Index

ABC (attitude–behavior–external conditions) model 186
AC/DC transformers 486
Acemoglu, D. 162, 166, 447
acid rain 31, 334
ACT scenario 471–2, 474, 477, 479
actions to prevent climate change 52–3
Adelman, M. 139, 154, 157, 215
Africa 28, 256–7, 338–9, 391, 517, 527–8, 529
African-led Alliance for Green Revolution in Africa (AGRA) 388
Age of Enlightenment 540–41
Agency for the Coordination of Energy Regulators (ACER) 121
aggregating, accommodating and articulating different aspects of energy diversity 222–9
agriculture (agric) 146–7
air transport, EE 67
al-Qaeda attack, Twin Towers, New York (11 September 2001) 348
Alberola, E. 402–6, 416–17, 426, 434, 436
Algeria 484, 577
Allen, R.C. 11–12, 36–9, 41, 44, 340, 349, 354
Allwood, J.M. 289–90, 294
amine-based chemical absorption process 363
analysis of energy R&D activity 486
data challenges 486–8
overall public energy and environmental R&D spending 488–90
patent data and innovation in energy-related technologies 493–9
private R&D investment in energy-related technologies 490–93
anthropogenic greenhouse gas (GHG) 555
Appendices 174, 179–80, 439–40
appraisal, three pillars of sustainability 42–3
are biofuels good for the environment? 382–5
articulating energy diversity with other aspects of strategic performance 231–5
Asia 28
biogas 525
connectivity 530
crop yields 528
electricity 338, 514, 516–17
energy consumption 508–9, 512
energy crops 257
food demand 256
hydropower 249
nitrogen fertilizer 527
nuclear facilities 331, 342, 353
private investment 518
Assembly Bill 32 (2006) 555, 568
Assembly of European Regions (AER) 538, 545, 551
Assigned Amount Units (AAUs), valid under Kyoto Protocol 423
auctioned cap-and-trade system 443, 448
Austria 11
allocation plans 397
emissions 576
energy efficiency 67
gas consumption 69
oil consumption 69
R&D 490, 492
review of energy 246
Awerbuch, S. 214, 218, 221, 225, 234, 240
BAC 573–5, 576–7, 579, 581–2, 585–8
natural gas main fuel 588
back-end methods, scrubbing CO2 from flue gases 364–5
background on EE 289
barriers to EE 291
EE policy 291
financial incentives 292–3
information programs 292
physical setting 289–90
regulatory instruments 293–4
backstop technology, renewable energy source 9–10
Baden-Württemberg, regional network 544
Bahia Bizkaia Gas (BBG) regasification plant 578, 581, 589
Bailis, R. 505, 525–6, 528, 593
balance, apportionment of energy system 220
Ban Ki-moon (UN Secretary General) 573
banking provisions 400
banking restrictions 401–2
price developments 400–401
Barents Sea 484
base and peak electricity production, circumstance of 156
Basque Autonomous Community, see BAC
Basque Climate Change Office (BCCO) 584–5, 590
Index

Basque companies, European R&D + i energy programmes 581
Basque country, photovoltaic facilities in schools 579
Basque energy agency, Basque Energy Board 574
Basque Energy Cluster 590–91
Basque government, created Gas de Euskadi 578
Basque Plan to Combat Climate Change (BPCCC) 582–3, 590, 591
Basque Public Administration 581
Bayesian reasoning 214
behavioral economics, new research discipline 199–200
behaviour on individual level, factors influencing 457
behavioral determinants of energy use 545
Belgium 12, 67
allocation plans 397–8
electricity prices 296
energy intensity 573
gas consumption 69
meshed grid 107
R&D 490, 492
‘beneficiary pays’, cost causality and 122
Bigano, A. 60, 73, 77, 593
bilateral trading in electricity
drivers for sunk and not recoverable decisions 103
two agents – a buyer and a seller 101
Bill and Melinda Gates Foundation 388
bioenergy 21, 27, 76, 85, 251, 475, 490
biomass and 475
CCs and 283
costs 390–91
crops 253–5, 376, 385, 387–9
electrical demand with 274
and food security 385–8
free import of 275
may help cope with rising energy prices 391
scarce 279
use in Denmark 275
biofuels today 37, 389–90, 586
biomass 250–51, 266, 475, 507, 509
global and European potential 251–6
potentials in European countries 259
BLUE MAP 272–3, 472
BLUE scenario 472–3, 477
Böhringer, C. 146, 150, 152–3
bottom-up models 133
outline of some characteristics of 133–5
types of models 133
bottom-up models with macroeconomic linkage 138–9
optimization models 133–7
simulation models 137–8
bounded rationality, reduces response to economic instruments 445, 448
Brazil 49, 132
agricultural exports 386
bioethanol 378, 381
biofuels 377, 388, 390
BRIC country 488
cooperation 395
energy per capita 522–3
food exporting 376
hydropower 482
R&D 493, 500
uranium 343
vegetable oil 378
Bretton Woods regime 543
BRICS 48, 57
Britain
DSO and revenues 127
fossil fuel 16, 22
G8 member 470
natural gas 104
nuclear power 346–7, 350, 354
terrorism 349
Brundtland Report, Our Common Future 24–5, 314, 327, 337
BU E3 models 133
BU models 149–50, 153–4, 157
BU and TD models, differences in 156
Burkina Faso 510
business-as-usual scenario (BAU) 72, 557
DICE model and 55
co-benefits of mitigation policies 306
CAFE standards 324–5
California, AMI (advanced metering infrastructure) 197
California Air Resources Board, see CARB
California Energy Commission, see CEC
California Global Warming Solutions Act (2006) 555, 569
California Long Term Energy Efficiency Strategic Plan (CPUC 2008) 562, 564–5
California Low Carbon Fuel Standard (LCFC), and the RES programs 566
California Low Carbon Fuel Standard (LCFS) 559–60, 566, 568
California Senate Bill 107 (2006) 564
California Senate Bill 375 (2008) 560
California solar initiative programme 130
California’s energy-related greenhouse gas emissions reduction policies 555–6, 591
concluding remarks 568
can biofuels be economically viable? 26, 377

economics and biofuel production 378–9
requirements for a viable biofuel industry 379

some country examples 379–80
Germany 381
India 380
Mozambique 380
Senegal 380–81
USA 381–2
special case of jatropha 382
viability criteria 377–8

Canada
atomic energy 352
can 357
demand for gasoline 196
R&D 371, 485
reduction in gas emissions 470, 555
technical resources 265
uranium 343
wave energy 262–3

