Index

Abernathy, W.J.
key issues in innovation and 298
manufacturing strategy and 394, 396
product life cycle and 158, 163, 286
transilience of innovation and 325-6
Abitur qualification for commerce 349
Achilladelis, B.G. 82, 173-5
Acu, Z.J. 313, 315
Advanced Manufacturing Technology
(AMT) 406
Advisory Committee on Science and
Technology (ACOST) 428
Agenda 21 423-4
Akamatsu, Professor K. 95
Alderman, N. 127-8
Amendola, M. 82, 124
American Telephone and Telegraph
(AT&T) 151
Amsden, A. 86, 100
Anderson, P. 325, 326
Anderton Shearer Loader, National Coal
Board and 277
Angel, D.P. 155-6
Ansoff, H.l. 38, 45
Anthony, I. 195, 233
Anti-Ballistic Missile (ABM) 197
Antonelli, C. 82, 125, 232-3
Aoki, M. 154, 362
Arrow, K. 56-7, 59, 304, 305
ASEAN economies (Thailand, Malaysia,
Indonesia and China) 95
Atkinson, J. 269, 339
automobile industry
environmental and regulatory issues
226-7
historical overview 213-15
innovation in 213
Japanese producers 216-17
new roles for suppliers and 222-4
regulatory and environmental issues,
European 226-7
structure of world 215-17
transplants 224-6
world 216
challenge of lean production 218-19
changes and challenges facing 217-18
product development and design in
the (1990s) 219-20
Automobile R&D systems, organizational
differences in 220-22
AXE system 371-2, 382
Baba, Y. 151, 154
Baden-Württemberg 25, 27, 29-30
Barr and Stroud management 277
BASIC 280
basic research
economists and 57-8
historians and 57
industrial innovation and 54-62
United States and 56-7
Batelle Institute 247
Berufsschulen (trade-schools) 349
biotechnology
affect on agrochemicals 178-9
pharmaceuticals and 177-9
Black, Sir James 178
'Blue Angel' labelling scheme 427
Boston Consulting Group Matrix 390
Braslow, Dr Nelson 280
Braverman, H. 338-9
Bridging institutions 16, 19
British Standard (BS 5750) 251
British Standard (BS 7750) 427
Brusco, S. 25, 130
Burns, T. 36, 326, 328
Bush, Vannevar, 55, 56
Business, the Environment and Trade
(Agenda 21) 423-4
business strategy
levels of 385
technology and, 384-5, 386
corporate strategy 386-90

Mark Dodgson and Roy Rothwell - 9781781954201
Downloaded from Elgar Online at 04/13/2019 11:21:29AM
via free access
tools for strategic management of technology 390-1

Business Week
(1986) 156
(1990) 157
(1992) 101
(1993) 155, 165
Byatt, I. 59, 183

CAD/CAM 290, 412
Cainarca, G.C. 124, 125
Camagni, R. 25-6
Campbell, A. 349, 353, 387
Carlsson, B. 4, 13-24, 82
Cawson, A. 145-53
Centre for Urban and Regional Development Studies (CURDS) 126
Chandler, A.D. 154-5, 164, 325, 362

chemicals industry
innovation in 169
inorganic chemicals and 175
organic and large conglomerates 169, 171-4
petrochemicals 169, 171
principal manufacturers by sales and R&D 172
speciality sector of 176-7
very research-based 180
Chew, W. 406, 413
Chicago Mercantile Exchange 238
Chinese models of development, overseas 95-6
Clark, J. 87, 338, 340, 344
Clark, K.B. 42, 46, 124, 221, 271, 325-6, 396
COBOL 280
Cocom agreements 198
Commission of the European Communities
(1990) 233, 235
(1992) 232, 423, 426
Computer Tomography scanners 59
Confederation of British Industry (CBI) 429

construction
formal R&D activity in 207-9
innovation in 202
innovation, lessons from 210-11
innovative processes, informal in 209-10
some of the major changes in 205-7

