Tables

4.1 Open-loop Nash equilibrium 63
4.2 Open-loop von Stackelberg equilibrium 65
4.3 Feedback von Stackelberg equilibrium 66
8.1 Optimal stock levels and optimal sustained yields for Antarctic baleen whales 115
12.1 Overview of environmental impacts of energy carriers and uses 178
12.2 Regional distribution of global primary energy use in 1971, 1980 and 1990 181
12.3 Potentials for energy efficiency improvement in major energy-consuming sectors in various regions and countries 188
13.1 Characteristics and implications of the allocative efficiency versus the equity perspective for studying external costs of road transport 208
13.2 The individual welfare positions associated with different schemes for optimizing externalities in a basic model 210
15.1 Factors affecting the choice of taxes versus standards 231
17.1 Rank order of policy instruments: high-to-low rent-seeking incentive 254
20.1 Three definitions of the double dividend 294
20.2 Effects of an ETR on employment in different models 300
21.1 Examples of pollution management settings 308
21.2 Instruments of environmental policy 309
21.3 An alternative taxonomy of environmental policy tools 311
21.4 Twenty-five years of studies that go beyond static efficiency in the examination of environmental policy instruments 316
21.5 A synthesis of criteria against which to judge policy instruments 321
24.1 Alternative equity criteria for global warming policy 370
24.2 Summary of permit trading and net welfare change associated with various equity criteria 373
27.1 Environmental impact of trade liberalization – small-country case 407
27.2 Welfare effect on a small country when larger countries regulate 408
27.3 Welfare effect of environmental regulation in large countries 411
30.1 Frequency and coverage indices for export products from developing countries to the EU market subject to environmental measures, 1992

33.1 Monetary 2 × CO₂ damage in different world regions

33.2 The social costs of CO₂ emissions

40.1 Estimated costs of transport in OECD countries as a percentage of GDP

40.2 Energy efficiency of transport modes

40.3 Policy instruments for containing the environmental intrusion of transport

41.1 A number of integrated assessment models for climate change

43.1 How we used up all the resources we had and still finished up with more than we started with

45.1 A comparison of the five perspectives based on the framework

45.2 Characteristics of the five perspectives

46.1 Overview of empirical studies that have used model (46.1) for estimating the relationship between pollutants and income

47.1 Typical examples of economy-wide concerns and policy tools to address them

47.2 Example of an action impact matrix

48.1 Comparison of social, economic and environmental sustainability

48.2 The definition of environmental sustainability

50.1 Poor economies with high export concentration in primary commodities

55.1 Studies in environmental, regional, urban and transport economics using meta-analysis

58.1 An evaluation table

58.2 Evaluation table of a transportation problem

58.3 Pairwise probabilities

60.1 World production of metal ores, 1993

60.2 Production and waste allocation for primary US metal production, 1988 and 1993

60.3 By-product and co-product groups

60.4 Indicators of unsustainability

60.5 Production and waste allocation for US industrial mineral production from domestic and foreign ores, 1988 and 1993

60.6 US recycling statistics and apparent consumption for selected metals, 1987–91
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.1</td>
<td>Major ecosystems of the world, their area and productivity</td>
<td>900</td>
</tr>
<tr>
<td>61.2</td>
<td>Ecosystems generate and sustain essential natural resources and ecosystem services</td>
<td>905</td>
</tr>
<tr>
<td>62.1</td>
<td>Nutrient reservoirs participating in global cycles</td>
<td>917</td>
</tr>
<tr>
<td>62.2</td>
<td>Ratios of C, N and P in various reservoirs</td>
<td>918</td>
</tr>
<tr>
<td>62.3</td>
<td>The stabilizing influence of the biosphere (Gaia)</td>
<td>936</td>
</tr>
<tr>
<td>64.1</td>
<td>Examples of transformities</td>
<td>956</td>
</tr>
<tr>
<td>64.2</td>
<td>Comparison of indicators in energy analysis and EMERGY analysis</td>
<td>958</td>
</tr>
<tr>
<td>67.1</td>
<td>Market and governmental intervention failures in coastal zones</td>
<td>1006</td>
</tr>
<tr>
<td>73.1</td>
<td>Development status of integrated assessment models</td>
<td>1130</td>
</tr>
<tr>
<td>73.2</td>
<td>The degree of disaggregation in French energy–economy models</td>
<td>1133</td>
</tr>
<tr>
<td>73.3</td>
<td>A comparison of top-down and bottom-up models</td>
<td>1135</td>
</tr>
<tr>
<td>74.1</td>
<td>Data for a simple decomposition example</td>
<td>1149</td>
</tr>
<tr>
<td>74.2</td>
<td>Decomposition results obtained using the energy intensity approach and the data in Table 74.1</td>
<td>1150</td>
</tr>
<tr>
<td>74.3</td>
<td>Decomposition results obtained using the energy consumption approach and the data in Table 74.1</td>
<td>1153</td>
</tr>
<tr>
<td>74.4</td>
<td>Decomposition results for specific cases of parametric Divisia index methods obtained using the energy intensity approach and the data in Table 74.1</td>
<td>1155</td>
</tr>
<tr>
<td>74.5</td>
<td>Comparisons of the results given by the conventional and refined Divisia index methods using the data in Table 74.1</td>
<td>1157</td>
</tr>
<tr>
<td>75.1</td>
<td>Decomposition of change in energy demand</td>
<td>1170</td>
</tr>
<tr>
<td>75.2</td>
<td>Percentage change in intermediate sector energy demand in the US, 1972–82</td>
<td>1174</td>
</tr>
</tbody>
</table>