Canadian Clean Power Coalition (CCPC) 368
cap on emissions 143
cap-and-trade approach, practical limitations 322
cap-and-trade system, see (CTS)
CARB 555–6, 560, 565–6, 568, 569
lower standards for passenger vehicles and light trucks 558
carbon capture and storage plants, see CCS
carbon capture technology: status and future prospects 357–8, 360–61, 372
carbon emissions, reduction in 442
carbon emissions per capita (CC) 74
carbon intensity (CI) 61, 65, 67, 73–5
carbon Kuznets curve (CKC) 48, 50
carbon policies, respond to market failure 445
carbon prices, other policies and 448
carbon production, effects of increased in costs 154–5
carbon tax 441, 443
CCS plants 85–6, 331, 351, 471
CEC 555, 560, 564, 566–7
Central African Republic 511
Central American Electricity Market 124
centralized dispatches, timely, transparent and integrate every aspect of operation 102
Certified Emissions Reductions (CERs) 415, 417, 426
CES functional form 150, 152–3, 166, 172
CGE models 139–40, 145–8, 152–4, 171–3, 175, 198
Chakravorty, U. 9, 20, 386–7
chemical looping combustion (CLC) 362
Chernobyl, reactor failure 334

Chicago Board Options Exchange (CBOE), VIX volatility index 430, 432, 434
China 349, 357, 388, 395, 512, 520
CHP plants 36, 125, 128, 276, 331, 338, 474–5, 564–5
CIC-Energigune Cooperative Research Centre 579, 582
CIEMAT 246, 251
circulating fluidized bed variety (CFBC) 369–70
citizen dichotomy 545
CITL 397–8, 399, 430, 434, 439–40
civic-oriented behaviour, pro-environmental behaviour 461
clean coal technology, Obama and 474
clean development mechanism: stepping stone towards world carbon markets? 415–16
Clean Development Mechanism (CDM) 388, 395, 415–17, 430, 439–40
Climate Action Team (CAT) 555, 561, 572
climate change 110
future research 173
Clinton, President Bill 322
Club of Rome publication, Limits to Growth 161

cluster, competition within may be bad 549
Cluster Energie-Forschung NRW, focus of 544
custers
established by NRW 544
opposition to easy market access 550
three possibilities for future in NRW 552
CO₂, produced by electricity plants 335–6
CO₂ emissions, impact of household consumption 191
CO₂ price fundamentals 402
energy prices 403–6
extreme weather events 406–7
institutional decisions 402–3
coal
demand for expected to double by 2030 286
a filthy fuel 288
first transition to 15–16
coal-fired power stations, efforts to improve energy-efficiency of 294
Cobb–Douglas utility functions 146, 167, 171
cointegration analysis 418–19
unit roots and structural break 419–21
VAR(P) modelling 416, 422–3
VECM and structural break 421–2
Colonel Drake's oil discovery in Pennsylvania 17
combined cycle gas turbine 338
combined heat and power plants, see CHP plants
Committee on Climate Change 87, 94
Committee on Radioactive Waste Management (CoRWM) 348
Community Independent Transaction Log, see CITL
Company Average Fuel Consumption (CAFC) agreement 324
compliance strategies in carbon markets 416–17
EUAs and CERs contracts 417
price development 417–18
Comprehensive African Agricultural Development Programme (CAADP) 388
compressed air energy storage systems (CAES) 485, 501
computational models, evaluate different market designs 107, 112
computers, sophisticated simulations 162
concentrated solar power (CSP) 471, 481, 487
connective technologies 530–31
constant relative risk aversion (CRRA) 171
consumer behavior and use of sustainable energy 181–3
conclusions 203–4
customer and citizen: examples of fields of rationality relevant to policy design 460–62
contexts for analysing energy diversity 213–18
continuous learning 201
contract path pricing 105–6
Copenhagen Climate Change Conference (December 2010) 84–6, 173, 375
cost of renewal energy: past and future 270
cost concepts 271
policy goals and perspectives 270
renewal energy in global policy scenarios 271–4
cost–benefit analysis (CBA) 27, 36, 43, 56
Côte d’Ivoire 510
creation of broad transmission overlay or Supergrid 120
CTS 446, 556, 558, 562–3, 566, 568
Cullen, J.M. 289–90, 294
cultural values 464
current energy picture 360–62
Danish renewable energy system 275, 276–82
decentralization 573–4
experience of NRW and 551
decentralization of energy supplies, return of politics to economics 552
decentralized energy resources (DERs) 24, 36–8, 43
decomposition analysis, use of 50–51
demand for emissions reduction (DD) 49–50
demographic transition, efficiency of energy systems and 43
Denmark
allocation plans 397
energy consumption 594
R&D and 490–92, 501
renewable energy 270–71
strategy 580
wind energy 282–4
Department for Energy and Climate Change, ‘2050’ pathways 86–7
Department of Energy (DoE) 489
destination clause, included in contract 104
deterministic models 148
developed countries
problem of siting transmission facilities 121
supercritical steam plants in commercial use 287
developing countries
energy access a major issue 270
GDP and 30
Internet and mobile phone charging 531
need safety nets for poorest and most vulnerable 388
residential energy demand 195
supercritical steam plants 287
top innovators among 500
wood and dung for heating and cooking 341
woodfuel crisis 505
development of climate policy 582–5
Dietz, T. 88, 184, 441, 446
different economic sectors, different resource intensities 166
disability adjusted life years (DALYs) 40
disparities
in multicultural performance, electricity options 227–8
in Shannon or Herfindahl indices 228
disparity space, normalized sustainability performance data 226
disparity structures, UK and Japanese experts 235–6
disparity–distance approach, energy diversity analysis 225
distortionary taxes 443–4, 448
distribution generation (DG) 80, 105, 397
regulators and economic implications of 127–8
distribution grids
enhanced, providing improved services 117
‘fit and forget’ practices 118
distribution network policy 125–6
conclusions 130
Index 599
cost-reflective network charges 128
DSO incremental costs due to integration of distributed generation (DG) 127
feed-in tariffs and priority access for DG 128
incentives for innovation 129–30
new agents and roles 126–7
revenue decoupling 127
smart meter benefits and cost allocation 128–9
distribution system operators (DSOs) 126–7
revenues in Great Britain 127
smart meters 128

diversity
four variants and their relationship 231
putting eggs in different baskets 214, 216
subordinate properties of 221, 223, 230
trade-offs for Yoshizawa et al. 233–4, 235

