Aadland, David 149
Aalbers, R.F.T. 396
Abbott, A. 172–3, 183
Abrate, G. 440
activism, environmental 17, 298
Adams, R.M. 78
adaptation, and overload 65
Aggarwal, R.M. 396
Akaike Information Criterion (AIC) 198
Akerlof, G.A. 414
Akita, Japan 190, 213
Alandur municipality, India 245
alcohol consumption, incentives to reduce 316
Allers, M.A. 212, 302, 303, 312, 313
alternative specific constant (ASC) 157, 161
altruism 122
Ambattur municipality, Chennai 244
American Public Works Association (APWA) 12
American Society of Civil Engineers (ASCE) 16
Andreoni, J. 69
anthropology, application of 5
Anti-Toxics movement (1970s), US 17, 27
Antonioli, B. 422, 428
Aomori, Japan 190, 213
AOO (Dutch Waste Management Council) 290, 309
APE (average prediction error) 330
archeology, application of 5
Arizona Garbage Project 5
Asahi Shinbun Syuppan (Japanese newspaper company) 195, 205
ASC (alternative specific constant) 157, 161
ASCE (American Society of Civil Engineers) 16
ash 9, 10, 18
asymmetry of information in waste treatment contract 394–415
double moral hazard 395, 396
environmental damage 398
judgment proof problem 414
laissez-faire policy 399–400, 401
Lemma 1 401
Lemma 2 402–03
Lemma 3 403, 411–13
liability on waste disposer only (Policy I) 400–01
liability on both players (Policy II) 401–04
liability on waste generator only 408–09
market equilibrium, existence 411
model 397–9
optimal policy scheme 404–06
other approach, optimal policy 406–07
policy analysis 399–407
Proposition 1 403–04
Proposition 2 405–06
second-order conditions for social planners’ problem 410–11
social optimal solution, existence 409–10
Types I and II 394–415
ATE (average treatment effect) 227
augur sampling 10
Australia, household waste management 100
Autarky equilibrium, derivation 369–72
average partial effects 97–9, 103–04
average prediction error (APE) 330
average treatment effect (ATE) 227
Azar, O.H. 62, 63
Baggs, J. 188, 218
Banga, Margaret 149
Barlaz, Morton A. 30
Barrett, S. 365
Barrow, M. 420
Bartelings, H. 79
Basel Convention on hazardous waste 221, 365
Basu, K. 56–7
Beatty, T. 313
Bel, G. 420–21
Berglund, Christer 130, 216, 220
Bernard, Sophie 224
Bicchieri, C. 54
biodegradable refuse, New York City 28–31
biological origin, material of 18
Birol, Ekin 149, 158, 251
bisphenol-A 22
Blaine, Thomas W. 149
Blundell–Bond regression 328
Bohm, R.A. 417, 420, 421
Boin, R. 122
Boston, characterization of waste in 8 bottles, refillable versus non-refillable 20
see also glass bottles, reusable
Bouman, Mathijs N. 220–21
Bowker, Geoffrey C. 34
Boyer, Tracy 149
Bozen, Italy 268, 272, 276, 279
Brand, James A. 365, 366
Brekke, K.A. 57, 62, 77, 130
broken windows theory 175, 179, 180
Brooklyn waste-to-energy project 21, 26
Brown, E. 121–2
Bruvoll, A. 130
Buccioli, A. 322, 323, 324, 326, 327, 334
Bureau of Indian Standard (BIS) 244
Burguet, R. 337–8
business/commercial waste 4, 31, 34, 313
Cabinet Office Behavioural Insights Team, UK 53
California
computer paper category 31
e-waste program 366
Integrated Waste Management Board 20
recycling in 147, 148
residential refuse composition (1999) 41
used oil refuse composition 366
Callan, S.J. 420
Cambini, C. 422, 428
Cameron, C. 208
Canada 100, 122
Canton, J. 366
Caplan, Arthur J. 149
Cappellari, L. 91, 93, 114, 116
carbon 9–10, 18
Carroll, W. 419
Cassing, James 217–18, 219, 224, 366
categorization of waste see classification of waste
cathode ray tube (CRT) TVs 225–35
Caves, D.W. 421
Champ, Patricia A. 155
categorization of municipal solid waste (MSW)
in Boston 8
in California 20, 31, 41
contemporary MSW characterization methods 4–6
definition of characterization 1, 3
direct and indirect 3, 29
early, and first era of refuse utilization 6–11
garbage versus standard MSW characterization 4, 5
mid-century era of inattention 12–15
in New York City 1–49
barriers to utilization of refuse 6
biennial 3
biodegradable refuse 28–31
Brooklyn waste-to-energy project 21, 26
choice of New York City, reasons for 4
categorization of waste see classification of waste
comparison of 1900 and 1905 MSW characterizations 38
electronic waste (e-waste) 26–7, 44–5
refuse utilization 6–27
Index 445

