Index

adaptation 1–2
adaptive management strategies, role of 476–7
in Africa see adaptation strategies in sub-Saharan Africa case study
agricultural adaptation see agricultural adaptation
animal management, mitigation and adaptation 42–3
in California see hydro-economic modeling to assess climate impact: California
crop–livestock see adaptation to climate change in mixed crop–livestock farming systems
environment see role of growth/trade in agricultural adaptation to environmental change
expansion of irrigated agriculture 188–93
farmers see under farming and farms
food security and climate see under food security
improvements in agricultural productivity 193–6
and institutions see role of effective institutions and infrastructure
insurance as see under insurance
livestock species choice as see choice of livestock species under global warming
production adaptation 342, 390
and research and development see under research
science and climate change see technological innovation in agriculture and climate change
role of science and technologies 475–6
uncertainty 89–90
adaptation strategies in sub-Saharan Africa case study 169–203, 489–90
agriculture in sub-Saharan Africa 185–6
discussion and conclusion 196–8
economic models applied to climate change analysis 172–3
economic models of water use 170–71
impact of climate change 179–85
climate change simulation 179–80
climate change simulation results 180–85
modeling framework 173–9

GTAP-W model 175–9
IMPACT 173–5
strategies for adaptation to climate change in sub-Saharan Africa 186–96
adaptation scenario 1: expansion of irrigated agriculture 188–93
adaptation scenario 2: improvements in agricultural productivity 193–6
adaptation to climate change in mixed crop–livestock farming systems 5, 107, 402–19, 492–3
conclusions 416–17
developing countries 405–7
importance of mixed systems 402
how may climate change affect mixed systems in developing countries 405–7
how might households deal with climate change? 407–16
diversification 411–13
extensification 413–15
intensification of production 409–11
risk management 414, 415–16
mixed crop–livestock systems, nature and importance of 402–4
scenarios 405, 413
adaptive breeding 392, 397
adaptive capacity 51, 65
additionality 212, 307, 491
afforestation/reforestation 212, 214, 295, 297, 298–9, 303–4
Africa 1, 2, 5
agricultural research 396
importance of agriculture 358
GHG emissions 211
livestock species choice see under choice of livestock species under global warming
mixed crop–livestock systems 405, 409–10
reducing impact of global climate change on agriculture 358
some countries already facing extreme climatic conditions 1, 358–9
sub-Saharan Africa adaptation see adaptation strategies in sub-Saharan Africa case study
climate change 405
mixed crop–livestock systems 405, 409–10
Agency for International Development 9
agricultural adaptation 4–5, 327–41, 492
adaptation activities and roles 329–30
approaches to and findings from quantitative
analyses of adaptation 331–4
adaptation based on observed behavior
331–2
adaptation – economic modeling 333–4
adaptation modeling – alternative
management 332–3
economic value of selected agricultural
adaptation strategies 334–7
exports 337
model setup 334–5
production 336–7
results and implications 335
welfare 335–6
inevitability of adaptation 327–8
what might be adapted to: climate change
drivers/effects on agriculture 327–8
in California see hydro-economic modeling
to assess climate impact: California
growth/trade see role of growth/trade
in agricultural adaptation to
environmental change
is adaptation already occurring? 328–9
magnitude of adaptation costs 330–31
research needs 337–8
agricultural production/productivity
agricultural production technology see
technology
and biofuels 278–9, 285–6
and climate change and drought see climate
change, drought and agricultural
production
improvements in agricultural productivity
193–6
less strict regulation of biotechnology 4
intensification of production 409–11
low-input subsistence systems 405
specialization 404
sustainably increasing 404
agriculture/agricultural
adaptation see agricultural adaptation
agricultural drought 74–5, 76
agricultural losses and climate change 73, 75,
77–8, 101, 115, 162, 196, 210–11
see also insurance
agricultural mitigation 4, 314
see also biofuels and climate change; role
for agricultural projects under the
Clean Development Mechanism
agricultural productivity see agricultural
production/productivity
agricultural research
adaptation and research needs 337–8
Africa, Asia and Latin America 396
agricultural revenues 348–9
agricultural risk management 414, 415–16
and insurance see under insurance
agricultural soil credits 309
agricultural systems 73, 79, 413
biogeochemical cycles 210
climate change 469, 488
developing countries 493–4
forecasts 67
investments 214–15
low carbon 407
move from extensive to intensive 402
policies on 51
agricultural technology 382–3, 389, 391–4,
396–7, 399
biotechnology 278–9, 285–6
technology transfer to poor countries 398
see also technological innovation in
agriculture and climate change
agricultural yields 67, 173, 187, 193, 342
broader forces shaping agriculture 237–40
as carbon sink 4, 27, 241
Census of Agriculture see under United
States
CDM projects see role for agricultural
projects under the Clean Development
Mechanism
and climate impacts see climate impacts on
agriculture
and climate change see agriculture and
climate change
conservation agriculture 311
cropped agriculture see crops
and drought see under drought
insurance see insurance
in integrated assessment models see under
integrated assessment models/modeling
intensification 404, 409–11
irrigated agriculture see irrigation
policy for biofuel and agriculture R&D
285–7
protected agriculture technology/techniques
357, 359, 370–71, 374, 377, 388
rainfed agriculture 99, 107–8, 169, 173
in Africa 359
flooding from precipitation 25
improvements in agricultural productivity
193–6
in sub-Saharan Africa 185–6, 187
vulnerable in low-latitude countries 1
see also reducing impact of global climate
change on agriculture
agriculture and climate change 3
agricultural losses and climate change 73,
75–8, 101, 115, 162, 196, 210–11