diversity–performance trade-offs, UK and Japanese experts 237
Dixit–Stiglitz preferences 165
Dounreay, Scotland 350
Dowlatabadi, H. 182, 184–6, 188–9, 192–3, 200–201, 204, 454
Dutch, energy-saving methods 194
Dutch Energy Innovation Agenda 90
Dynamic Integrated Model of Climate and the Economy (DICE) model 55, 132
dynamic stochastic general equilibrium modeling (DSGE models) 148
E3 132–3, 140, 142, 145, 147, 149, 157
E3 CGE model 143
ECB 181–3, 186, 191–4, 198–201, 203–4
ECLIPSE 152
ecological economics 200
economic growth, low carbon energy resources 5
economic growth, energy consumption and climate policy 47–8
the CO2–GDP relationship 48–51
concluding remarks 56–7
cost of inaction 54–6
GHG control and economic growth 51–4
economic psychology and behavioral economics 198–200
Economic Sentiment Index, published by Eurostat 426
ECX 299, 399, 401, 408–9, 417–19, 421–2, 424, 430, 440
EE index, calculated, changes in unit consumption (UC) 64
efficiency, another electricity concern 119
Electric Power Research Institute, see EPRI
electric transmission network, nodes and 105, 112
electric vehicles
battery technological drawback 588, 591
integration into distribution grids 125, 127, 204
electrical appliances, efficiency labelling 78
electricity as an energy source 337–8
electricity and gas
EU Directives 99–100
serious bottlenecks remain 110
electricity and gas liberalization programme, three separate stages 99
electricity grids, already smart but need to become smarter 119
electricity market, basic market design flaws 100, 103, 111
electricity markets: how to exchange a non-storable commodity 100–101
centralized dispatch and decentralized bilateral trading 101–2
electricity markets design in the EU 102–3
Emilia Romagna, regional network 544
emission limits, may push allowance prices upward 307
Emissions Predictions and Policy Analysis (EPPA) 146–7
emissions reduction purchase agreements (ERPAs) 417
empirical illustration 235–8
enabling role of electric networks 116
evolving challenges 116–18
smart grids 118–19
dehler of-pipe 91
scrubbing technology 41
ENDESA 370–71
EnergieAgentur NRW 546–7
EnergieRegion NRW, consists of eight networks 544
energy, element in competitive economy 549
Energy Action Plan II 564
energy carriers 134, 214, 285, 485, 507
biomass and 475
controllable 23, 338
higher quality 507, 509, 519
primary 513
secondary 259
storables 133
energy choices and energy poverty 507–9
electricity and energy poverty 514–19
energy and industrialization 519–20
energy trade and energy poverty 513–14
energy and well-being at the national level 509–13
energy and climate strategy 2020: the challenge ahead 585–6
the context 586–7
interaction with climate policy: the future
policies in relation to demand
building
industry
transport
supplying and generating energy
technological and industrial development
priorities
energy concerns, early modern Europe
energy consumer behavior, see ECB
energy diversity
definition
energy security and 213
general heuristic
three co-constituting properties
variety and/or balance
energy diversity and security, relationships
energy and economic growth
‘energy effect’, mass production of cars and
energy efficiency
calculation of potential savings
energy policy
methods to foster
energy efficiency certificates (EECs)
energy efficiency ‘gap’
energy efficiency index (EE)
energy efficiency for transport sector
energy gain ratio (EGR)
energy intensity and carbon intensity, overlaps
energy intensive index (EI)
energy intensive and other industries (EINT)
‘energy paradox’
energy payback period (EPP)
energy portfolios
energy and poverty: perspective of poor
countries
concluding thoughts
energy poverty at the household level
agricultural production
connectivity
health
Energy Research and Investment Strategy (ERIS)
Energy revolution 2010, excludes nuclear power and CCS
energy revolution based on bottom-up energy scenario analysis
fourth or fifth industrial revolution
energy scarcity
energy-saving technological change
incentives for alternative energy sources
energy security
commonality of climate change stability
index
indicators
lack of, welfare losses
total energy imports/TPES and oil consumption/GDP
energy service companies (ESCOs)
energy shortages
energy source and scenario, global electricity production
Energy Strategy 3-E2010
energy supply, economic activity and living standards
energy supply and sustainability of endogenous growth
energy service companies
energy technologies, from richer to poorer regions
Energy Technology Assessment (ETA)
Energy Technology Perspectives (ETP)
energy use of transport, policy tools
energy use in the transport sector: ways to improve efficiency
energy used in transport and its implications
energy–economic models
energy–economic–environmental models, see E3
engineering–economic analysis
energy indicators and decomposition analysis
energy rebound
information and labeling to overcome energy efficiency gap
lifestyle, ownership and socio-demographic effects
smart grids and smart metering
Enterdata
Environmental Action Plan
environmental, economic and policy aspects of biofuels
Environmental Framework Programmes (EFP)
Environmental Impact and Sustainability
Applied General Equilibrium (ENVISAGE) 145
Environmental Indicators Report 585
environmental Kuznets curve (EKC) 17, 48–9, 57
environmental policies, equity and efficiency when designing 441
environmental tax 197
EPA 324–5, 555, 558, 569, 571
epilogue 593–4
EPRI 263, 265, 349, 564, 564–5, 567, 571
EREC 243, 244, 247, 249–50, 260–62, 267
ETA-MACRO merged model 138, 152
Ethiopia 513
EU 20–20–20 energy and climate package 590–91
EU, definition of region 539
EU countries, private households, direct and indirect requirements 202
EU Directives, role of 78
EU ETS allocation plan 397–8
banking provisions 400–402, 409
carbon price with 86, 344
CITL and 399
coal-fired plant 288
creation of for emissions reduction 395–6
extended development of 430
hedging strategies 407
price formation 403
reduction of emissions 415–17, 423
EUA–sCER spread drivers 418–20
EUAs 403, 406–7, 409, 415–18, 435
Europe contract-path model, increasingly unwieldy 107
emissions per sector 576
energy consumption and production 574–5
final energy consumption 574
revenue caps for regulating DSOs 127
European carbon market (2005–07); banking, pricing and risk-hedging strategies 395–6
concluding remarks 409–12
European Central Bank 430
European Climate Exchange, see ECX
European Climate Foundation 286
European Climate Protection Pact 545
European Commission
global warming and 395
Strategic Communication on Energy policy for Europe 586
Third Energy Package 108
European electricity market, not equally divided among pools and bilateral trading 102
European Emissions Trading System, see ETS
European Energy Award 551
European certification system 547, 551
European Energy Exchange (EEX) 296, 298, 440
European energy policies 586
European Environment Agency (EEA 2001) 31–2, 244
European (EU-27), consumption of oil, gas and electricity 61
European Fusion Development Agreement (EFDA) 246
European gas hub 104
European Industrial Production Index 430
European LNG markets, almost all organized as bilateral monopoly 104
European Network of Transmission System Operators for Electricity ENTSO-E 121
European Patent Office (EPO) 488, 495, 498
European Patent Office (PATSTAT) 488
European Regional Development Fund (ERDF) 546
European Renewable Energy Council, see EREC
European Sentiment Index 430
European Strategic Energy Technology Plan 487
European Strategic Technology Plan (SET-PLAN) 92, 487, 490–91
European Trading Scheme (ETS) 135, 153, 293
European Union, air transport 323
European Union Emissions Trading Scheme, see EU ETS
European Union Smart Grids Platform 118, 130
Euskadour line, connecting with France 581
eutrophication and summer smog, lack of information 38
EVE (Ente Vasco de la Energía) Basque Energy Board 586
EVE group 579–80
3E-2005 synthetic goals 581
3E-2010 goals 582
3E-2000 strategy 580
raison d’être of future 3E-2020 Strategy 585
restoration of hydroelectric power stations 578
Environmental Protection Agency, see EPA
‘exceptional consumption periods’ 194
FAO 250, 260, 378, 385, 505, 527–8
FAO’s COSIMO model 387
Far East 10, 18
Federal Energy Regulatory Commission (FERC) in USA 121–2