residential 4
Returnable Container Law 22
sampling and sorting 4–5, 8–9, 10, 16, 20–21
sanitary considerations 6–7
source data 44–5
variations in categories used 6
public works context 5
random sampling 4, 16
refuse utilization in New York City
first era (1875–1930) 9–11
era of inattention (mid-twentieth century) 12–15
second era (later twentieth century) 15–19
at turn of twenty-first century 20–27
residential 39–49
in Seattle 20, 31, 40, 44–5
in Toronto 8–9
in Washington DC 9
see also composition of waste
Chennai (India), curbing of plastic bag usage 238–55
background 242–5
data collection and sample 247–9
equations 246–7
Plastic Waste (Management and Handling) Rules 2011 243–4
policy implications 252–3
results of research 249–52
social and economic characteristics of households 250
theoretical framework 245–7
WTP (willingness to pay) amount 249, 250, 251, 252
Chennai Municipal Corporation (CMC) 244, 247, 248
China 219
Choe, C. 76, 396
choice experiments 149, 150, 152, 165, 187, 212
Cholesky decomposition 116
Chuen-Kee, Pek 149
Cialdini, R.B. 54–5, 59
classification of waste
‘classification revolution’ 9
material classification 6, 8–9, 27
in New York City 7, 8, 9–10, 11, 19
source data 46–9
as ‘useless,’ ‘worthless’, and ‘marketable’ 7–9, 18
and weight 5
clean-up costs, illegal dumping 171
Clerides, Sofronis 223
clustering practices, Italian provinces
aggregation of provinces into homogeneous units 264
beyond ‘north–south Italian divide’ 260, 263–78
cluster adjustments 271
cluster profiles 267
clusters in 2000, 2004 and 2008 269, 275
evolution of cluster/evolutionary analysis 264, 266, 273
‘leaders’ and ‘laggards’ 278
‘pre-classificatory’ methodologies 264
variable means by cluster 274
Cobb Douglas total cost function 419
Coenen, L. 260
Colangelo, G. 245
Collection and Disposal of Municipal Refuse (Hering and Greeley) 9
collection frequency xi, 76, 173, 180, 183
combustion 12, 16, 17, 18, 34
commercial waste 4, 31, 34, 313
compensating variation (CV) 113
composition method, MSW characterization 4, 5
composition of waste
in California 41
in New York City 2, 9–10, 18
composition method, MSW characterization 4, 5
electronic waste (e-waste) 44–5
information and statistics 6, 7, 11, 13–15, 18, 19
residential 4
residential 4, 39–49
from 1989–1990 42–3
household hazardous waste and electronic waste categories and composition 44–5
‘Standard Test method for Determination of Unprocessed Municipal Solid Waste’ (ASTM) 5–6
see also glass category; metal category; paper category; plastics category
composting 9, 16
in The Netherlands 290, 296, 313
Comprehensive Short-Range Wastes Study (NYC DOS) 13
conjoint analysis 380, 381
Conrad, K. 365
conservation effect 59
consumption projects 5
Contarina (Italian company) 322
contingent valuation method (CVM) 241, 247, 252
Cooper, R. 396
Copeland, Brian R. 217, 218, 366
Costa, C.A.V. 379
Cournot–Nash equilibrium 342, 344, 345, 351
Cronbach’s α 90, 113
crowding-in and out 59, 60, 77
CRT (cathode ray tube) TVs 225–35
curbside collection see kerbside collection/recycling
CVM (contingent valuation method) 241, 247, 252
Czech Republic, household waste management 100
D’Amato, Alessio 222
Das, Sukanya 149, 251
Davis, Lucas W. 223
de Groot, H. 289
De Young, R. 69
Deardorff, A.V. 212
Deci, E.L. 69
DEFRA (Department for Environment, Food and Rural Affairs), UK 172, 176, 178
density economies, refuse collection see refuse collection, size and density economies
deposit-refund systems 380, 395
descriptive norms 54–5, 56, 57
Diewert, W.E. 425
digital TV transition policy 217, 218, 225–6
Dijkgraaf, E. 78, 212, 288, 289, 290, 298, 302, 303, 307, 310, 312, 419