unintended environmental consequences from biofuel expansion 276–7
use of biofuel in transportation sector 273–6
biofuel policies: optimality meets reality 279–87
food security and biofuels 283–4
fuel security and biofuels 284–5
GHG emissions and biofuels 280–82
land-use change and biofuels 282–3
multilateral cooperation on the environment 287
policy for biofuel and agriculture R&D 285–7
discussion and concluding remarks 287–8
biomass see biofuels
biotechnology, agricultural 278–9, 285–6
BLS model 172
Boserup, E. 404, 409, 413
breeding
adaptive breeding 392, 397
animal breeding for climate adaptation 386–7
breeding and genetic improvement 383
cattle reproduction 32, 37, 42, 107, 451, 487
plant breeding for climate adaptation 383–5
plant breeding for other objectives 385–6
selection and breeding 383–4, 387, 392
California
climate impact see hydro-economic modeling to assess climate impact: California
snowpack irrigation water 11–12
urbanization 5
CALVIN model 343, 347, 351–2
cap and trade 4, 207, 280, 306, 328
carbon 4
agriculture as carbon sink 4, 27, 241
agriculture as carbon source 4
capture 213
credits 108, 310, 314
footprint
livestock 2
livestock production 43–4
sheep and goats 44
markets 309–10, 313–14, 318
payments 416
prices 292–4, 306, 309, 410
programs see role for agricultural projects under the Clean Development Mechanism
sinks 4, 27, 241, 308, 316
social cost of carbon 240
tax 4, 206–7, 280–81, 282, 285, 306
carbon dioxide 4
climate and crop production: biological effects 15–17
agro-ecosystems 15–16
food safety 17
nutrition 16–17
climate and crop production: direct effects 10–11
climatic extremes 14–15
fertilizer see carbon dioxide fertilization (CO2 fertilization)
temperature 12–14
water 11–12
climate and global crop production 10–11, 172, 208
crops see climate change, carbon dioxide and global crop production
uncertainties and critical research 23–4
carbon dioxide fertilization (CO2 fertilization) 12, 146, 208, 241, 405, 487
adaptation strategies in sub-Saharan Africa case study 169, 172–3, 175, 179, 183, 192
cattle reproduction 32, 37, 42, 107, 451, 487; see also breeding
CDM see role for agricultural projects under the Clean Development Mechanism
Census of Agriculture see under United States CERs 306, 308–10, 317
CGIAR 395–6, 398, 417
chemical discovery and chemical use efficiency 390
choice of livestock species under global warming 5, 446–65, 494–5
adaptation 461–3
agro-ecological zones 447, 449–50, 461–2
climate change 446–8, 451, 462–3
climate simulations 457–61
data 448–9
discussion 461–3
empirical results 451–7
extent of livestock farming in Africa and South America 446
household surveys 448–57, 461–2
theory 447–8
Clean Development Mechanism see CDM
client-based research 242–3
climate 1
adaptation to change see adaptation change see climate change
climatic extremes see under extremes
crop production/CO2 see climate change carbon dioxide and global crop production
extreme climatic events
 countries already facing extreme climatic conditions 1, 358–9
 and global crop production 10–11, 14–15, 17, 26, 50, 66
 and insurance 421, 423–4, 435
 catastrophes 420–23
 uncertainty about yield variability and extreme events 436
 factors and trends 73, 78
food security see food security
global crop production 10–11, 172, 208
impacts on agriculture see climate impacts on agriculture
instability see climate instability and uncertainty
normals 360, 371, 451
 and impact of climate change on US agriculture 114, 146, 156–8, 165
policy 204, 213, 282, 486, 490
 climate policy applications 220–23
 simulations/scenarios 65, 457–61
system interface 210
uncertainty see climate instability and uncertainty
variability/climatic variability 211, 408
climate change, drought and agricultural production 5, 73, 75, 83
effects on domestic livestock see under animals
and insurance see insurance as adaptation to climate variability in agriculture
overview of climate variability 66–7
climate change
adaptation see adaptation
 yield functions 56
Africa see adaptation strategies in sub-Saharan Africa case study
and agriculture see agriculture and climate change
and biofuels see biofuels and climate change
carbon dioxide see climate change, carbon dioxide and global crop production
changes in historical climate 348
climate change prediction data 120
crops
 carbon dioxide see climate change, carbon dioxide and global crop production insurance see under insurance
drought see climate change, drought and agricultural production
dry–warm climate change 5, 342, 345, 347–8, 352
economic models applied to climate change analysis 172–3
farm level impacts of climate change see farm level impacts of climate change households dealing with 407–16
export changes see exports
federal aid 75, 77, 480
impacts of climate change 179–85
agroclimatic parameters to estimate drought/climate change impacts 81
animals see under animals
assessments see crop models for climate change impact assessment
climate change simulation 179–80
climate change simulation results 180–85
reducing see reducing impact of global climate change on agriculture
Latin America see Latin America projected climate change/climate change simulations 179–85, 367–70
and technology see technological innovation in agriculture and climate change
trade 231–7
warm–dry climate change 5, 342, 345, 347–8, 352
water availability 10, 25, 73–4, 79, 348–51
weather variability 90, 169, 211, 405–6, 415, 467–8
welfare impact see welfare impact of climate change
see also hydro-economic modeling to assess climate impact: California
climate change, carbon dioxide and global crop production 9–31
climate and crop production: biological effects 15–17
 agro-ecosystems 15–16
 food safety 17
 nutrition 16–17
climate and crop production: direct effects 10–11
climatic extremes 14–15
fertilizer see carbon dioxide fertilization (CO2 fertilization)
temperature 12–14
water 11–12
conclusions 27–8
uncertainty and critical needs 22–7
 critical needs 25–7
uncertainties see under climate instability and uncertainties
climate change, drought and agricultural production 2, 73–86, 169, 488
climate change, drought and agriculture 78–9, 405–7
conclusions 83–4
drought and agriculture 76–7
Index