Ibon Galarraga, Mikel González-Eguino, and Anil Markandya - 9780857936387
Downloaded from PubFactory at 09/14/2023 03:33:38AM
via free access
Index

feed-in-tariff (FiT) 567–8, 591
feedback, electricity consumption to households 194
Fennell, P.S. 357, 364, 371, 593
field of rationality 459–61, 463–5, 467
fields of rationality: potential for change 462–3
facilitate shifts in field of rationality 463–5
'figure of merit' 120
Finland 63, 577
allocation plans 397
carbon taxes 322
energy efficiency 67
EPR 336
NordPool and 399
private investment 492
first-best situations, mythical 441
Fischer, G. 251, 256–9, 444, 447
fission reactors 331, 336–7, 353
flexible alternating current transmission systems (FACTS) 117
flue gas desulphurization (FGD) 335–6, 362, 368
fluidized bed combustion (FBC) 362, 369
Food and Agriculture Organization, see FAO
foreclosure (access discrimination) 108, 110
Forum for the Future (Sara Parkin and Jonathan Porritt) 27
fossil energy sources, limit on energy reserves 163
fossil fuels, burning of 175
Fouquet, R. 9–10, 12, 16–17, 20, 84, 573, 593
Foxon, T.J. 2, 86, 89, 92–3, 594
Framework Convention on Climate Change 1992 31
France 220, 336, 406, 458–9, 470, 478, 491, 573
free-riding effect on mitigation 57
Friends of the Earth 344
from an industrial district to an innovative milieu 548–9
'front-of-pipe' 90–91
fuel cells 220, 474, 487–8
hydrogen and 491, 544
R&D funding 489–90, 495
research intensive 549
using renewable fuels 564
Fullerton, D. 443–4, 447
Fundacion Ciudad de la Energia (CIUDEN) 370
future research fields 173
ancillary benefits of climate policies 174–5
security of energy supply 173–4
Galarraga, I. 1, 4, 58, 132, 573, 587
Gallastegui, M.C. 47, 58, 587, 593
gas, has to be imported to Europe 108
gas and electricity sectors, problems in designing regulation 108
gas export contracts 103–4
gas industry, three segments 109, 112
gas in power generation, growing rapidly 69–70
gas-to-gas competition 104
gasification 365–6
'gatekeeper interviews' 93
GDP 82, 148
assessment of 275
climate change and 358
ergy rise 520
fall in 578, 585
higher level 76–7
increase in (2002–08) 514
increase in 587
industrial accounts and 573
personal transport 202
PPP per capita 523, 576–7
revenue from oil 515
Gebäude-Check Energie, for buildings 548
genetic properties of energy diversity: variety, balance and disparity 219–22
genetically modified organisms (GMOs) 475
generational properties of energy diversity 57
Germany 470, 577
electricity from renewables 542
energy and 551
innovation 498
investments in Europe 489
mining and railways 541
private investment 492
R&D 490–91
savings potential 547
Ghana 511
GHG, requirements of bioethanol production 35–6
GHG emissions
Concawe Report and 35
stabilizing 53–4, 57
GHG inventory 556
GHGs 23, 38
below safe levels 52
climate change and 56
costs of controlling 47
EE-enhancing investment and 287
IEA-EPT focus 471
increase global temperature 47
six greenhouse gases and 136, 395
US corn ethanol program and 384
Gillingham, K. 182, 201, 286, 290–91, 293, 306–7
Gini diversity index 222–3
global demonstration 371–2
Index 603

global economic crisis 79–80
global electricity production, by energy source and scenario 272
Global Trade Analysis Project (GTAP) 145, 147, 387
global warming, mix of problems 47, 110, 331, 344–6
globalization
knowledge and information society 543
NRW and problems of regional level 551
‘goal-oriented’ incrementalism 87
governing a low carbon energy transition:
lessons from UK and Dutch approaches 84
conclusions 94
Dutch energy transition approach 87–9
governing energy transitions 89–92
UK low carbon transition plan 85–7
understanding energy transitions 92–4
government policies, energy-efficient investment? 286
governments’ energy policies, importance of 18
grandfathering allowance 143
green electricity certificates 466
Green Paper
‘Energy’, basis for European Energy Policy 71–2
‘European strategy for sustainable competition and secure energy’ 173
green tax 142, 449
greenhouse gases, see GHGs
Greenpeace 31, 245, 260–62, 338
Greenpeace and Global Wind Energy Council 245
gross domestic product, see GDP
gross value added (GVA) 62, 65, 74
growing the industry 389–90
growing populations, energy consumption and environmental pollution 43
growth in demands, pressure on resources 18
Grubb, M. 40, 217–20, 222, 241, 247
Gummer, John, ‘Don’t cheat on your children’ 25
halocarbons 31
Hammond, G.P. 44, 94, 331–2, 333, 335
carbon capture 593
CoRWM 348
‘dash for nuclear’ 334
energy efficiency strategy 345, 353, 593
insecurity of oil market 354
Internet questionnaire 350
nuclear power 341–4, 346–7, 354
stakeholder groups 351–2
storage costs 340
UK energy liberation 338
Helm, D. 215–16, 219–20
Hg (mercury) control 362
high voltage direct current (HVDC) 486
Hiroshima and Nagasaki 332
Hirschman, A. 220–23, 228
historical background 332
bringing to maturity (1965–85) 332–4
gestation (1945–65) 332
Homo economicus 461–2
Homo politicus 461–2
Hoogwijk, M. 247, 249, 252–4, 256–8, 260, 267–8, 309, 534
Hotelling rule taxation, leads to rent transfer 170
how energy works: gas and electricity markets in Europe 99–100
conclusions 110
electricity markets: how to exchange a non-storable commodity 100–102
electricity markets design in the EU 102–3
electricity transmission networks: relevant issues in the European context 105–6
postage stamp tariffs and contract paths: choices of the European Union 106–8
gas markets: from long-term contracts to hubs 103–5
gas networks: relevant issues in the European context 108
ownership separation 109–10
human capital 164
Human Development Index (HDI) 509, 512–13, 532
hybrid model, soft-linking approach 152
hybrid models 149, 150
conclusions 157
in context of bottom-up and top-down models 149–50
data compatibility issues 154–6
hybrid modelling framework choices 151–4
some characteristics of 150–51
hydropower 248–9, 471, 482
European potential 249–50
global potential 249
Iberian Peninsula 577, 591
BAC energy system and 586
gas and electricity systems 586
IEA 132, 167, 286, 470, 516
IEA database 74, 81, 132
Index