technological change in 202-4
consumer electronics
characteristics of 145-8
digitalization of 150-1
innovative process in 148-9
networks and inter-firm collaboration 151-2
standardization in 149-150
Cooke, P. 25-32
Coombs, 82, 109, 368, 384-92
Cooper, R.G. 34, 36-8, 40, 293, 331, 362
Cotes, Dr 280
Cusumano, M.A. 148, 218
Daniel, W.W. 339, 341-4
Dasgupta, P. 54, 57, 61, 302
David, P. 54, 57-61, 115, 117, 123, 125, 302
Davies, A. 340-2
Davies, S. 108, 112, 127-8
'probit' and 113-15
Debresson, C. 4, 5
Demarg, I. 263, 265
Department of Environment Management Options Scheme (DEMOS) 429
diffusion
adoption and 109
analysis, units of 107-8
Bayesian learning models 117-18
as a disequilibrium process 120-1
empirical analysis 119-20
the equilibrium approach 113
game theoretic models 118-19
innovation and 106-7
location theory and 128, 130
logistic curve and the information-based explanations 109-113
measurement problems 108-9
as a path-dependent process 122-4
Probit (threshold) models 113-17
reinterpretation of epidemic approach 125-6
as a selection process 121-2
slowness of imitation, empirical evidence on 124-5
spatial analysis 126
international and inter-regional comparisons 126-7
traditional contribution of geographers 127-8, 129
Dodgson, M.
industrial innovation and 34, 43
industrial relations 342
innovation and size of firms 310–24
networking and 82–3
organization and systems 329–30
schools of strategy 413
technical collaboration and innovation 285–91
Dosi, G. 33, 81–2, 85, 87, 122, 124
Duncan (1982) 169–70
Du Pont research laboratories 173
Dussauge, P. 385, 391
East Asia
development of flying geese model and 95–6
innovation in 94
economic growth
innovation and 78–80
technical innovations and 84
uneven rates of nations 84–8
economic performance, technological systems and 13–14
Economist, The
(1991) 96, 101
Edwards, A. 119, 126–7
electricity, information technology and 189
Electronics Industry Association of Japan 74
Electronic Times (1989) 163
electronic trading networks (ETN)
inventions in policy 239–40
innovations in telecommunication 235–7
Eliasson, G. 15, 18, 82, 301
energy supply
history of 183–4
innovation in 182–3
postwar technology efforts 184–5
shocks, oil and consequences 186–7
trends from (1980s) to the present 187–9
environmental issues,
Agenda 21 and 423–4
experience with controls 422–3
innovation and 421–2
protection industry and 428–9
role of regulation 424
implementation 426–7
instruments 424–6
processes 426
some future developments 429
voluntary action 427–8
Environmental Protection Act (UK 1990) 427
Environmental Technology Innovation Scheme (ETIS) 429
Ericsson, managing technological transitions in 370–72
European Industrial Research Management Association (EIRMA) 390
Evenson, R. 58–9
Exercise Test Monitor 279
Fachhochschulen (polytechnics) 30, 351
Fachschulen (technical institutes) 349
Pagarberg, J. 78, 85
Fairtlough, Gerard 325–36
financial systems
bank-based versus stock exchange-based 261–3
characteristics of innovation 259
how they can inhibit innovation 260–61
innovation and 259–61
investment affected by time rate of discount (TR of D) 259–60
stock exchange-based, features of 264–6
visibility of elements of innovation 264
what influence they have on innovation 263–6
Financial Times
(1988) 162, 163
(1990) 297
(1992) 163
(1993) 155
flexible manufacturing systems (FMS) 407
‘flexible specialization’ 29
flying geese model
East Asian development and 94, 95
strengths of 100
weaknesses of 100–102
Foray, D. 83, 125
foreign direct investment (FDI) 94, 95, 100, 101, 102
FORTRAN 280
four tigers
East Asian trade competitiveness and growth in Pacific Basin 102
Fraunhofer Institutes 30, 31
Freeman, C. 8, 14, 57, 173
collaboration and 286
industrial relations 338, 344
innovation and growth 78–88, 297, 326, 363
innovative strategies 384, 394
Fujimoto, T. 42, 46, 60, 221, 271
Gann, D.M. 202–12
Gansler, L.S. 193, 196
Gardiner, P. 46, 276–7
GATT 306, 424, 436
Gebrauchsmuster or petty patent 303
Germany
Baden-Württemberg region 25, 29–30
‘Blue Angel’ labelling scheme 427
technical education and training in 349–50, 352
training for managers 350–51
Gershuny, J.I. 246–7
Gibbons, M. 57, 60, 83, 121–2, 173
Gibbs, D.C. 119, 126–7
Gilder, G. 155, 163
Glatz, H. 9, 11
Global Energy Corporation 332
global innovatory challenge, twenty-first century and 432
GLOBEX 236, 238–9
GM 26
Graham, M. 61, 196
Granovetter, M. 31, 288
Granstrand, O. 20, 82, 367–83
Graves, Andrew 213–31
Graves, S.B. 42, 43, 45
Greenpeace 427
Grlilches, Z. 58–9, 61, 110–12, 307
Groak, S. 205, 209
growth, innovation and 78–80
growth rates, nations and world economy 84–8
Guanxi 96
Gupta, A.K. 43, 45
Hagedoorn, J. 43, 154
Hagerstrand, T. 127–8
Index