drought and climate change in Europe 77–8
European case study 79–83
drought as a natural hazard 74–5
institutions and infrastructure see role of effective institutions and infrastructure
climate impacts on agriculture 3, 208, 210–11
in California see hydro-economic modeling to assess climate impact: California
reducing see reducing impact of global climate change on agriculture
spatial scales, uncertainty, climate variability with climate impact assessment 60–63
climate instability and uncertainty 3, 89–90
and carbon dioxide and crop production
climatic extremes and global crop production 10–11, 14–15, 17, 26, 50, 66
climate related traits 385
cold stress 37
communication of threats to crop production, importance of 27
competition see under land use; water
Consultative Group on International Agricultural Research (CGIAR) 395–6, 398, 417
consumer surplus 4, 231
contour plowing 389
costs
adaptation costs, magnitude of 330–31
agricultural projects under the CDM 299, 306–7, 311, 314, 317
transaction costs 307, 309–10
cost information 351–2
crop–livestock see adaptation to climate change in mixed crop–livestock farming systems
crop models 240
use of crop models for climate change impact assessment 49–72, 487–8
assessing climate change economic effects for regional/global production 56–60
climate change impacts on agriculture and food production 50–52
conclusions 68
estimating uncertainty in impact assessment 65–6
modeling changes in crop productivity 52–6
overview of climate variability 66–7
sources of uncertainty in crop production models 64–5
spatial scales, uncertainty, climate variability with impact assessment 60–63
tools and models for estimating climate change impacts on agriculture 52
uncertainty in projections of crop production 64–6

crops
cereals 9–11, 24
and creating biofuels 21
contingency crop planning 477
crop germplasm 384, 392, 396–8
crop–livestock see crop–livestock diversity and exploitation of genetic resources 18–19
insurance see under insurance
mixed systems see adaptation to climate change in mixed crop–livestock farming systems
models see crop models
nutrition 16–17
prices 192–3, 195–7, 424
in Africa 368–9
in sub-Saharan Africa 191–2, 195–7
production/productivity 2, 9, 50–52, 486–8
biofuels 278–9, 285–6
cclimate/CO₂ see climate change, carbon dioxide and global crop production
increasing 10
reduced crop production 76–7
selection of plant varieties 26
sustainability 26
use of crop models for climate change impact assessment see crop models variables influencing crop production 50–52
reducing impact of climate change on agriculture 359–61, 364, 370–74
research 5, 23–4, 26
rotation 101, 107
switching 4–5, 117, 374
and impact of climate change on US agriculture 141, 144, 146
temperature 13–15, 50
weeds 15–16
yield 186, 424
farm level impacts of climate change 91, 95, 100, 107
increased crop yield variability 82
see also plants
cross-section analysis 3, 142–3, 145–9, 240
Index 505

dairy cattle 38–40, 43–4, 447, 449–62
deadweight loss 236, 280
deforestation
avoiding/preventing 224, 287, 308, 316, 491
biofuels 4, 271, 277, 283, 287, 490–91, 497
GHG emissions 10, 212, 214, 241, 277, 283
desertification 12, 79
detasseling 394
developing countries 5
agriculture 235, 330, 466
see also adaptation to climate change in mixed crop–livestock farming systems
CDM see role for agricultural projects under the Clean Development Mechanism
greenhouse gas emissions 211
irrigation projects 185
livestock industry 32
risk from climate change 422
rural poor dependent on agriculture 1, 169
diet, livestock 37, 43, 329, 405–6, 410–11
disease
animal disease 41–2
crops 50, 73
food safety see food safety
discrete sequential stochastic programming see under stochastic programming
distortions 234–5, 237, 243, 280–81
ditches and drainage techniques 389
diversification 411–13
diversity and polyculture 18
domestic livestock see animals; livestock
downscaling 60, 64, 89, 421
drip irrigation see under irrigation
drought
adaptive management strategies 476–7
and agriculture 74–5, 76–8
climate change see climate change
drought and agricultural production
farm level impacts of climate change 100–101, 106
and climate change see climate change
drought and agricultural production
crop insurance see under insurance
federal aid 75, 77
hydrological drought 74–5
meteorological drought 74–5
mitigation 76–7
monitoring 76–7
as natural hazard 74–5
planning 76
response 76, 79
risk reduction 77
risk management 76, 83–4
tolerance 385, 398–9
trends 78–9
temperature/precipitation trends 78–9
socio-economic drought 74–5

economic impacts on agriculture
sub-Saharan Africa see adaptation strategies in sub-Saharan Africa case study
see also panel data models estimating economic impacts of climate change on agriculture
economic models/modeling
adaptation 333–4
economic models applied to climate change analysis 172–3
economic models of water use 170–71
macroeconomic modeling 59–60
microeconomic modeling 58–9
economy-wide impacts 187
analyzing with general equilibrium models 3, 169–70, 171
see also adaptation strategies in sub-Saharan Africa case study
electricity 273, 299
and biomass 272–3, 299
farms 363–5, 451–3, 455
methane producing 299
EMBRAPA 397
energy
bioenergy see bioenergy
biodiesel see under bioenergy
energy security 271
energy supply, crop production increase dependent on 10
energy system interface 212–14
fertilizer production 12
organic waste products 272–3, 275, 293, 295, 299, 314, 317
engineering and mechanical innovations 389–90
environment changes see role of growth/trade in agricultural adaptation to
environmental change
environmental policy and biofuels 271, 279–85, 288
coordinating policy 287
policy for biofuel and agriculture R&D 285–7
environmental services 283, 312–14
payments for 283, 287, 313–15
EU ETS 306, 309
Europe, drought and climate change in 2, 77–8
European case study 79–83
expected value 91, 95–104
exports
climate change 172, 185