IEA International Energy Agency 272, 471
implications for developing countries 388–9
incandescent light, ban on by EU directive 464
incomplete information 448
India 21, 33, 49, 249
biofuel strategies 388
BRIC country 488
coal 357, 470
cooperation 395
degraded lands 385
emerging economy 520
energy 162, 196, 522–3
impressive growth 477
innovator 500
irrigation 528–9
jatropha 377, 380
nuclear power 342, 353, 479
transport 375
tree-borne oilseeds 380
indirect land use (iLUC), concern over 34
Indonesia 342, 353, 378, 386, 391, 521, 532
information, people’s motivation and 462
information and communications technology (ICT) 182
Infrastructure Planning Committee (IPC) 86
innovative milieu, factors for 548–9
integrated assessment models (IAMs) 54–5
Integrated Energy and Climate Programme (IEKP), known as Meseberg Program 545
integrated gasification combined cycle, see IGCC
Intergovernmental Panel on Climate Change 47, 84, 132, 168, 260, 470
Special Report on Emissions Scenarios 246
International Energy Agency, see IEA
International Food Policy Research Institute (IFPRI) 387
International Institute for Applied Systems Analysis (IIASA) 53, 136
International Institute for Ocean Renewable Energy (IIoR) 364
International Petroleum Exchange (IPL), and coal prices CIF ARA 426, 437
Internet and mobile phones 530
interventions to affect energy consumer behavior: policy insights and learning 201–3
intra-day auctions should be made available 125
ionizing radiation 31
IPAT equation or sustainability equation 28, 30
Ireland
allocation plans 397
carbon 66, 69
electricity 102
gas imports 70–71
oil consumption 69
tidal resources 263–5
transport 64
irrigation, higher-value crops 529
Irun Euskadour branch line 589
Israel 349
Italy
allocation plans 397–8
car production 320
CCS technology 371
emissions 576–7
gas imports 70–71
LNG trade 104
R&D 489–93
reduction of global emissions 470
wealth differentials 550
Jaffé, B.A.
EE gap 290, 292
energy efficiency gap 33
individual rationality 291
market failures 445
new technology 567
spillovers 91, 444
sustainable energy 190
Japan 220, 423, 464, 478
Japanese experience, woodfuel 14–15
jatropha 382
Johannesburg, 2002 World Summit 25
Joint Implementation Model Project NRW (JIM.NRW) 546–7
Joskow, P. 100, 103, 111–12, 133
Kaiser, F.G. 185, 543, 552
Kammen, D.M. 490, 492–5, 497
Kaya-type identity 51
Kenya 510, 513, 528–9
kerosene 315, 509–11, 515, 525
key categories of actors, energy transitions and 92–3
key design issues of the EU emissions trading scheme 396
allocation 396–8
calendar 398–9
penalties 399–400
scope 396
transactions 399
Kyoto Protocol 395, 398, 402, 415, 417
CERs for compliance 423
Clean Development Mechanism of (CDM) 388, 415
GHG mitigation target 24, 53, 136, 585
International Transaction Log (ITL) 430
and post-Kyoto target implementation 137, 398

Labriet, M. 244, 246–7, 250, 260, 269
Latin America 338
access to electricity 514, 517
bioenergy production 256–7
connectivity 530
energy consumption 512, 516, 524
mobile phones 530
private investment 518
LCA, Carbon Calculator 34
lead credits, lead content of gasoline 322
learning-by-doing 164, 217
Lebanese electricity system (LES) 39–40
liberalization process, effect of 110, 113
life-cycle assessment (LCA) 26, 36, 40–41, 43
Linares, P. 4, 132, 151–2, 156, 441, 445–6, 594
linear spillovers,165
linkages between energy efficiency and security of energy supply in Europe 60–61
conclusions 78–80
energy saving potential and energy policies in the EU 70–73
main energy efficiency indicators for the EU 61
carbon intensity 65–7
energy consumption in the EU-27 61–2
energy efficiency residential sector 63–4
transport sector 64–5
energy intensity 62–3
energy security 67–70
panel analysis methodology 73–5
results 75–7
discussion 77–8
Lipsey, R.G. 441–2, 450
liquefied natural gas (LNG) 103–4, 222, 227–8, 237
segmented on basis of distance 103
storage and tankers 578
liquefied petroleum gas (LPG) 509, 525
local energy shortages, high transporting resources 18
‘loss of load probability’ (LOLP) 39–40
Lovins, A. 28–30, 33, 215, 334
Low Carbon Fuel Standards 366
low zero carbon (LZC) energy 338
Low-Emission Vehicles (LEV) 559
Lucas, C. 214, 225, 529
Luxembourg 63
allocation plans 392
electricity demand 574
energy efficiency 67
energy imports 70–71
oil consumption 69
McKinsey’s Climate Change Special Initiative 285
Maddringer, R. 2, 161, 182, 185, 188, 195, 594
Malaysia 328, 384, 386, 391
Manne, A.S. 54, 132, 136, 138
marginal pricing, alternatives are postage stamp and contract path pricing 105
MARKAL (Market Allocation) 136
MARKAL-MACRO merged model 138
market and government distortions 314–15
MCA (multicritical analysis) 201
MCP (mixed complementary problem) 153–4
‘Mein Haus spart’ awards’, ‘NRW energy saver’ 548
MESSAGE (engineering optimization model) 136, 152
Meta-Standard, under RTFO 35
Metcalf, G.E. 286, 294, 443–6, 448
Metropolitan Planning Organizations (MPO) 560–61, 570
Mexico 483, 500
micro-hydroelectric systems 519
microeconomic theories of consumer/firm choice 193
microeconomic theory, rational use of energy and 202
Middle East oil extraction, boosts for economic growth 17
Milestone policies 70–71
Miliband, Ed (UK Energy and climate Change Secretary) 91
MIMIC (Multiple Indicator, Multiple Cause) model 146
Ministry for Economy, Trade and Industry (METI) 489
multicritical decision analysis (MCDA) 27
monetarism 543
monoethanolamine (MEA) 361, 364
Monte Carlo analysis 214
Monte Carlo simulation 288, 303
Mozambique 380
MUEW-Odyssee databases 74
multicritical diversity, different specialists 239
multicritical diversity analysis 213
conclusion 238–9
multiple instruments and coordination 447–8
multiplicity, appraisals of energy diversity 218
MURE database 75, 79, 81
Index

