References


Anowar, S., N. Eluru and L.F. Miranda-Moreno (2014) Analysis of vehicle ownership evolution in Montreal, Canada, using pseudo panel analysis,
References

Paper 14–3023 online, Transportation Research Board, Washington, DC.
Atherton, T. and M.E. Ben-Akiva (1976) Transferability and updating of disaggregate travel demand models, Transportation Research Record 610, 12–18.


References


References

de Laval, Québec, and Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA.


information system for urban and regional analysis: methods and examples, *Environment and Planning A* 20, 1645–1671.


Boyce, D. (2007a) An account of a road network design method: expressway spacing, system configuration and economic evaluation, in *Infrastrukturprobleme bei Bevölkerungsrückgang* [Infrastructure problems under population decline], X. Feng and A.M. Popescu (eds), Berliner Wissenschafts, Berlin, 131–159.


Mode and Route Choice, Report to the Illinois Department of Transportation, University of Illinois at Chicago, Chicago.


References


Cambridge Systematics, Vanasse Hangen Brustlin, Gallop Corporation, C.R. Bhat, Shapiro Transportation Consulting and Martin/Alexiou/Bryson (2012) Travel Demand Forecasting: Parameters and Techniques,
Forecasting urban travel

Report 716, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC.


Policies, unpublished report, Laboratorio Richerche Gestione e Controllo Traffico, Salerno, Italy.


Charles River Associates (1972) A Disaggregate Behavioral Model of Urban Travel Demand, Federal Highway Administration, Boston.


Forecasting urban travel

Chicago Area Transportation Study (1959) *Survey Findings*, Volume I, Chicago.
Coelho, J.D. and H.C.W.L. Williams (1978) On the design of land
use plans through locational surplus maximisation, *Papers, Regional Science Association* 40, 71–85.


Control Data Corporation (1965) *Transportation Planning System for the Control Data 3600 Computer*, Users’ Manual, Data Centers Division Applications Program No. 7, Minneapolis, MN.


Coventry City Council (1973) *Coventry Transportation Study*, Coventry.


Davidson, J.D. (1973) Forecasting traffic on STOL, *Operational Research Quarterly* 4, 461–469.

Davidson, P., P. Clarke and I. Sverdlov (2006) Modelling congestion from...
travel derived from activities, Applied Methods, European Transport Conference, Strasbourg.


de Cea, J., J.E. Fernández and A. Soto (2001) ESTRAUS: a simultaneous equilibrium model to analyze and evaluate multimodal urban transportation systems with multiple user classes, World Conference on Transport Research, Seoul.


Detroit Metropolitan Area Traffic Study (1955) *Data Summary and Interpretation*, Part I, Detroit.


Ferguson, E. (1990) Transportation demand management planning,


Florian, M., R. Chapleau, S. Nguyen, C. Achim, L. James-Lefebvre, S. Galanneau, J. Lefebvre and C. Fisk (1979) Validation and application of
an equilibrium based two-mode urban transportation planning method (EMME), *Transportation Research Record* 728, 14–23.


References


Gaudry, M.J., S.R. Jara-Diaz and J. de D. Ortúzar (1989) Value of time...


Golob, T.F. and A.C. Regan (2001) Impact of information technology on
personal travel and commercial vehicle operations: research challenges and opportunities, *Transportation Research Part C* 9, 87–121.


Institute of Transportation Engineers (1994) Travel Demand Forecasting Processes Used by Ten Large Metropolitan Planning Organizations, Technical Council Committee 6Y-53, An Informational Report, Washington, DC.


Jones, P.M. (1977) Travel as a manifestation of activity choice: trip generation revisited, Chapter 4 in *Urban Transportation Planning*, P.W.
Bonsall, Q.M.Dalvi and P.J. Hills (eds), Abacus, Tunbridge Wells, Kent, 31–49.
References


Kohl, J.E. (1841) Der Verkehr und die Ansiedelungen der Menschen in ihrer Abhängigkeit von der Gestaltung der Erdoberfläche [Road traffic and human settlement and their dependence on surface terrain], Dresden Arnoldische Buchhandlung, Dresden, Germany.


Koppelman F.S. and C.G. Wilmot (1982) Transferability analysis of dis-
aggregate travel choice models, Transportation Research Record 895, 18–24.


References


Leontief, W.W. and A. Strout (1963) Multi-regional input–output analysis,


References


Lisco, T.E. (1975) Contemporary use of demand models in transportation project evaluation, Workshop on Recent Research Developments in Practical Transportation Planning, Committee on Traveler Behavior and Values, Annual Meeting, Transportation Research Board, Washington, DC.


Lowry, I.S. (1964) A Model of Metropolis, RAND Corporation, Santa Monica, CA.


MacNicholas, M.J. and F.M. Collins (1971) A Transport Policy Model for Work Trips to a High Density City Centre, Universities Transport Study Group, University of Sheffield, Sheffield.


References

May, A.D. and B. Matthews (2007) Improved decision-making for sus-
taneous transport, Chapter 15 in *Land Use and Transport*, S. Marshall and D. Banister (eds), Elsevier, Amsterdam, 335–361.


discrete response models without numerical integration, *Econometrica*
57, 995–1026.

improvements, Chapter 15 in *Theoretical Foundations of Travel Choice
Modeling*, T. Gärling, T. Laitila and K. Westlin (eds), Pergamon,


McFadden, D. (2000a) Daniel L. McFadden – Autobiography,

McFadden, D. (2000b) Disaggregate Behavioural Travel Demand’s RUM
Side: A 30-Year Retrospective, Department of Economics, University
of California Berkeley, Berkeley; also in *Travel Behaviour Research*, D.