Ariel Dinar and Robert Mendelsohn - 9780857939869
Downloaded from Elgar Online at 03/13/2019 09:53:09AM
via free access
export/import status changing as result of climate change 234, 236
higher exports improving welfare 185
importance of 185, 215–16
prices 231, 236
extensification 413–15
extremes
carbon dioxide 14–15
extreme events 421–2, 424, 432, 435–6, 439
uncertainty about yield variability and extreme events 436
extreme climatic events
catastrophes 420–23
countries already facing extreme climatic conditions 1, 358–9
global crop production 10–11, 14–15, 17, 26, 50, 66
insurance 421, 423–4, 435
precipitation extremes 16, 17, 25, 467
uncertainty about yield variability and extreme events 436
water extremes 25–6
F1 hybrids 394
FACE experiments 179
fallow 99
farm level impacts of climate change 89–111, 488–9
alternative approaches to uncertainty in farm-level programming models 90–95
expected-value approach 91
introduction to mathematical programming 90–91
passive programming 91–2
stochastic programming 92–5
challenges/opportunities for farm-level programming in climate change research 108–9
expected value approach 97–105
passive programming 97–9
stochastic programming: both weather and climate change uncertainty 102–5
stochastic programming: uncertain weather but certain climate change 99–101
farm-level models with alternative uncertainty specifications 95–7
case-study farm system 95–6
summary and discussion of case-study findings 105–8
FARM model 172
farming and farms
adaptation 328–9, 355, 377, 408–16, 461–3
adaptive management strategies, role of 476–7
exit from farming 408
technological options 408
see also technology
adaptation and mitigation 408–16
diversification 411–13
extensification 413–15
intensification of production 409–11
mitigating emissions 408
modification of farm practices 387–8
risk management 415–16
farm level assessment 51, 53, 55, 57–8, 172
farm level impacts of climate change see farm level impacts of climate change
farm level models see under farm level impacts of climate change
livestock choice see choice of livestock species under global warming
lowering economic cost of farm operations 10, 14
mixed systems see adaptation to climate change in mixed crop–livestock farming systems
prices 192–3, 195–7
profits see profits, farm
smallholders and mixed systems 402, 407–9, 416
systems and practices 5, 113, 310–14, 331, 407, 471, 481
farmland 145–7, 159, 164
farmland value 145, 147, 162, 164
federal aid 75, 77, 480
fertilizer 12
CO2 fertilization see carbon dioxide fertilization (CO2 fertilization)
maintaining consistency fertilizers rates 10
needed for increased crop production 10, 12, 26
production 213
floods and flooding 12
causing disruption to crop production 25–6
flood-tolerance 383
food
biofuels: food versus fuel 278–9
changing food demands 4
food-producing units 174–5, 179, 187, 196
production 214–15, 219
climate change impacts on agriculture/food production 49–52, 170
in sub-Saharan Africa 173, 180, 183, 185, 192–3, 195–7
malnutrition 17, 68, 172, 180, 185, 193, 391, 414, 490
nutrition 16–17
prices 213, 217, 221–2, 231–7
safety 17, 26