Nakicenovic, N. 21–2, 177
NAPs 396–8, 401, 406, 426, 430
National Allocation Plans, see NAPs
National Bureau of Economic Research (NBER) 488
National Energy Modeling System (NEMS) 137
natural gas combined cycle (NGCC) 474
Nemet, G.F. 490, 492–5, 497
neoclassical economic models 193
  computable general equilibrium (CGE) modeling 198
  conjoint or discrete-choice analysis and other experiments 193–4
  econometric studies of energy demand 194–7
net present values (NPVs) 41
netback value, calculated on value of competing energies 103
Netherlands 196–7, 322, 387, 573, 580
  Energy Transition Approach 84, 87, 92
Netherlands Environmental Policy Plan (NEPP) 87–8
new company initiatives (NUI) Index 542
New Economic Partnership for African Development (NEPAD) 388
New York Independent System Operation (ISO) 123
New Zealand 263, 322, 483, 501
Newell, R. 171, 194, 292, 441, 444, 447
non-CO2 greenhouse gas emissions (NCGG) 145
non-exhaustible resources 244
non-governmental organizations (NGOs) 201
non-renewable energy sources, negative for welfare and sustainability 163
Nordhaus, W.D. 9, 54–5, 132, 159, 171–2, 174, 177
Nordpool, marketplace based in Oslo 399–400
North American Free Trade Agreement (NAFTA) 48
North Atlantic Treaty Organization (NATO) 332
North Rhine-Westphalia, see NRW
Nordica 331
Norway
  disparities 228
  electricity 227
  electricity use 465
  emissions 322
  energy price 195
  estimations 264
knowledge areas 458
oil 333
rationality 461–2, 464
smoking behaviour 465
novel diversity heuristic for strategic appraisal of energy portfolios 229–31
NRW 538, 540–42
  between cooperation and confrontation 549–52
  competition, role of 549
NRW past and present 540–43, 591
  instruments and actors 546
  European energy award 547
  Gebäude-Check Energie 548
  JIM.NRW 546–7
  local authorities and contracting 547
  ‘Mein Haus spart’ (‘energy saving begins at home’) 548
  regional strategies and structures 543–5
  integrating NRW in federal or national strategies 545–6
nuclear 221
Nuclear Decommissioning Authority (NDA) 348
nuclear energy issues for the OECD countries 343
nuclear decommissioning of nuclear power stations 346–8
  global warming 344–6
  storage of nuclear waste 348
  strategic issues 343–4
  terrorism 348–50
nuclear power 218
  near zero carbon resource 331
  nuclear power economics 338–41
  nuclear power projections (2010–35) 341
  background 341–2
  nuclear power generation 342–3
  uranium supply and demand 343
  nuclear power in the twenty-first century 331–2, 355
  ‘Nuclear Renaissance’ 336
  NVE 462, 467
  Nyborg, K. 196, 461–2, 465, 469
Ocean Renewable Energy Group, Canada (OREG) 263
ocean technologies 262
  European potential 263–4
  ocean wave energy 262–3
  European potential 263–4
  global potential 263
  tidal energy 264
  European potential 265–6, 507
  global potential 264–5
OECD 336, 341, 343, 353, 512
90 percent energy efficiency 479
Aglink and sugar models 387
biodiesel 382
connectivity 530
databases 488
electricity share in 478, 514
energy use 520, 522–5
fossil-fuel fired boiler 365
GERD and 487
hydroelectricity 359, 482
nuclear power 344–5
primary energy consumption 475
thermal power plants 361
transport of electricity 485
Ofgem 86, 91, 118, 129
oil, governments manipulate price of 315
oil crises 163, 220, 320, 505, 543
oil intensity, consumption (Ktoe) per dollar of real GDPs 68–9, 80
oil shortages, political reasons for 320
oil supplies and imports, bottom-up energy systems models 67–8
older people, uptake of energy-efficient technology 191
Operations and Maintenance (O&M) costs 134, 369
opportunity for energy-related measures to reduce GHG emissions in California 558
discussion 566–8
electricity and natural gas 562
energy efficiency: electricity and natural gas (E-1 and CR-1) 562–3
increase combined heat and power generation (E-2) 564–5
renewable energy (E-3) 563–4
transportation 558
low carbon fuel standard (T-2) 559–60
regional transportation targets (T-3) 560–62
vehicle greenhouse gas standards (T-1) 558–9
optimization techniques, common in energy system planning 135–6
Organization for Economic Co-operation and Development, see OECD
Organization of Petroleum Exporting Countries (OPEC), oil embargo 334
OTHR (other industries) 146
our model 458–60
ownership separation (OS), uselessness of 110
oxy-fired technologies 367
oxy-fired circulating fluidized bed combustion 369–70
oxy-fuel PF 367–9
oxy-fuel PF demonstration projects 368
ozone depletion 31
PAGE 2002 model 54–5
past, present and future of energy policy in the Basque region 573–7
final thoughts 591
Pearson, P.J. 9, 44, 89, 354
people-centred focus 454
Performance and Innovation Unit, see PIU
performance–diversity trade-offs for Yoshizawa et al. 234, 237
persons-in-environments, unit of analysis 453
petroleum 519
photovoltaic (PV) systems 187, 471, 480, 487
photovoltaic unit LCA production data 38
physical transmission rights (PTR) framework 106, 112
Pigou, A.C. 321, 441, 443, 445, 447
Pittel, K. 161, 164, 166–70, 175, 594
PIU 33, 213, 219, 222, 233, 340, 354
Planet Earth, constraints on use of physical resources 26
Polasky, C. 223, 225, 229–31
policies and measures (P&Ms), energy efficiency and 60, 74, 79
policy options 317–19
cap-and-trade 322–3
fuel taxation 321–2
leaving things to the market 319–21
traffic demand management 325–6
vehicle fuel standards 323–5
policy for reducing household energy consumption 452–4
conclusion and remarks 465–6
‘polluter should pay’ 31
pollution 169–71
abatement 48
air 174, 202, 271, 306, 325, 525
energy security and 71, 161
environmental 17, 43, 161
externalities 162, 169
flow of 168
global 501
health-damaging 524
increase in 169
intensity 50
mining and 14, 170
patterns 49
pesticides and 254
policies 174
reducing 52
taxation for 175
Poortinga, W. 187, 194, 199
Index

