References


Anowar, S., N. Eluru and L.F. Miranda-Moreno (2014) Analysis of vehicle ownership evolution in Montreal, Canada, using pseudo panel analysis,
References

Paper 14–3023 online, Transportation Research Board, Washington, DC.


Atherton, T. and M.E. Ben-Akiva (1976) Transferability and updating of disaggregate travel demand models, Transportation Research Record 610, 12–18.


References


information system for urban and regional analysis: methods and examples, *Environment and Planning A* 20, 1645–1671.


Boyce, D. (2007a) An account of a road network design method: expressway spacing, system configuration and economic evaluation, in *Infrastrukturprobleme bei Bevölkerungsrückgang* [Infrastructure problems under population decline], X. Feng and A.M. Popescu (eds), Berliner Wissenschafts, Berlin, 131–159.


References

Mode and Route Choice, Report to the Illinois Department of Transportation, University of Illinois at Chicago, Chicago.


Report 716, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC.


References

Policies, unpublished report, Laboratorio Richerche Gestione e
Controllo Traffico, Salerno, Italy.

assignment model for congested transit networks with strict capac-
ity constraints: characterization and computation of equilibria, Transpor-
tation Research Part B 40 (6), 437–459.

Cervero, R. and K. Kockelman (1997) Travel demand and the 3Ds: density,
diversity and design, Transportation Research Part D 2, 199–219.

York.

data within the stochastic utility model, Journal of Marketing Research
19, 288–301.

Charles River Associates (1972) A Disaggregate Behavioral Model of
Urban Travel Demand, Federal Highway Administration, Boston.

Charles River Associates (1976) The independence of irrelevant alter-
natives property of the multinomial logit model, in Disaggregate
Travel Demand Models, Project 8–13: Phase I Report, National
Cooperative Highway Research Program, Transportation Research
Board, Washington, DC.

Charnes, A. and W.W. Cooper (1958) Extremal principles for simulat-
ing traffic flow in a network, Proceedings of the National Academy of
Sciences 44 (2), 201–204.

Charnes, A. and W.W. Cooper (1961) Multicopy traffic networks,
in *Theory of Traffic Flow*, R. Herman (ed), Elsevier, Amsterdam,
85–96.

Transportation in Urban Areas*, Fifth Conference, American Society of
Civil Engineers, New York.

Cherchi, E. (2012) Modelling individual preferences, state of the art,
recent advances, and future directions, in *Travel Behaviour Research
com, 207–248.

mixed logit model: analysing the effect of data richness, Networks and
Spatial Economics 8, 109–124.

data generating process? Some implications for environmental assess-
ment, Transportation Research Part D 15, 428–442.

and substitution effects on the assessment of user benefits using discrete
choice models, European Transport Conference, Strasbourg.
Chicago Area Transportation Study (1959) *Survey Findings*, Volume I, Chicago.


Coelho, J.D. and H.C.W.L. Williams (1978) On the design of land
use plans through locational surplus maximisation, *Papers, Regional Science Association* 40, 71–85.


Control Data Corporation (1965) *Transportation Planning System for the Control Data 3600 Computer*, Users’ Manual, Data Centers Division Applications Program No. 7, Minneapolis, MN.


Coventry City Council (1973) *Coventry Transportation Study*, Coventry.


Davidson, J.D. (1973) Forecasting traffic on STOL, *Operational Research Quarterly* 4, 461–469.

Davidson, P., P. Clarke and I. Sverdlov (2006) Modelling congestion from
travel derived from activities, Applied Methods, European Transport Conference, Strasbourg.


de Cea, J., J.E. Fernández and A. Soto (2001) ESTRAUS: a simultaneous equilibrium model to analyze and evaluate multimodal urban transportation systems with multiple user classes, World Conference on Transport Research, Seoul.


Detroit Metropolitan Area Traffic Study (1955) *Data Summary and Interpretation*, Part I, Detroit.


References


Ferguson, E. (1990) Transportation demand management planning,


Florian, M., R. Chapleau, S. Nguyen, C. Achim, L. James-Lefebvre, S. Galarneau, J. Lefebvre and C. Fisk (1979) Validation and application of
an equilibrium based two-mode urban transportation planning method (EMME), *Transportation Research Record* 728, 14–23.


References


Golob, T.F. and A.C. Regan (2001) Impact of information technology on
personal travel and commercial vehicle operations: research challenges and opportunities, *Transportation Research Part C* 9, 87–121.


References

Forecasting urban travel


Institute of Transportation Engineers (1994) Travel Demand Forecasting Processes Used by Ten Large Metropolitan Planning Organizations, Technical Council Committee 6Y-53, An Informational Report, Washington, DC.