fourth generation integrated model 42, 50
fifth generation SIN 42, 49, 50
success factors 33–7
success, strategy, trends 33
wide variety of factors necessary for 44–9
industrial relations innovation 337–8
content for 339–40
impact of 343–5
motive 338–9
outcomes of 343
process of implementing 340–42
information technology, electricity and 189
innovation
automobile industry and 213
chains and 7–8
chemicals industry 169–70
clustering and 4–7
complexes and 8–11
construction and 202
consumer electronics and 145–8
diffusion of 106–7
East Asia and 94
energy supply and 182–3
environmental issues and 421–2
financial systems 259–61
growth and 78–80
industrial 33
industrial relations and 337–8
intellectual property and 301–2
managing in MTCs 367
manufacturing strategy and 393
marketing and 293
organization and 325–6
public policy perspective and 3–4
regional perspective on 25–6
semiconductor technology and 154–5
services and 243
size of firm and 310
SMEs and 310–18
supplier relationships and 268
technological collaboration and 285–9
training and 348
union organization and 345
user/supplier links and 275
innovation in firms, neo-Schumpeterian
research and 80–84
innovation share by size of firm, UK (1945–83) 314
innovation share by size of innovating
unit, UK (1945–83) 317
innovation in telecommunication 232–3
electronic trading networks (ETN) 235–7
perspectives on 233–5
policy issues 239–40
innovative activity
firm-specific competencies 358–9, 360–61
firm-specific learning 363
key characteristics of 357–8
organising firm-specific competencies 359, 362
problems with allocating resources 363–4
Innovative Instruments Company (IIC) 332–3
intellectual property
economic theory of 302–3
innovation and 301–2
international dimension of 306–7
patent protection, basic economics of 303–4
reinterpretation and capability 304–6
research agenda for 307–8
‘Intelligent Highway Systems’ 227
International Chamber of Commerce (ICC) 423
Ireland, N.J. 117–18
ISO (9000) 251
Italy
(Emilia-Romagna) 25
firms in Carpi, Tuscany and Florence 29
innovation by SMEs and 28
National Energy Agency (Bologna) 29
technopolis at Bari 27
Jaikumar, R. 406–8, 411–12
Japan
assembly robots in 409
Electronics Industry Association of 74
flexible manufacturing systems (FMS) 407
‘just-in-time’ (JIT) 218–19, 271, 353
Ministry of Education, Science and Culture 72
Ministry of Posts and Telecommunications 72
MITI 72–5