Populonia, copper smelting 10
Porritt, Jonathon 26–7, 31
portfolio theory 214, 224–5
Portugal 66
allocation plans 397
carbon intensity 67
cables 107
efficiency in household 64
energy imports 70–71
wave resource 264
possible energy solutions in a carbon-constrained world 358–60
'postage stamp' method of payment 122
postage stamp pricing
some inefficiencies 106
uniform pro-rata transmission price 105
potential of any energy resource, calculating not easy 244
precautionary principle 24, 31–2, 42, 593
PricewaterhouseCoopers 285
private households, expectations for thermal comfort 188
private sector, unwilling to meet liabilities of nuclear power 353
profit margin of a coal-fired station 299–300
Project Coordination Group (2008), EU-wide 'target model' 107
projections of photovoltaic power market development 261
projections of solar heat market development 262
projections of thermo solar power market development 261
Property Assessed Clean Energy or PACE bond 293
Prospective Outlook for the Long-term Energy System (POLES) 53, 137
public–private partnership platform 88–9
pulverized fuel (PF) 362–3
pulverized coal 472
purchasing power parity (PPP) 68
'pure efficiency' 442
Qatar 577
QOL (concept of quality of life) 187
quarter of a century of energy policy: efficiency, diversification and renewable 577
energy history in few lines 577–9
energy strategies: cornerstone of energy policy 579–82
future energy challenges 579
R&D 497–9
agriculture and 387
biomass and 475
costs 466
CSP and 482
energy-efficient techniques 466
goals 480
investment data 172, 175, 471, 481, 483, 498, 500
level 594
networking 549, 581
production and management 255
SMR designs 479
spending 306
Real Options valuation framework 306
real-time electricity pricing 197
Reasonable Person Model 452–3
rebound effect 191–2
recycling revenues 443–4, 449
regasification capacity, long-term take-or-pay contract 104
regions, question influence in sphere of energy 552
relevant factors for explaining behaviour: three levels 454–5
basis: structures surrounding us 455–6
group or household level 456–7
individual level 457–8
ReMIND RECIPE study 273–4, 283
renewable electricity certificates 461, 467
renewable energies' technical potentials 266
renewable energy, a future economy driven by 16–18
renewable energy options, to power production in 2050 273–4
Renewable Energy Policy Network for the 21st Century 246
renewable energy share, climate stabilization scenarios 273
renewable energy source, backstop technology 9
renewable energy technologies, heavily dependant on R&D 18
Renewable Fuels Agency (RFA), Gallagher Review 34
Renewable Portfolio Standards 142, 564, 566–7
renewable resources, can diminish source and sink problems 176
Renewables Obligation 85
renewal energy sources, unlikely to impose higher prices initially 9
research and development, see R&D
residential energy consumption 191
revenue recycling 443–4
review of the world and European renewal
energy resource potential 244
rights-of-way 120
risk assessment 214
risk assessment of the electricity sector
350–52
risk-hedging strategies 407–8
  carbon-based derivatives products 408
  investors’ risk aversion 409, 411
road pricing schemes, effects of 326
‘Roadmap 2050’, cost-effective scenarios
286
Rockefeller Foundation 388
Rodrigues, R. 2, 132, 151–2, 156, 594
Rogner, H.H. 17, 250–51, 258, 357, 506
role of energy in the generation of GHG
emissions in California 557
role of R&D + i in the energy sector 470–71
conclusion 499–500
role of regions in the energy sector: past and
future 538
Roman Empire, woodfuel consumption during
10–11, 19
Romer, P.M. 162, 164–6, 170, 172, 175
Rübbelke, D.T.G. 161, 174–5, 594
rural electrification policies 514, 516, 532
Russia 11, 57
  agriculture 253
  Barents Sea and 265
  BRIC country 488
  cutting greenhouse gases 470
  energy concerns 62, 174
  energy crops 257
  as innovator 500
  R&D 493
  secured global investment 518
  strategies 349
  ‘Russian dolls model’ 25–6
  Russian gas 221
Scandinavian countries 3, 11, 277–8, 283
scenario analysis, consideration of uncertainty
in bounded manner 121
sCERs price drivers 415–17, 423–6, 435–6
  database 426–33
  estimation results 434–5
  GARCH modelling 433–4
Scholz, C.M. 164–6, 168
Schwartz, S. 296, 434, 461
science, technology and society (STS) studies
189
Scoping Plan (SP) 555, 559, 565
second-best instruments for energy and climate
  policy 441–2
  conclusions 448–9
second-best situations 442
  behavioural issues 445
  distortionary taxes 443
  optimal taxation 443
  other instruments 443–4
  government failures 447
  knowledge spillovers 444–5
  other market failures 445
  political acceptability 446
security of supply, new infrastructure and
109
Seiderberger, T. 251–2, 254–7
selective catalytic reduction (SCR) 362
Sellafield, Cumbria, nuclear plant 332, 350
Sen, Amartya 505, 524, 531
Senegal 380–81, 513
‘serious malfunction’, in electricity and gas
sector 99
Shannon or Herfindahl indices 228
SHESA, publicly owned company in Basque
Country 579
slurry 364
small-scale combined heat and power (micro
  CHP) plants 36
smart grids 116, 118–19, 126, 136, 189
  implementation of 587
  significance of 192, 204, 445, 487
  transport-related and 489
smart meters 125, 128, 192, 197, 204
  benefit to consumers 129
Smeets, E. 253–8, 269
SO2 and NOx (components of acid rain) 362
social accounting matrix (SAM) 143–4, 145,
148–9
social cost of carbon (SCC) 41
social and environmental psychology studies
183–4
  attitude–behavior–external conditions model
  186
  behavioral perspective model 186
  selected empirical studies 186–8
  theory of planned behavior 185–6
  value–belief–norm theory 184–5
social norms, established 456
sociological and socio-technical studies 188–9
solar energy
  agriculture and food-processing residues
  potential 258
  crops potentials 257
  forest and wood-processing residues
  potential 258
  solar hot water system 37–8
Index