Ariel Dinar and Robert Mendelsohn - 9780857939869
Downloaded from Elgar Online at 03/13/2019 09:53:09AM via free access
security see food security
socioeconomy interface 214
technological evolution 214
Food and Agriculture Organization (FAO), UN 1, 17, 361
food security 5, 73
agro-forestry 411
biofuels 21–2, 283–4
climate change increasing number of people at risk of hunger 172
climate and food security: adaptation and mitigation 18–22, 407
biofuels 21–2, 283–4
diversity and polyculture 18
exploitation of genetic resources 18–19
infrastructure/technology 19–21
from farmer to global food production 51–2, 57, 59–60, 66
irrigation 187
mixed crop–livestock systems 402, 404, 406–8, 412–13, 415–16
revolution in food security 9–10
soil carbon sequestration and productivity 310
footprint, carbon
livestock 2
sheep and goats 44
livestock production 43–4
forecasts 67, 107–8, 415–16, 424
forestry
agroforestry
food security 411
mixed crop–livestock systems 410–11
as potential source of mitigation 292–303
baseline methodologies for agricultural and land-use forestry projects 297–303
fossil fuels 4, 446
carbon dioxide 271
fertilizers dependent on 12
reliance on 10, 23, 26
trace atmospheric gases as by-product 10
frizzle (F) genes 387
fuel
biofuels see biofuels
fossil fuels see fossil fuels
fuel security and biofuels 284–5
renewable fuel standards 4
gains from trade 232
general circulation/global climate models 12, 37–8, 67, 81, 120, 428, 460
general equilibrium
effects 216, 224, 307, 497
general equilibrium models 3, 169, 196, 206, 215–16, 218, 224, 490
BLS model 172
economy-wide effects, determining 169–71
from farmer to global food production 59, 64, 68
genetic manipulation 383
GFDL CM2.1 A2 347, 352
GIS 351
global warming
effects 10, 25, 27
harmful nature of moderate global warming 155, 271
global weirding 15
grain feeding 32, 41, 44
grazing 36, 43, 164, 218, 294, 302, 335, 406
overgrazing 238, 312
‘Green Revolution’ 9–10, 12–13, 18, 22–3, 27, 384
greenhouse gas (GHG) emissions 4, 10, 292
agriculture as source or sink 27
agricultural mitigation 4, 314
agriculture and forestry as potential source of mitigation 292–303
biofuels 271, 276–7, 280–82
biofuel feedstock 274, 276
see also biofuels and climate change
CDM see role for agricultural projects under the Clean Development Mechanism
developing countries 211
effects of 271
energy production 208
increasing 327
livestock 2
mitigation policy 241
reducing 407–8
see also mitigation related to agriculture and land-use change 211–12, 213
social cost of emissions 283, 288
greenhouses 147, 151, 155, 159, 164
Haber–Bosch process 12
heat stress
crops 183, 332, 385
livestock 33, 37, 42, 107, 386–7
heat tolerance 42, 384, 386
Heckman, J. 356–7
herbicides 15–16
herd health 41–2; see also animals; livestock
heterosis 394
high-intensity confinement systems 387
high-yielding varieties 385
Holstein-Friesians 387
households 5, 356, 390, 392, 399, 402, 406
climate change 407–16
household surveys 5
choice of livestock species under global warming 448–57, 461–2
reducing impact of global climate change on agriculture 359–67
hybrid vigor 394
hybridization 19, 383
hydro-economic modeling to assess climate impact: California 5, 342–54, 492
Central Valley 344, 345, 347
climate change
adaptation of agricultural production 348–50
agricultural revenues 348–9
changes in historical climate 348
water availability 348–50
climatic change and agriculture in California 345–8
base case 346
land-use technology and climate change for year 2050 346–7
SWAP model policy runs 347
conclusions 352–3
crop patterns and yields 348–53
CVPM regions 345
GFDL CM2.1 A2 347, 352
GIS 351
HEC-PRM 343
hydro-economic modeling and positive mathematical programming 343–5
CALVIN model 343
hydro-economic modeling 343
limitations 251–2
maximizing benefits 343
PMP exponential cost function 345
profit-maximizing 344
results/water management insights for agricultural production in climate change 348–51
Tulare 345
Sacramento 344, 345–6, 348
San Joaquin 344, 345–6, 348
Southern California 348
hydrological drought 74–5
IAMs see integrated assessment models/modeled
IMPACT model see under partial equilibrium models
impact assessment see under crop models
impact of climate change on US agriculture 141–66, 489
aggregate welfare impacts 156–61
conclusions 162
data 146–7
Ricardian model 144–6
Ricardian results 147–56
incentive mechanisms 313
income
farm income concerns 271
increase in 237–8, 243
off-farm income 409
support for farmers’ income 235–6
industrialization 235, 237, 239, 243, 278, 421
institutions see role of effective institutions and infrastructure
insurance 4, 5
adaptation
as adaptation mechanism 423
climate variability see insurance as adaptation to climate variability in agriculture
agricultural insurance 420, 439–40
as an adaptation to climate change 423–4
recent trends in agricultural insurance around the world 427–8
types of agricultural insurance 424–7
agricultural risk management 414, 415–16
climate variability see insurance as adaptation to climate variability in agriculture
crop insurance 107, 415, 480–81
crop insurance and climate change 424–8
drought 77
national/public crop insurance program 77, 99, 108, 242, 246, 480–81, 494, 496
quantitative issue with crop insurance under climate change 428–39
extreme events 421–2, 424, 432, 435–6, 439
uncertainty about yield variability and extreme events 436
extreme climatic events 421, 423–4, 435
catastrophes 420–23
index insurance 415, 424, 426–7
insurance industry 420, 421–3, 434, 439
livestock insurance 415, 427
premium rates 432–6
premium ratings 436
revenue insurance 426
risk scenarios 421–3
uncertainty 421
insurance as adaptation to climate variability in agriculture 420–45, 494
agricultural insurance as adaptation to climate change 423–4
conclusions 439–41
distribution functions 421, 428, 432, 434, 436
uncertainty regarding yield distribution functions 436–9
experience with agricultural insurance 424–8
recent trends in agricultural insurance around the world 427–8
types of agricultural insurance 424–7
increases in disasters and catastrophes: effects on insurance industry 421–3
insurance and climate change 420, 439–40
maize 428–32
quantitative issues with crop insurance under climate change 428–39
deductibles 432–9
insurance premium forecasts under climate change scenarios 428–32
scenario 1: uncertainty about yield variability and extreme events 436
scenario 2: uncertainty about yield distribution functions 436–9
sensitivity of crop insurance premium rates to climate uncertainty 432–6
wheat 428, 432, 440
Intergovernmental Panel on Climate Change (IPCC) 10, 81, 84, 185, 204, 271, 292, 467
agriculture and land use in integrated assessment models/modeling 3–4, 113, 204–29, 412, 490
climate impacts on agriculture 210–11
climatesystem interface 210
dimensions of agriculture and land-use modeling 208–10
energy system interface 212–14
GHG emissions related to agriculture and land-use change 211–12
socioeconomy interface 214–16
climate policy applications 204, 220–23
conclusions 223–4
implementation of land-use in integrated assessment models 208–16
GCAM 217
IGSM 217–18
IMAGE 216–17
REMIND–MagPIE–LPJmL 218–20
irrigation 4, 169, 432, 440
as adaptation strategy 355–6, 476
and climate change 5, 11–12
as critical need 25–6
deficit irrigation 97, 99, 108
drip irrigation 19, 373–6, 389, 492
exogenous 355
farm level impacts of climate change 97–105
irrigated agriculture 11, 131–3
Africa 358–70
California 342, 345–6
Israel 370–76
sub-Saharan Africa 169, 173
irrigation development 175, 186–7
irrigation practices and infrastructure modifications, role of 477–8
irrigation technology choice 5
poverty and irrigation 186–7
snow and ice melt sources 11–12, 25
sprinklers 373–6, 387, 477
sub-Saharan Africa 169, 173
expansion 187–93
improvements in agricultural productivity 193–6
see also reducing impact of global climate change on agriculture
Israel 5
reducing impact of global climate change on agriculture 370–76
irrigation 359, 372–6
use of technologies/protected agriculture 370–71, 374, 377
Joint Implementation Program 4
Kyoto Protocol 171, 280, 292, 303–10, 316–17
Kyoto surprise 305
land-use
competition for land 4, 5, 213, 237, 243
integrated assessment models see under integrated assessment models/modeling
investment 214–15
land-use changes 212, 241
and biofuels 271, 276, 277–8, 282–3
carbon dioxide 271
Index