Mark Dodgson and Roy Rothwell - 9781781954201
Downloaded from Elgar Online at 04/13/2019 11:21:29AM
via free access
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maidique, M. 34, 331, 362</td>
</tr>
<tr>
<td>Malecki, E.J. 128</td>
</tr>
<tr>
<td>managing innovation, MTCs and 367</td>
</tr>
<tr>
<td>managing technology transfer, Saab-Scania 372–7</td>
</tr>
<tr>
<td>Manchester project ‘Wealth from Knowledge’ 83</td>
</tr>
<tr>
<td>Mansell, R. 232–42</td>
</tr>
<tr>
<td>manufacturing innovations, implementation of 405</td>
</tr>
<tr>
<td>manufacturing strategy content of 397</td>
</tr>
<tr>
<td>emerging importance of 396–7</td>
</tr>
<tr>
<td>innovation and 393</td>
</tr>
<tr>
<td>links between and other strategic plans 398</td>
</tr>
<tr>
<td>problems arising from lack of 395–6</td>
</tr>
<tr>
<td>process for development 398</td>
</tr>
<tr>
<td>audit current performance 400</td>
</tr>
<tr>
<td>explore options 400–401</td>
</tr>
<tr>
<td>forecasting 401</td>
</tr>
<tr>
<td>identify targets 399–400</td>
</tr>
<tr>
<td>implementation 401</td>
</tr>
<tr>
<td>review and repeat 401–2</td>
</tr>
<tr>
<td>role of 393–5</td>
</tr>
<tr>
<td>strategy as competence building 402</td>
</tr>
<tr>
<td>Mariotti, S. 124–5</td>
</tr>
<tr>
<td>marketing</td>
</tr>
<tr>
<td>innovation and 293</td>
</tr>
<tr>
<td>nature of 293–6</td>
</tr>
<tr>
<td>necessity for diffusion and adoption 299</td>
</tr>
<tr>
<td>new product development process 197–8</td>
</tr>
<tr>
<td>product innovation and 296–7</td>
</tr>
<tr>
<td>Marshall, A. 7, 25–6, 78, 128</td>
</tr>
<tr>
<td>Martin, R. 537–47</td>
</tr>
<tr>
<td>Massachusetts General Hospital (USA) 280</td>
</tr>
<tr>
<td>Max Planck Institutes 30</td>
</tr>
<tr>
<td>Meager, N. 269, 339</td>
</tr>
<tr>
<td>Mekunförbundet 16</td>
</tr>
<tr>
<td>Merton, R. 54, 57</td>
</tr>
<tr>
<td>Metcalfe, J.S. 14, 106–41</td>
</tr>
<tr>
<td>Miles, I. 145, 243–56</td>
</tr>
<tr>
<td>Miles, R.E. 154–6, 165</td>
</tr>
<tr>
<td>military technology</td>
</tr>
<tr>
<td>the arms race 192–4</td>
</tr>
<tr>
<td>central issues 191</td>
</tr>
<tr>
<td>SIN and 42–3</td>
</tr>
<tr>
<td>strong in mechatronics 14</td>
</tr>
<tr>
<td>total quality management and 353</td>
</tr>
<tr>
<td>training in 350, 352, 353</td>
</tr>
<tr>
<td>Japanese firms, semiconductors and 157</td>
</tr>
<tr>
<td>Japanese Innovation System (JIS) 67, 76</td>
</tr>
<tr>
<td>part played by companies 68–71</td>
</tr>
<tr>
<td>role of government 71–5</td>
</tr>
<tr>
<td>universities and 75–6</td>
</tr>
<tr>
<td>Japanese keiretsu 95, 100</td>
</tr>
<tr>
<td>Japan External Trade Research Organisation (JETRO) 74</td>
</tr>
<tr>
<td>Jenkins, M. 235, 236</td>
</tr>
<tr>
<td>Jeveds, F. 57, 83</td>
</tr>
<tr>
<td>Jewkes, J. 57, 61, 173</td>
</tr>
<tr>
<td>‘just-in-time’ (JIT) 218–19, 223, 271, 353</td>
</tr>
<tr>
<td>Kaldor, M. 192, 196</td>
</tr>
<tr>
<td>Kaname, Professor A. 95</td>
</tr>
<tr>
<td>Kaplinsky, R. 338, 411</td>
</tr>
<tr>
<td>Karshenas, M. 108, 120</td>
</tr>
<tr>
<td>Katz, M. 19, 306–7</td>
</tr>
<tr>
<td>keiretsu networks 95, 100, 164</td>
</tr>
<tr>
<td>Kleinknecht, A. 83, 87</td>
</tr>
<tr>
<td>Kline, S. 54, 280–81</td>
</tr>
<tr>
<td>Kodama, F. 39, 151, 209</td>
</tr>
<tr>
<td>Kuznets, S. 79–80</td>
</tr>
<tr>
<td>Lamberton, D.M. 301–8</td>
</tr>
<tr>
<td>Lamming, R. 43, 47</td>
</tr>
<tr>
<td>Land 29–30</td>
</tr>
<tr>
<td>Langrish, J. 57, 83, 293</td>
</tr>
<tr>
<td>large innovative firms</td>
</tr>
<tr>
<td>key characteristics of 357</td>
</tr>
<tr>
<td>management and technology 364–5</td>
</tr>
<tr>
<td>Laser Coagulator Working Party (LWCP) 277</td>
</tr>
<tr>
<td>LATAPSES group (France) 27</td>
</tr>
<tr>
<td>Leonard-Barton, D. 410–11, 513</td>
</tr>
<tr>
<td>Leverick, F. 295–6</td>
</tr>
<tr>
<td>Levin, S.G. 119–20</td>
</tr>
<tr>
<td>Levitt, T. 294, 296</td>
</tr>
<tr>
<td>Lindberg, P. 410, 413</td>
</tr>
<tr>
<td>linear model</td>
</tr>
<tr>
<td>industrial innovation and 54</td>
</tr>
<tr>
<td>shortcomings of 55, 61–2</td>
</tr>
<tr>
<td>Littler, D.A. 293–9</td>
</tr>
<tr>
<td>MacKerron, G. 182–90</td>
</tr>
<tr>
<td>McLoughlin, I. 340, 344</td>
</tr>
</tbody>
</table>
Index