solar photovoltaic (PV) panels 519, 533, 589
solar resources 256–60
  European potential 260–62
  global potential 260
Solow, A. 223, 225, 229–31
South Africa 263, 338, 343, 354, 481, 500, 511, 516
South Korea 264, 493, 500, 520, 521–3, 532
Southern California Edison (SCE)
  performance-based rate-making plan 129
Spain 11, 63–4, 66–7, 576
carbon levels 583
CIEMAT 246
feed-in tariffs 129
funding 371, 397–8, 426
imports 70–71, 104
oxy-combination power plant 370
PANER proposals 586
R&D 490–92
renewable energy 574
temperature in 406
transmission policy 117
Special System installations (renewable and cogeneration) 586, 591
‘spot pricing’ or ‘nodal pricing’, real-time marginal costs 105
‘stagflation’ 543
status and future prospects of key energy technologies 471–2
key technologies 484
carbon capture and storage 484–5
electricity systems 485–6
supply side of energy technologies 472
biomass and bioenergy 472
fossil-fuelled power plants 473–5
geothermal 471, 483
hydropower 482
nuclear 478–80
ocean energy 471, 484
solar 471, 480–82
wind power 477–8
Stavins, R.N.
  EE gap 290, 292
  efficiency gap 33
  individual rationality 291
  market failures 445
  spillovers 444
  sustainable energy 190
Stern Review 54–5, 59, 84, 92, 94, 96, 340, 358, 374
Stirling, A.
  criticisms 43
  energy diversity 2, 213–14, 216, 219, 221–3,
  226
  entropy measure 220
  fossil fuels 225
  parallel policy debates 215
  performance sphere 229
  prescriptive conclusions 218
  strategic appraisal 229
  sustainability 217
stochastic models and their estimation 294
prices of inputs and emissions 296
carbon dioxide 298–9
coal 298
correlation coefficients 299
natural gas 296–8
profit margin of a gas-fired station 294–6
straight vegetable oil (SVO) 379–81
’strategic’, how future grid will look 210
strategic stockpiles, often crucial 215
structure of production technology for services (SERV) 146–7
sub-Saharan Africa 509, 512, 514–15, 520, 528, 530, 917–18
subsidiarity, expression of regionalism 551
supercritical PF boilers with back-end control 362–3
amine or solvent scrubbing 363–4
calcium looping 364–5
supplies of renewal energy, potentially very large 10
supply of emissions reduction (SS) 49–50
supply security 214
‘sustainability science’ 24, 27
‘sustainable’, what counts as? 217
sustainable development, ‘development that lasts’ 163
sustainable economy, based on sustainable energy model 116
Sustainable Transport Plan 583
Sweden 196–7, 322, 463, 491, 573
Switzerland 172, 194, 501
syngas 365–6
tax, rate of is optimally negative 171
’tax’, rejection to the word 446
tax revenue, to compensate households/firms 142
taxes and subsidies, affect prices 141–2
TD CGE 154
TD models 139, 149–50, 151, 152–3, 157
technological change, role in mitigation and adaption policies 444
technologies, to minimize environmental impacts 117
technologies and timescales 336–7
tempphot, dummy variable for hot temperatures 426, 429
Tendances Carbone database 426, 434, 437
‘The Natural Step’ (TNS) 26
theoretical framework 163
energy and resource policies 169–71
input side 163–8
output side 168–9
theoretical limits of renewable resources 17
theory of planned behavior (TPB) 184–6
thermodynamic losses in transportation, dependant on internal combustion engines 33
Three Mile Island, nuclear power plant accident 331, 334
TIMES model (national and regional and global) 136
top-down models 139
behavioural parameters 145–8
CGE modelling framework 140
core model 140–41
critiques and caveats 148–9
data requirements for top-down CGE models 143
E3 data 145
extensions related to price mechanisms 141–2
extensions related to quantity mechanisms 142–3
outline of some characteristics of 139–40
the SAM 143–4
total emissions (TE) 574
TPES 70–71, 73, 80–81
trade-off, between bioenergy and food production 387–8
TRAN industrial transportation (TRAN) 146–7
Transcantábrico (Bilbao–Treto) gas pipeline 581, 589
transition to low carbon economy
golden age or another dark age 19
limits to economic growth 18
may boost the economy 9
transmission, small contribution to electricity cost 117
transmission and distribution (T&D) network losses 36, 485
systems 42
transmission network policy 119
business model 123–4
coordination operation 124–5
cost allocation 122–3
criteria 119–20
planning 120–21
siting 121–2
transmission planning
dominating issue in dimensionality 120–21
new facilities and 120
transmission policy, should ensure all beneficial lines are built 123, 130
transmission system operator (TSO) auctions off to market participants 106, 108
compensation (ITC) mechanism (2002) 122–3
transmission system operators (TSOs), coordination and 124
transport, major consumer of energy 314–16
Trinidad and Tobago, global gas imported from 577
Tunisia 521
Turton, H. 68, 150, 152–3, 174
UK 491, 573
‘abatement cost curve’ 341
AVOID program 358
Climate Change Act (2008) 85, 87
energy sources for electricity generation 333
exergy analysis to examine thermodynamic performance 32
Magnox civil nuclear power plants 332
nuclear power capacity, 1950–2040 347
Parliamentary Office on Science and Technology (POST) 350
power generation efficiency and economics 339
PWR plant, Sizewell B in Suffolk 346, 354
risks to electricity network 351–2
Test Discount Rate (TDR) 38
UK Foresight Programme, Foresight 30
UK and Japanese experts, scaling analysis of performance–diversity trade-offs 238
UK Low Carbon Transition Plan 84–7, 90, 92
UN World Charter on Nature 1982 31
uniform pricing, outperforms pay-as-bid rules 102, 111
United Nations Framework Convention on Climate Change (UNFCCC) 395
United Nations Framework Convention on Climate Change (UNFCCC) Durban Summit 416
United States Energy Tax (1979) 321
United States Environmental Protection Agency (EPA) 324
United States National Highway Traffic Safety Administration (NHTSA) 324–5
US Energy Information Administration 168
USA Department of Agriculture (USDA) 387
Department of Homeland Security (DHS) 349
Index

Energy Information Administration (EIA) 342
energy inputs into maize production 526
fuel use in transport 316–18, 320
maize and ethanol production 376, 381, 383
pressured water reactor (PWR) 332, 336–8
regional transmission organization (RTO) 121, 124
USD quotations for oil and coal 426
valuation of investments 300–301
scenario (a): full-time operation at 80 percent capacity 301
analytical solution 302–3
binomial lattice 301–2
Monte Carlo simulation 303
scenario (b) operation at 80 percent capacity only when the profit margin is positive 303–5
value–belief–norm theory (VBN) 184–6
valuing efficiency gains in EU coal-based generation 285–9
Appendix 310–313
varying diversity 224
vector error correction (VEC) 416
vehicle GHG standards 558, 566
vehicle-to-grid (V2G) services 125
vertical integration and vertical foreclosure, correlated 109
virtual tax 142
von Weizsacker, E. 30, 33, 42, 46
vulnerability, definition 68
Wales, tidal power and 265
Walrasian models, based on Arrow–Debreu equilibrium 139
Warde, P. 12–13, 20, 459, 467
Washington Consensus 516
Waste Heat and Carbon Emissions Reduction Act 565
‘well-to-wheel’, analysis of energy used by biofuels 35
West German Clean Air Act 1974 31
Western Climate Initiative 556
what is a region? 538–40
Wilhite, H. 189, 453–6, 464
Williams, P. 10–11, 195, 451, 518
willingness-to-pay (WTP) for BPC 583–4
for renewable energy 193–4
Wilson, C.
behavior 186, 188–9, 200–201, 454
electricity 100
energy conservation 185
environmental concerns 184
interventions 182
profits 193
survey 192
wind power 244–5
European potential 247–8
global potential 245–7
Wing, Sue 141–2, 151, 156
Winnett, A.B. 26–7, 36–7, 39, 43–4
World Atlas of Hydropower and Dams 249
World Bank 518
World Development Indicators 74, 81
World Energy Council 263
World Energy Outlook 245–6
World Health Organization (WHO) 525
World Input Output database (WIOD) 147, 149
World Wide Fund for Nature (WWF), Living Planet Report 28
Wrigley, E.A. 19–20, 519, 537
Yoshizawa, G. 2, 213, 218, 227, 233–5, 593
Zimbabwe 513