land-use credits 308
land-use patterns 208–9
land-use projects 292–303
 financed by voluntary markets 303, 309
 hurdles to including agricultural projects in the CDM 304–10
land-use related emissions 211–12
social cost of land-use 283
landscape 5, 209, 460, 491
Latin America 1, 405, 409–10
agricultural exports 215–16
agricultural research 396
GHG emissions 211
livestock species choice see choice of livestock species under global warming mixed crop–livestock systems 405, 409–10
Leucaena leucocephala 410–11
lifecycle assessment 280, 281, 283
linear programming 90, 92, 95
livelihoods 5
 climate change and mixed crop–livestock systems 404, 408, 412–13, 415
livestock 2
 carbon footprint 2
 livestock production 43–4
 changing mix of livestock species 415–16
 choice of livestock species see choice of livestock species under global warming domestic livestock 2
effects of climate variability see under animals
importance of livestock industry 32
insurance 415, 427
mixed systems see adaptation to climate change in mixed crop–livestock farming systems
prices 192–3, 195–7
research 5
switching 4–5, 144, 146
see also animals
log-linear model 346
impact of climate change on US agriculture 143, 145, 149, 151–62
loss/losses
 agricultural losses and climate change 73, 75, 77–8, 101, 115, 162, 196, 210–11
 see also insurance
deadweight loss 236, 280
low-yielding varieties 385
LULUCF projects 308
macroeconomic system 214–15
malnutrition 17, 68, 172, 180, 185, 193, 391, 414, 490
markets
carbon markets 309–10, 313–14, 318
irrigation markets 329
project markets outside the CDM 303–4
voluntary markets 303–4, 309
mathematical programming 89–91
meat production 38–40, 44, 191, 195–6, 238, 410; see also beef cattle
mechanical innovations 389–90
meteorological drought 74–5
methane
avoidance 295–6
producing 299
milk production 38–40, 44, 446
mitigation 4–5, 271–324
 agricultural mitigation 4, 314
 agriculture and forestry as potential source of mitigation 292–303
animal management, mitigation and adaptation 42–3
biofuels see biofuels and climate change CDM see role for agricultural projects under the Clean Development Mechanism
drought mitigation, subsidies for 480
emission mitigation promotion 208
farming strategies see under farming and farms
food security and climate see under food security
forestry as potential source of mitigation 292–303
incentives 416
insurers as proponents of mitigation strategies 423
low-cost 292, 297, 299, 304–6, 317, 491
policy 223, 240, 241
strategies at household level 409–16
mixed systems see adaptation to climate change in mixed crop–livestock farming systems
model calibration 175–6
model coupling 208
models
BLS model 172
CALVIN model 343, 347, 351–2
deductive 342, 344
economic models see economic models/modeling
and farm level impacts of climate change see farm level impacts of climate change
FARM model 172
general equilibrium models see general equilibrium models
Index 511

hydro-economic see hydro-economic
modeling to assess climate impact:
California
modeling the impact of climate change on
agriculture 471–4
partial equilibrium models see partial
equilibrium models
SWAP see State Wide Agricultural
Production (SWAP) Model
monogastric animal systems 386
Monte Carlo simulations 66–7, 421, 440

NAMAs 317
National Climatic Data Center 75, 119, 146, 165
National Drought Mitigation Center (NDMC)
77
National Integrated Drought Information
System (NIDIS) 77, 247
neck (Na) genes 387
net revenue 2, 352, 447, 449, 486, 489, 495
reducing impact of climate change on
agriculture 356, 359–60, 363–4, 366–8
Ricardian model 141–2, 144
nutrition 16–17