civil-military relations and 196–7
problems of inefficiency in 194
procurement relations and 194–5
regulation of 197–9
Ministry of Education, Science and
Culture (Japan) 72
Ministry of International Trade and
Industry see MITI
Ministry of Posts and Telecommunications
72
Missile Technology Control Regime
(MTCR) 198
MITI 28
 construction of information network 73
 cooperation of companies and 74–5
 innovation and 72, 73
Morgan, K. 7, 25–32, 151
Mowery, D.C. 40, 56, 58–61, 287, 357
MRC Pneumocociosis Research Unit 280
MTC
 concept of 367–8
 empirical studies of 368
 managing innovation in 367
 managing technological transitions in
 Ericsson 370–72, 377, 381
 managing technology transfer in 379–81
 managing technology transfer in Saab-
 Scania 372–7
 some critical managerial abilities in
 management of 377–9
 strategic management problems in
 381–2
 theoretical rationale for 368–9
 multi-technology corporation see MTC
Myers, S. 40, 364

NALGO 342
Nam, C.H. 203–4
Narin, F. 61, 82
National Board for Industrial and Technical
Development 16
National Coal Board, Anderton Shearer
Loader and 277
National Grid Company (1993) 189
National Television Systems Committee
(NTSC) standard 151
Nelson, R. 4
 basic research and 56, 59, 61, 384, 402
 diffusion and 121–2, 131

intellectual property and 307
large firms and 363
R&D and 379
‘networking’ 31
networks of innovators 50
newly industrializing countries see NICs
new technology based firms (NTBFs) 313,
318, 321
NICs 94, 96
common development features of 102–3
economic performance of 96–100
growth of GNP in 97
structure of manufactured exports from
 Japan and the four tigers 99
Noam, E. 234–5
Noma, F. 61, 82
Nonaka, I. 42, 280
NORDEX 236, 237–9
North America Free Trade Association
424
Northcott, J. 340, 343, 345
Nuclear Non-Proliferation Treaty (NPT)
197–8
Oakey, R.P. 119, 126–7
OECD 432, 435, 437
 (1979) 171
 (1985) 425
O’Farrell, P.N. 119, 127
Olivastro, D. 61, 82
organization
 coordination of attributes and 331
 culture of 330–31
 innovation and 325–6
 people in 330
 planning and 329–30
 skills needed in 330
 structure of 328–9
 summary of attributes needed 333–4
 systems in 329
 three examples of 332–3
 types of 326–8
Orsenigo, L. 82, 122, 363
Ozaki, M. 337–8, 340, 345
PASCAL 280
Patel, P. 61, 357
Pavitt, K.
 basic research and 60–61
 collaboration and 287
growth of innovation and 82
large innovative firms and 357–66
specialist firms and 388, 402
technological strategy and 407, 413
Peck, M.J. 81, 194
Perez, C. 87, 88, 326
Peters, T.J. 154–5, 293, 328
petrochemicals, basic feedstock to final product 171
pharmaceuticals, biotechnology and 177–9
Philips 26
Philips/Sony CD standard 150
Piore, M. 29, 130, 154, 156, 330
PK Morgan Ltd 279, 280
Plant Research Institute 333
PLCs
stages of the semiconductor 159–60
technology networks and 157–61
Porter, M., 15
clusters and 5–7, 154–5
financial systems and 263, 265
Japan and 68
telecommunications and 234
training and 350
value-added chain and 271–2
Prahalad, C.K. 34, 272
Pred, A. 127, 128, 130
Price, A. 30, 31, 82
product development time/cost relationships, third, fourth and fifth generation innovation process and 44
product life cycles see PLCs
PROMETHEUS 226
public policy perspective, innovation and 3–4
R&D 20–21, 83
chemicals and 172–4, 176–7, 180
clusters and 6
complexes and 8
consortia in semiconductors 164
construction industry and 207–9
electricity industry and 184
electronics and 151–2
Japanese 68, 71–2, 152, 228
laboratories for technical strength 359, 363
marketing and 293, 296, 297, 298
military technology and 193, 194
MTCs and 382
nuclear expenditure 184–7
OECD countries and 186, 187, 435, 437
organizational differences in automobile systems 220–22
pharmaceuticals and 177–8
public in small countries 10
role of users in 277, 279
Sematech and 29
services and 247, 252, 253
SMEs and 30
South East Asian automotive markets and 228
subcontracting of 269
technological collaboration and 289, 291
technologies 359
for technology and business strategy 386–90
technology diversification and increased costs 369
telecommunication and 233
world automobile systems 220–22
Radio Data Services (RDS) 147
Redding, S.G. 95, 101
Regional Centre for Industrial Systems (CRGI) 27
regional perspective
creative milieu for innovation 25–6
milieu, 26–7
dirigiste approaches 27–8
grassroots approaches 28–9
network paradigm 29–31
Report of the Committee on Science and Public Welfare 56, 62 n.3
Report on Manufactures 85
Ricketson, S. 301, 306
Roberts, E. 310, 330
Romeo, A.A. 108, 111, 124
Rosenberg, N. 33, 40, 54, 56–7, 60–61, 205, 280–81, 406
Rosenbloom, R.S. 148, 298
Rothwell, R.
chemical industry and 173
environmental controls and 422
industrial innovation 33–53, 413
innovation and growth 82–3
innovation and size of firm 286, 310–24
marketing and 293
organization and 325–6, 328
Index