diseases, carried by insects 171
Dobbs, I.M. 395
Domberger, S. 419
door-to-door collection (DTD) 108, 112, 316, 317, 318
Treviso District (Italy) 322, 327, 328
D-optimal design criterion 152
double moral hazard 395, 396
downstream duopoly markets 338, 343–9
Driscoll, J.C. 328
drop-off centre (DOF) 108, 112, 150, 317
DTD see door-to-door collection (DTD)
Dubin, J.A. 419
dumping, illegal see illegal dumping
Earth Day 15
eco-dumping 365
ecology movement 15
education, and recycling behaviour 65
Eichner, T. 341
electronic waste (e-waste) and global reuse 223–5
in The Netherlands 313
in New York City 26–7, 44–5
Eliassen, Rolf 9, 10, 11
Elster, J. 53, 55
Emilia-Romagna, Italy 268, 271, 272, 277
enamelware category 9
England, fly-tipping in 172, 176, 179, 180
environmental activism 17, 298
environmental concern household waste management 90, 105
social norms and pro-environmental behaviour 60, 68
Environmental Justice movement (1970s) 17
Environmental Protection Act 1990, UK 178
Environmental Protection Agency (EPA), US 3, 171, 172
environmental regulation index 221
environmental volunteer activities (EVAs), in local waste management 119–46
characteristics of environmental volunteers 120, 124–34
conservation or environmental activities 123
correlation across volunteer activities 133
cross tabulations of volunteering by family members 137
dataset condition 142, 143
descriptive statistics 125
environmental versus other volunteer activities 131
equations 132
extensive and intensive margin analyses 128–30
family-member effect 136–40
group-member effects 140–44
hurdle models 128, 129, 142
income variable 124, 125, 128–9
job participation coefficient 135, 136
literature review 121–2
local improvement activities 123
logistic analyses 125, 127, 128, 129
moral obligation 120, 121, 130–34
multivariate probit model 128, 133
versus other volunteer activities 131
participation in 124, 129
participatory decision analysis 124–5, 127
peer effects 120, 136–44
sequential time allocation model 120, 134–6
socio-demographic characteristics 124
Survey on Time Use and Leisure Activities (Japan) 119, 120, 122–4, 145
warm glow motivation 120, 121, 122, 130–34
EPA (Environmental Protection Agency), US 3, 171, 172
EPR (extended producer responsibility) 337
equilibrium-selection norms 56–7
ethnicity, and recycling behaviour 64
European Environment Agency 256
EVAs see environmental volunteer activities (EVAs)
Evenett, S.J. 212
evolutionary analysis 264, 266
excelsior 8–9
extended producer responsibility (EPR) 224, 337
factor endowment theory 218
family-member effect, environmental volunteer activities 136–40
Felső, F. 289
Ferrara, I. 75, 76, 77, 78, 108
Filippini, M. 422, 428
Florence, Italy 268, 280
Florida, recycling in 147
Flycapture database 176
fly-tipping 172, 176, 179, 180
Fobil, J.N. 241
Focus Theory of Normative Conduct 55
food waste 18, 26, 30, 81, 101, 155
see also garbage
Fornara, F. 64
France 100
Fraser, I. 76, 396
Frazer, Garth 222
free trade, optimal recycling subsidy rate under 356–8
Frey, B.S. 59
Fukushima pilot project on reusable glass bottles 379, 380, 381–3
Fullerton, D. 60, 76, 77, 78, 79, 213, 289, 292, 313, 326, 395
Gabisch, Günter 222
Gallup Survey, US 121
garbage, MSW characterization 3, 7, 9, 18
garbology 4, 5
garden waste 81, 101, 281, 287, 290, 297
General Social Survey
Canada 122
Japan 380
generalized two-stage least-squared method 175–6
generation method, MSW characterization 4–5
Geospatial Information Authority of Japan (GSI) 194
Geweke–Hajivassiliou–Keane (GHK) smooth recursive conditioning simulator 92, 93, 116
Ghana 241