Obasi, Godin Olu Patrick 74
optimization
models 90, 108, 141, 218–20, 343
policy optimization 206
organic waste products and energy 272–3, 275,
293, 295, 299, 314, 317
ozone damage 237–8, 241
panel data models estimating economic
impacts of climate change on agriculture
112–40, 489
conceptual framework 113–17
conclusions 137–8
data sources and summary statistics 117–20
census of agricultural data 117–19
climate change prediction data 120
historical weather data 119–20
empirical framework 127–8
calculating predicted impact of climate
change on farm profits 128
estimation 128
profits, growing-season weather and
predicted climate change US agriculture
120–26
results
estimates of relationship between
growing-season weather/farm profits
128–35
projected impacts of climate change on
US agricultural sector profits 135–7
using annual variation in weather to infer
impacts of climate change 114–15
economics of 115–17
partial equilibrium
partial equilibrium models 169, 231
IMPACT model 3–4, 170, 173–5, 176,
178–81, 187, 191–2, 195–7
trade 230
passive programming 91–2, 96, 97–9, 101
PES systems 283, 287, 313–15
pest-resistance 384, 386
plant breeders’ rights 393
plants
breeding for climate adaptation 383–5
breeding for other objectives 385–6
CO2, and photosynthesis/growth 10–11
F1 hybrids 394
insects and diseases 15–16
plant variety protection 393–4
rights of breeders 393
species 9
invasive species in agriculture 26
plant species shifts in rangelands 27
selection of plant varieties and crop
production 26
plasticulture 388
population
changing 241
global 9, 11, 21, 73, 214, 224, 238, 402
growth 5, 9, 10, 12, 230, 237–8, 242–3,
342
larger population, effects of 5
positive mathematical programming 343–5
precipitation
extremes 16, 17, 25, 467
frequency 10
marginals 153, 157, 162
projections 421–2
reducing impact of global climate change on
agriculture 360–61, 363–4, 366–76
trends under drought 78–9, 467
process-based crop models 53–5
producer surplus 4, 231, 234
production/productivity
agricultural see agricultural production/
productivity
crop production/productivity see under crops
environments 387, 392
modification of 388
functions 1, 55–6, 113–14
intensity increasing and environmental
problems 403
profits, farm
calculating predicted impact of climate
change on farm profits 128
estimated economic impacts of climate change on agriculture 114–18
estimates of relationship between growing-season weather and farm profits 128–35
farm level impacts of climate change 98–104
profit maximization 117, 344, 358
and growing season weather/predicted climate change US agriculture 120–28
projected impacts of climate change on US agricultural sector profits 135–7
programming see passive programming; positive mathematical programming; stochastic programming
projects see role for agricultural projects under the Clean Development Mechanism
protected agriculture technology/techniques 357, 359, 370–71, 374, 377, 388; see also reducing impact of global climate change on agriculture
quantitative trait loci 384–5
rainfed
global climate change on agriculture 355–7, 359–60, 364–8, 370
rainfed agriculture 99, 107–8, 169, 173
in Africa 359
rainfed agriculture in sub-Saharan Africa 185, 187
improvements in agricultural productivity 193–6
rainfed areas and flooding from precipitation 25
reducing impact of global climate change on agriculture 355–81, 492
Africa 358–70
climate change simulations 367–70
data 359–61
household surveys 359–67
results 361–7
conclusions 377
impact of climate change and damages 355
Israel 370–76
climate change simulations 374–6
data 371
results 371–4
selection model 356–7, 363–4, 374, 377
theoretical model 356–8
reforestation/afforestation 212, 214, 295, 297, 298–9, 303–4
regional circulation/regional climate model 58, 416, 428
renewables 213, 272, 281
biomass 272–3, 278, 316
kudzu 22
research 4
agricultural research
adaptation and research needs 337–8
Africa, Asia and Latin America 396
biofuel and agriculture R&D policy 285–7
challenges and new directions 240–43
client-based research 242–3
crop 5, 23–4, 26
and development 4, 5
farm-level programming in climate change research 108–9
further research needs 495–7
international agricultural research system 382, 391–2, 395
international public research 396–7
investment 5
livestock 5
national research systems 395–6
public and private research 393–5
technological innovation see technological innovation in agriculture and climate change
revenue
agricultural revenues 348–9
insurance 426
net revenue 2, 352, 447, 449, 486, 489, 495
reducing impact of climate change on agriculture 356, 359–60, 363–4, 366–8
Ricardian model 141–2, 144
Ricardian approach and methodologies 1, 3, 57–8, 113
impact of climate change on US agriculture
Ricardian models 3, 143, 144–6
Ricardian results 147–56
Ricardian method 142–3
Ricardian rent approach 233, 40
‘Structural Ricardian’ model 356
risk
agricultural risk management 414, 415–16
and insurance see under insurance estimating/assessing 66–7, 424
management 414, 415–16, 424
role for agricultural projects under the Clean Development Mechanism 4, 292–324, 491–2
agriculture and forestry as potential source of mitigation 292–303
agricultural projects under the CDM 294–7
baseline methodologies for agricultural and land-use forestry projects 297–303
energy projects 295–6, 316
ancillary benefits and sustainable rural development 310–14

Ariel Dinar and Robert Mendelsohn - 9780857939869
Downloaded from Elgar Online at 03/13/2019 09:53:09AM
via free access
carbon sequestration and other environmental services 312–14
soil carbon sequestration and productivity 310–12
Annex 1 countries 308, 314–15
CDM
board 294–5, 299, 315
credits 309
efficacy 304
methodologies 297–303
offsets 306, 309, 318
project cycle 295, 305, 309
project investment evaluation 307
small-scale and large-scale methodologies 299
tables of methodologies 300–302
conclusions 317–18
costs 299, 306–7, 311, 314, 317
transaction costs 307, 309–10
EU-ETS 306, 309
hurdles to including agricultural projects in the CDM 304–10
consequences for pricing and profitability 309–10
creating new credits 306–7
development objective and bilateral approval 307
flexibility mechanisms 305–6
land management projects 308
objections to the CDM and their influence on its design 305
Joint Implementation 303–4
paths forward 314–17
modifying the CDM 314–15
supplemental mechanisms for investing in land-use mitigation projects 315–17
project markets outside the CDM 303–4
projects: agricultural, energy, forestry, land-use 292–303, 316
soil and land management practices 292–4, 310–13, 315
voluntary markets 303–4, 309
role of effective institutions and infrastructure 5–6, 466–85, 495
analytical framework: the impact pathways 469–71
climate change, agriculture and institutions: literature review 467–9
adaptation to climate change and institutional response 468
conclusions 481–2
drought, adaptation options, institutions and infrastructures 475–81
role of adaptive management strategies 476–7
role of irrigation practices and infrastructure modifications 477–8
role of other institutions 480–81
role of science and technologies 475–6
role of water institutions 478–80
modeling the impact of climate change on agriculture 471–4
objective and scope 466–7
role of growth/trade in agricultural adaptation to environmental change 230–68, 490–91
broader forces shaping agriculture 237–40
benefits gained from trade 232
importance of international trade 230
research challenges and new directions 240–43
summary 243
trade and climate change 231–7
ruminants
effects of climate variability 36, 42, 44
mixed crop–livestock systems 402, 405, 410–11
seasonal effects 153, 366, 489
secondary characteristics 384
selection and breeding 383–4, 387, 392; see also breeding simulations
climate change simulations 179–85, 367–70
climate simulations 65, 457–61
socioeconomy
socio-economic drought 74–5
socio-economic scenarios 50–51, 62
socioeconomy interface see under integrated assessment models/modeling
soil
agricultural soil credits 309
conserving soil moisture 476–7
fertility 292, 310, 312, 317
soil carbon sequestration and productivity 310–12
Spain 421, 425, 427–8, 440
spatial correlation 143, 153, 158
Special Report on Emissions Scenario (IPCC) see SRES scenarios
sprinklers 373–6, 387, 477
SRES scenarios 81, 156, 173, 179, 183, 187–8, 191–3, 198, 429, 457, 467
State Wide Agricultural Production (SWAP) Model 342, 345–52
and positive mathematical programming 343–5
statistical work/approach 56, 63, 67, 112, 240–42