R&D and 362
user needs and 275–7
Route 128 (Greater Boston) 25
Ruttan, V. 58, 81

Suab-Scania
managing technology transfer 372–7
technology-company matrix 374
Sabel, C. 25, 29, 130, 154, 156, 330
Sako, M. 83, 268–74, 352
Sappho project 81, 83, 173, 384
Saviotti, P. 82, 109
Sawers, D. 57, 61
Saxenian, A. 154, 155, 156, 163
Schon, D.A. 81, 279
Schumpeter, J.A. 83, 357
clustering and 4–5
driving forces for diffusion and 106–7
dynamic 121
economic growth and 78–81
ideas on innovation 173
Science Policy Research Unit (SPRU) 173, 310, 313, 316
Science and Technology Agency (Japan) 72
science and technology (S&T)
OECD nations and 432
poor nations and 437–8
requires international collaboration 432, 438, 440
Science – The Endless Frontier 55
Scott, A. 25, 29, 130
semiconductor technology
innovation in 154–5
rewards from innovation 161–4
stages of PLC and the networks 159–60
Senge, P. 330, 413
Senge, P. 330, 413
Senker, J. 7–8
services
characteristics of 244–5
classification of 248
diversity among 247–50
innovation 243
lagging in 243, 246–7
IT and 249–50, 252
organizational and technological innovation in 250–52
Sharp, M. 178–9, 196
Shaw, B. 275–82, 285
Silicon Valley 25, 27

innovation and 154–5
networks and 155–7
size of firm
innovation 310
advantages and disadvantages of large firm 312
advantages and disadvantages of small firms 311
modes of large/small firm interaction 322–3
new products marketed (1985) by 319
Sjölander, S. 367–83
Skca, J. 289, 421–2
Skinner, W. 393, 396
Small Business Administration 313
small and medium-sized enterprises see SMEs
‘smart cars’ 227
SMEs 26, 30, 31, 43, 424
dynamics of new technology-based sectors 318–22
innovation and 310–18
Snow, C.C. 154, 155–6, 165
social returns, research investment and 58–61
Soete, L. 87, 122, 233, 288, 344
‘soft infrastructure’ 31
Solow, Robert 78, 84
Sorge, A. 348–9, 351–3
Stalker, G. 36, 326, 328
Stalk, G. Jr. 42, 47
Steinbeis Foundation 30, 31
Steimmueller, W. 54–66, 163
Stillerman, R. 57, 61
Stoneman, P. 108, 117–18, 120, 348
stored program control (SPC) 370
Strategic Arms Limitation Treaty (SALT) 197
Strategic Arms Reduction Talks (START) 197
Strategic Business Unit (SBU) 271–3
Strategic Defense Initiative (Star Wars) 193
strategy as competence building 402
success, strategy, trends, industrial innovation and 33
supplier relationships 268
definition of 268–9
explanation 269, 273
core competence 272–3
cost-based 269–70
Index