Jones, P.M. (1977) Travel as a manifestation of activity choice: trip generation revisited, Chapter 4 in *Urban Transportation Planning*, P.W.
Bonsall, Q.M. Dalvi and P.J. Hills (eds), Abacus, Tunbridge Wells, Kent, 31–49.


References


Kohl, J.E. (1841) Der Verkehr und die Ansiedelungen der Menschen in ihrer Abhängigkeit von der Gestaltung der Erdoberfläche [Road traffic and human settlement and their dependence on surface terrain], Dresden Arnoldische Buchhandlung, Dresden, Germany.


Koppelman F.S. and C.G. Wilmot (1982) Transferability analysis of dis-
aggregate travel choice models, *Transportation Research Record* 895, 18–24.


Leontief, W.W. and A. Strout (1963) Multi-regional input–output analysis,


Lisco, T.E. (1975) Contemporary use of demand models in transportation project evaluation, Workshop on Recent Research Developments in Practical Transportation Planning, Committee on Traveler Behavior and Values, Annual Meeting, Transportation Research Board, Washington, DC.


Lowry, I.S. (1964) A Model of Metropolis, RAND Corporation, Santa Monica, CA.


MacNicholas, M.J. and F.M. Collins (1971) A Transport Policy Model for Work Trips to a High Density City Centre, Universities Transport Study Group, University of Sheffield, Sheffield.


May, A.D. and B. Matthews (2007) Improved decision-making for sus-
tangible transport, Chapter 15 in Land Use and Transport, S. Marshall and D. Banister (eds), Elsevier, Amsterdam, 335–361.


McFadden, D., S. Cosslett, G. Duguay and W. Jung (1977a) Demographic Data for Policy Analysis, Urban Travel Demand Forecasting Project, Phase I Final Report Series, Volume 8, Institute of Transportation Studies, University of California Berkeley, Berkeley.


Mokhtarian, P.L. and C. Chen (2004) TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets, Transportation Research Part A 38, 643–675.


Murchland, J.D. (1970a) Road network traffic distribution in equilibrium, in Mathematical Models in the Social Sciences, Volume 8, R. Henn, H.P. Kunzi and H. Schubert (eds), Anton Hain Verlag, Meisenheim am Glan, 145–183 (in German).


Paulley, N. and F.V. Webster (1991) Overview of an international study to compare models and evaluate land-use and transport policies, *Transport Reviews* 11, 197–222.


Penn Jersey Transportation Study (1959) Prospectus, Philadelphia.


References


Richards, M.G. and M.E. Ben-Akiva (1975) *A Disaggregate Travel Demand Model*, Lexington Books, Lexington, MA.


Rose, J.M. and D.A. Hensher (2014) Toll roads are only part of the overall trip: the error of our ways in past willingness to pay studies, *Transportation* 41 (4), 819–837.


References


Sheffi, Y. and W. Powell (1981) A comparison of stochastic and deter-


Smith, T.E. (1983) A cost-efficiency approach to the analysis of congested...


Timmermans, H.J.P. (2010) On the (ir)relevance of prospect theory in


Transport Research Laboratory (2002) Strategic Transport Modelling Seminar, Crowthorne, Berkshire.


UK Department for Transport (2011f) DIADEM User Manual, Version


UK Department of the Environment (1971) Speed Flow Relationships To Be Used in Transportation Studies for the Department of the Environment, Advice Note 1A, London.


Transit Planning Project, Alan M. Voorhees and Associates, McLean, VA.

US Department of Transportation (1967) Guidelines for Trip Generation Analysis, Federal Highway Administration, Washington, DC.

US Department of Transportation (1969a) Urban Planning System 360, Trip Distribution and Peripheral Programs, Federal Highway Administration, Washington, DC.

US Department of Transportation (1969b) Urban Planning System 360, Traffic Assignment and Peripheral Programs, Federal Highway Administration, Washington, DC.

US Department of Transportation (1972a) Urban Transportation Planning, General Information, Federal Highway Administration, Washington, DC.


US Department of Transportation (1973a) Traffic Assignment, prepared by Comsis Corporation, Federal Highway Administration, Washington, DC.

US Department of Transportation (1973b) Urban Origin–Destination Surveys, Federal Highway Administration, Washington, DC.


US Department of Transportation (1975) Trip Generation Analysis, Federal Highway Administration, Washington, DC.


US Department of Transportation (1977b) User-Oriented Materials for UTPS, Federal Highway Administration, Urban Mass Transportation Administration, Washington, DC.


Watson, P.L. (1972) An Annotated Bibliography on Urban Goods Movement, Transportation Center, Northwestern University, Evanston, IL.


Wegener, M. (2011a) The IRPUD Model, Spiekermann & Wegener, Dortmund, Germany.


References


Forecasting urban travel

Working Note 10, Local Government Operational Research Unit, Reading, Berkshire.