Ariel Dinar and Robert Mendelsohn - 9780857939869
Downloaded from Elgar Online at 03/13/2019 09:53:09AM
via free access
stochastic programming 92–5
 discrete sequential stochastic programming 93–5, 96, 99–106
 stochastic programming: both weather and climate change uncertainty 102–5
 stochastic programming: uncertain weather but certain climate change 99–101
stover 286, 392, 405–6
sub-Saharan Africa see under Africa
subsidies 147, 151, 159, 164
 drought mitigation 480–81
 insurance premium subsidies 420
sustainable development 295, 304, 307, 310, 416
surface water withdrawal 147, 151, 159, 166, 169
surplus
 consumer surplus 4, 231
 export surplus 216
 new technologies 393
 producer surplus 4, 231, 234
 surplus commodities 235
 tax credits 284
swine 38–40, 43
technological innovation in agriculture and climate change 382–401, 492–3
 avenues for research 383–91
 animal breeding for climate adaptation 386–7
 breeding and genetic improvement 383
 chemical discovery and chemical use efficiency 390
 engineering and mechanical innovations 389–90
 modification of farm practices 387–8
 modification of production environments 388
 plant breeding for climate adaptation 383–5
 plant breeding for other objectives 385–6
 water control and water use efficiency 389
challenges and implications 397–9
 benefits of delay 398–9
 funding levels and growth 397–8
 technology transfer to poor countries 398
conclusions 399
organization of research 391–7
 international public research 396–7
 location specificity and its implications 392–3
 national and international structures 395
 national research systems 395–6
 public and private research 393–5

technology
agricultural technology 382–3, 389, 391–4, 396–7, 399
biotechnology 278–9, 285–6
technology transfer to poor countries 398
and climate change see technological innovation in agriculture and climate change
new technologies creating surplus 393
protected agriculture technology/techniques 357, 359, 370–71, 374, 377
role of science and technologies 475–6
technology/infrastructure and climate/food security 19–21
technological change/improvements 5, 209, 214, 218–19, 237, 243
improvements 342, 351, 352
temperature
 and animal well-being 32–6
 and crop production 13–15, 50
 weeds 15–16
 increases 10, 210–11, 422, 467
marginals 145, 153, 155, 157
and precipitation trends under drought 78–9
reducing impact of global climate change on agriculture 360–61, 363–4, 366–76
thermal indices 32–6
thermal thresholds 33–6
trade see role of growth/trade in agricultural adaptation to environmental change
tradable permits 280, 287, 306
transportation
 subsidies 480
 use of biofuel in 273–6
uncertainty 2
 climate uncertainty see climate instability and uncertainty
deterministic approach to dealing with 91, 96, 101, 106–7
farm level decision environment 89–90
farm level impacts of climate change see under farm level impacts of climate change
insurance 421
 projections of crop production 64–6
water supply 11, 468
weather uncertainty see under weather
UNFCCC 297, 305, 307, 312–14, 316, 318
United States (US)
 agriculture 3
 crop yields 14–15
economic impacts of climate change on agriculture 112–40
Index 515

predicted climate change, growing-season weather and profits 120–26
California see California
weather 3
upscaling 56, 63, 64, 316

varietal platforms 392
voluntary markets 303–4, 309
vulnerability 76–7, 79, 83

warm–dry climate change 5, 342, 345, 347–8, 352
water
alternative water sources 5
animals, importance for 43
availability 342, 347, 468
agricultural production 73, 79, 211, 348–50
climate change and water availability 10, 25, 73–4, 79, 348–51
without climate change 347
competition for 5, 213, 237, 243
control and water use efficiency 389
crop per drop 389
demand for 342–3
economic impact of water resource policies 171
economic models of water use 170–71
extremes 25–6
harvesting systems 477–8
inputs 389
irrigation see irrigation markets 329
management infrastructures 468
role of water institutions 478–80
needed for increased crop production 10

policy 170–71, 186, 198
pricing 170, 471–2, 479–80
surface water withdrawal see surface water withdrawal
scarcity/limits on water supply 329, 343–4, 348
supply uncertainty 11, 468

weather
adverse weather on livestock production 2
historical weather data 119–20
information/forecasting see forecasts
shocks 112, 114, 117, 131
stochastic daily weather series, 99 year 81
uncertainty
farm level impacts of climate change 94–5, 100, 102–3, 105–8
stochastic programming: both weather and climate change uncertainty 102–5
stochastic programming: uncertain weather but certain climate change 99–101
using annual variation in weather to infer impacts of climate change 114–15
economics of 115–17
variability 90, 169, 211, 405–6, 415, 467–8
weeds 15–16
as biofuel 21–2
welfare impact of climate change 145, 173, 183–5, 335–6
Africa 367–70
aggregate welfare impacts 156–61
World Development Report 2008 169, 186

yield–climate response functions 142
yield growth 180, 187, 239–40, 329
ZARI 396