservation costs 121
preventive measures 104
price path
  with continuous unexpected resource
diversity 56
prices, role of 45
  overcoming resource constraints 53–62
private savings 21
production function 67
property rights and open access 112–13
property rights over energy and mineral
resources 115
protection costs 118–19
protection of biodiversity 112
quasi-option value
  in environmental valuation 103
R&D efforts of private sector
  conventional or environmental saving
techniques 82
radioactivity from nuclear waste 29
Ramsey rule 30–31, 33, 36
  applied to future generations 32
  more complex model 202–5
  simple general equilibrium model
  198–201
rate of return on capital 31
rationality 12
Rawls, John
  maximin rule 17
  ‘original position’ point of view 16
  A Theory of Justice 15
real-world computations of natural
capital depreciation 148
recycling 62
reforestation 174
renewable and non-renewable energy
costs 162
renewable energy resources 22, 24, 75,
127–9, 173
Repetto method 147
  and World Bank method
  volatility 148
replacement cost method 161, 162
resource allocation 27
resource-augmenting technical progress
70–72
resource-extraction technology 73
resource importer and resource exporter
136
resource optimism and speculation 49,
74, 89
resource pessimists 53, 89
resource price indicator 58–9
  mineral and energy 59
resource scarcity 61
resource rent 58, 161
  and interest rate 55–6
resource rents, rising and falling 57
resources
  availability 48–74
  depletion 25, 79, 139, 157, 161–3
  costs (EAW) 152
  limits 99
  deposits, heterogeneous 133
discoveries 145
  and the environment 45–96
  exponential reserve index
  for major resources 115–16
  extraction
  ‘ecological rucksack’ of consumer
goods 175
Weak versus Strong Sustainability

harvesting 139
non-renewable and renewable 10
Ricardian process 60
value of discoveries 134
resource scarcity 57–9
and halt to economic growth 47
resource stocks, existing, depletion of 133
resource trading countries 140
resource use and resource intensity 79, 80
retirement pension schemes 83
Ricardian process 58
RICE-model 29
rights-based theory 98
Rio de Janeiro, Summit 1992
Agenda 21 1
risk 99–101
aversion 100
natural capital preservation 97–125
preference 100
uncertainty and ignorance 99–110
rock displacement, in resource extraction 175

sacrifice of earlier generations 18
safe minimum standards (SMS) 4, 97, 105–10, 120
salinisation of irrigated fields
unsustainable agriculture 118
salinity increase in freshwater 39
sanitation, adequate
improvement as incomes rise 84
Saudi Arabia
El Sarafy and World Bank methods 150
natural capital depreciation in US dollars 150
natural capital wealth in US dollars 150
oil and natural gas reserves 150
schooling, defensiveness of 157
scientific evidence, definite 104
self-interest of individual 15
services, pollution intensivity of
versus industrial manufacturing 79
shocks, unanticipated future 140
Sierra Club, US 87
single species protection 106
social damage, marginal 161

soil erosion 4, 98, 122
unsustainable agriculture 118
soil erosion in agriculture 175
soil fertility 190
solar energy 50–51, 173
solar influx, renewable energy 50
Solow-Hartwick sustainability 21
Solow, Robert 17, 18
Nobel Prize winner 21
species extinction 40
human-induced, moral wrong 111
species preservation 105
steady-state economy 51
as ultimate goal 26
Stern Review 31–5, 41
cost-benefit analysis of climate change 28
stock of natural capacity 10
strong sustainability (SS) 1, 2, 6
measurement of 169–87
Sub-Saharan African region
greatest negative GS rates 143
negative GS 141
weak sustainability (WS) 164
substitutability 24, 67
substitutability assumption 2, 28–40
substitutability hypothesis 91, 93
substitutability of natural capital 37–40, 127
substitution of resources 49, 70, 115
sulphur oxides, pollutants 151
suspended particulate matter
damage 142
sustainability gaps 179
sustainability measurement by weight 174–9
sustainability prices 139
sustainability gaps
UK and Netherlands 181
sustainable development (SD) 1, 7, 23
ethics of 13–20
reasons for committing to 14
sustainable management of ecosystems
possibility of 106
sustainable national income (SNI) 179–80
according to Hueting, for Netherlands 183
modelling approach 186
Index

technical change
  efficiency increase in production 81
  environment saving 81
technical progress 71, 74, 89, 115
  reduction of CO₂ emissions 79
  resource-augmenting 70–74
  resource constraint 22
  technical progress, role in overcoming resource constraints 45
thermodynamics, first law of
  conservation of mass 69, 71, 78
thermodynamics, laws of 50
Third World poverty 120
  ‘threshold effect’ 162
timber harvesting 170
time inconsistency problem of SD 16, 19
time preference for climate change, zero 33–4
time-series econometrical studies
  complementarity 67
Total Incomes System of Accounts (TISA) Eisner 152
toxic pollutants 115, 122
  accumulation in environment 114
trade balance 184
trade-offs 75
trading partners
  ecological deficits, danger of 173
  transboundary pollution 136–7
tropical deforestation rate 85
tropical forest management in Thailand 103
tropical rainforest preservation 120
uncertainty
  climate change 101
  objective and subjective beliefs 101
United Nations Environment Programme 105
United States
  emissions of particulate matter 86
  GDP versus GPI per capita 155–6
  unit extraction costs 58–60
urban life, disamenities (MEW)
  pollution, litter, noise, congestion 152
US Fish and Wildlife Service
  property rights and imposed conservation 105
utilitarian framework of Nordhaus 32
utilitarianism 8, 9
  and tractability 9
utility 17
  loss
    damage to coastal and other ecosystems 40
    loss of coral reefs 40
    loss of forests 40
    loss of glaciers 40
    loss of wetlands 40
    massive species extinction 40
utility, non-declining 9–10, 35
utility paths
  constant utility 20
  higher utility 20
valuation of a specific good 104
value damage of tonne of carbon 160
viruses
  disutility to humans 8
voluntary sacrifices
  earlier generations 18
Walras, Léon
  on resource availability 46
  waste-absorbing function of environment greatest threat to 115
  wastes, environment as assimilator of 48
  water, clean
    improvement as incomes rise 84
  water flows 176
  water reservoirs 190
weak sustainability (WS) 1
  measurement of 126–68
  proponents of economic growth 77
weak versus strong sustainability 20–27
weighted personal consumption expenditures
  adjustments, US GPI of 2006 153
welfare costs 33
welfare economics 9
welfare effects of income inequality 152
welfare from household work 153
  whale species, dwindling of 60
wildlife and biodiversity protection 75–6
wind energy 51, 173
wind turbines 173
World Bank
  computations 141–3
estimates of GS 5 genuine savings accounting 202–5 world ecosystem contains economy 98
GS figures of computations of 141–51 world market price changes 184
regional grouping of countries 207–9 World Summit on Sustainable Development
World Bank method 149 Johannesburg I
World Bank versus El Serafy method 151 World Development Indicators
World Development Indicators
World Bank 21 zero-growth economy 51