product market and manufacturing strategy 271–2
suppliers’ incentives to innovate 270–71
trade-off between short and long run 270
trust, importance of 271
Sweden
dimensions of technological systems 15–17
four case studies 17–19
IVF 16, 22 n.4
National Board for Industrial and Technical Development 16
Switzerland, training in 350, 351
systems integration and networking (SIN)
fifth generation innovative process 42–9
Japan and 42–3
Tatum, C.B. 203–4
Technik (knowledge and skill related to manufacturing) 349
technological collaboration
improved ability to deal with complexity 286
increased scale and scope of activities 286
innovation and 285–9
likely future for 288–9
long history of 287–8
real role, understanding of 289
science and technology, complexity of 289
shared costs and risk 286, 289
strategy to enhance learning abilities 290–91
technological systems 13–14
characteristics of 17–19
dimensions of 15–17
economic performance and 13–14
from national systems of innovation to 14–15
implications for management 19–21
public policy issues 21
technology
business strategy and 384–6
corporate strategy and 386–90
military 191
tools for strategic management of 390–91
technology networks, product life cycles and 157–61
technopole concept 27–8
Teece, D. 61, 82, 155, 158, 234, 279, 362, 368
telecommunication
electronic trading networks (ETN) 235–7
GLOBEX 238–9
innovation 232–3
perspectives on 233–5
policy 239–40
NORDEX 237–8
Teubal, M. 59, 82
Textile Information Centre (CITER) 28–9
The National System of Political Economy 86
The Sources of Invention 173
Thomas, S. 184–5
Tidd, J. 406, 408–9
‘total quality control’ 218
total quality management 353
training
economic performance and skills 248–9
innovation 348
hybrid skills and 351–2
management and 350–51
technical education and 349–50
Transvick Market System 237–9
TRIPS (trade-related aspects of intellectual property) 306
Tushman, M. 325–6, 363
twenty-first century challenge
global innovatory 432
industrial innovation and 432–4
necessity of 435
integration-exclusion factor 437–8, 439
lifestyle and environment 436–7
population increase and demographic factors 436
what needs to be done 438–40
Tylecote, A. 69, 259–67
UK, assembly robots in 409
UK Economic and Research Council (ESRC) 103
UN Conference on Environment and Development (UNCED) 422, 423, 429
United Nations 196
United States
basic research and 56–7
evolution of ‘new wave’ biotechnology industry 321
evolution of semiconductor and CAD industries 320
flexible manufacturing systems (FMS) 407
SIN and 42–3
universities, Japanese Innovation System (JIS) and 75–6
user/supplier links
innovation and 275
innovation benefits, appropriation of 279–80
overlapping and information sharing 280–81
role of lead user 276
role of the user 275–9
Utterback, J.M. 158, 286, 325, 394, 405
value added chain 271, 272
van Tulder, R. 8–9, 11
Venus Oxygen Probe 278
Vernon, R. 159, 197
von Hippel, E. 47, 57, 83, 275–6, 288
Voss, C. 396, 401, 405–17
Wade, R. 86, 101
Walker, W. 184, 186–7, 191–201
Warner, M. 348–54
Waterman, R.H. 293, 328
Wheelwright, S.C. 272, 396, 400, 406
Whitley, R. 4, 95, 100
Wileman, D.L. 43, 45
Williams, B.R. 82, 343
Williamson, O.E. 269–70
Williams, R. 337, 342
Willman, P. 337, 341–2, 345
Winch, G. 342, 409, 412–13
Wind, Y. 112, 294
Winter, S.G. 87, 121–2, 131, 363, 379, 384, 402
Wolf’s Law 80
Workplace Industrial Relations Survey consultation 341
World Bank 436
Zegveld, W. 40–41, 422
Zirger, B.J. 34, 362
Zone for Innovation, Technical and Scientific Achievements (ZIRST) 27