351–378.

University of California Transportation Center, Berkeley, 2–7.

McFadden, D., S. Cosslett, G. Duguay and W. Jung (1977a) Demographic
Data for Policy Analysis, Urban Travel Demand Forecasting Project,
Phase I Final Report Series, Volume 8, Institute of Transportation
Studies, University of California Berkeley, Berkeley.

McFadden, D. and F. Reid (1975) Aggregate travel demand forecasting
from disaggregate demand models, *Transportation Research Record*
534, 24–37.


McFadden, D. and K. Train (1978) The goods/leisure trade-off and dis-
aggregate work trip mode choice models, *Transportation Research* 12,
349–353.


McFadden, D., K. Train and W. Tye (1977b) An application of diagnostic
tests for the independence from irrelevant alternatives property of the

McGillivray, R.G. (1970) Demand and choice models of mode split,

McGuire, C.B. (1952) Highway Capacity and Traffic Congestion: A
No. 2048, Cowles Commission for Research in Economics, Chicago.


Murchland, J.D. (1970a) Road network traffic distribution in equilibrium, in Mathematical Models in the Social Sciences, Volume 8, R. Henn, H.P. Kunzi and H. Schubert (eds), Anton Hain Verlag, Meisenheim am Glan, 145–183 (in German).


References


Paulley, N. and F.V. Webster (1991) Overview of an international study to compare models and evaluate land-use and transport policies, *Transport Reviews* 11, 197–222.


Penn Jersey Transportation Study (1959) Prospectus, Philadelphia.
dynamic land use and transport model MARS, *Networks and Spatial
Pick, G.W. and J. Gill (1970) New developments in category analysis,
Urban Traffic Model Research, Planning and Transport Research and
Computation Co., London.
Ridership and Costs, Transportation Systems Center, US Department
of Transportation, Washington, DC.
Planning Association* 58, 158–176.
Pickup, L. and S.W. Town (1983) The role of social science methodologies
in transport planning, in *Recent Advances in Travel Demand Analysis*, S.
Carpenter and P. Jones (eds), Gower, Aldershot, Hampshire.
Pinjari, A.R. and C.R. Bhat (2011) Activity-based travel demand analy-
sis, Chapter 10 in *Handbook of Transport Economics*, A. de Palma, R.
Lindsey, E. Quinet and R. Vickerman (eds), Edward Elgar Publishing,
Boston Metropolitan Area, Research Report R68–51, Massachusetts
Institute of Technology, Cambridge, MA.
York.
Potts, R.B. and R.M. Oliver (1972) *Flows in Transportation Networks*,
Powell, W.B. and Y. Sheffi (1982) The convergence of equilibrium algo-
integrated land use – transportation modeling framework: output vari-
Prager, W. (1954) Problems of traffic and transportation, Proceedings,
Symposium on Operations Research in Business and Industry, Midwest
Research Institute, Kansas City, MO, 105–113.
Prager, W. (1955) On the role of congestion in transportation problems,
Prager, W. (1956–57) Book review of *Studies in the Economics of
Transportation*, *Quarterly of Applied Mathematics* 14, 445.
Correlation, Cowles Commission Discussion Paper No. 383, Cowles
Commission for Research in Economics, Chicago.


Forecasting urban travel


Richards, M.G. and M.E. Ben-Akiva (1975) *A Disaggregate Travel Demand Model*, Lexington Books, Lexington, MA.


Rose, J.M. and D.A. Hensher (2014) Toll roads are only part of the overall trip: the error of our ways in past willingness to pay studies, *Transportation* 41 (4), 819–837.


References


Sheffi, Y. and W. Powell (1981) A comparison of stochastic and deter-


Timmermans, H.J.P. (2010) On the (ir)relevance of prospect theory in
modelling uncertainty in travel decisions, European Journal of Transport and Infrastructure Research 10, 368–384.


Transport Research Laboratory (2002) Strategic Transport Modelling Seminar, Crowthorne, Berkshire.


UK Department for Transport (2011f) DIADEM User Manual, Version


UK Department of the Environment (1971) Speed Flow Relationships To Be Used in Transportation Studies for the Department of the Environment, Advice Note 1A, London.


Transit Planning Project, Alan M. Voorhees and Associates, McLean, VA.
US Department of Transportation (1967) Guidelines for Trip Generation Analysis, Federal Highway Administration, Washington, DC.
US Department of Transportation (1969a) Urban Planning System 360, Trip Distribution and Peripheral Programs, Federal Highway Administration, Washington, DC.
US Department of Transportation (1969b) Urban Planning System 360, Traffic Assignment and Peripheral Programs, Federal Highway Administration, Washington, DC.
US Department of Transportation (1972a) Urban Transportation Planning, General Information, Federal Highway Administration, Washington, DC.
US Department of Transportation (1973a) Traffic Assignment, prepared by Comsis Corporation, Federal Highway Administration, Washington, DC.
US Department of Transportation (1973b) Urban Origin–Destination Surveys, Federal Highway Administration, Washington, DC.
US Department of Transportation (1975) Trip Generation Analysis, Federal Highway Administration, Washington, DC.
US Department of Transportation (1977b) User-Oriented Materials for UTPS, Federal Highway Administration, Urban Mass Transportation Administration, Washington, DC.


Watson, P.L. (1972) An Annotated Bibliography on Urban Goods Movement, Transportation Center, Northwestern University, Evanston, IL.


Wegener, M. (2011a) The IRPUD Model, Spiekermann & Wegener, Dortmund, Germany.


Zachary, S. (1976) Some Results on Logit Models, Transportation
Working Note 10, Local Government Operational Research Unit, Reading, Berkshire.