Glass bottles, reusable 379–93
deposit-refund systems 380
factors determining demand for
products contained in mid-size
reusable glass bottles 384–91
non-parametric analyses 385–6
parametric analyses 386–91
statistics 388

Fukushima pilot project on reusable
glass bottles 379, 380, 381–3
Koriyama container reuse campaign
381–2, 391
questionnaires 383–4
sales and returns 382–3
previous research on demand for
products in reusable containers
380–81
questionnaires, pilot projects 380,
381, 383–4
R720s 381, 382, 384, 389, 391
glass category 6, 9, 16, 18, 20
versus plastics 23

global landfills
defined 216
review of studies 217–19
and waste management policy
218–19

global recycling
defined 216
recovery and utilization rates 219–20
review of studies 219–22
sources 219–21
waste haven effect 221–2

global reuse
defined 216
economics 222–3
and e-waste 223–5
review of studies 222–5

GM method 175
Goldstein, N.J. 59
Gomez, R. 122
grab sampling 10, 16, 21
Grace, Richard 219, 220, 221
Gradus, R.H.J.M. 78, 212, 288, 289,
290, 298, 302, 303, 307, 310, 312
ground model 188, 194, 195, 212, 221,
222
Greaker, M. 338, 365
Greeley, Samuel 9, 12, 20

Group allegiance, social norms 55–6

Group-member effects, environmental
volunteer activities 140–44

Grubel, Hubert G. 222

GSI (Geospatial Information
Authority of Japan) 194

Guagnano, G.A. 60

Gunderson, M. 122

Gupta, K. 240, 242

Hadjyiannis, Costas 223

Hage, O. 53, 60, 68
Halvorsen, B. 53, 62, 69, 77
Hamilton, S.F. 338

Harmonized System (HS), UN
Comtrade Database 221, 236

Heckman two-step sample 251

Hensher, David A. 155, 158

Hering, Rudolph 9, 12, 20

Heteroskedasticity-robust standard
errors 227

HHW (household hazardous waste)
26, 27, 44–5

Hierarchy decision analysis 142

Higashida, Keisaku 221, 338

Hirsch, W. 417, 418

Hoeben, C. 302, 303, 312, 313

Hogarh, J.N. 241

Hokkaido island, Japan 195, 214

Hong, S. 78

Honsyu island, Japan 195

Horsehair products 8

Hosoda, B.E. 396

Household Appliances Recycling Law,
Japan 362

Household utility maximization model
60, 62, 63

Household waste
composition 4, 44–5

Household hazardous waste (HHW)
26, 27, 44–5

management see household waste
management

mixed 82, 102, 107, 109

Household waste management 75–118
benefits, receptive to 111
consumption decisions 75

data and variables 86–91, 106, 111

dependent variables 77, 81
Index 449

explanatory variables 87–9
independent variables 101
policy variables 107–09
empirical studies 80–93
empirical papers with more than one household waste management aspect 77, 78–9
environmental concern 90, 105
equations 81, 91–2, 93, 116–18
flat fee costs 75
derelative waste 105, 107
methodology 91–3
multivariate binary probit model 81, 91–6, 109, 116–18
estimation results 94–6, 100–01
in The Netherlands 304
opportunity cost of time spent 101–02, 112, 113
policy variables 107–09
qualitative waste prevention 81, 84, 102, 105, 108, 109
quantitative waste prevention 81, 85, 102, 105, 107–08, 109
recycling 77, 83, 101, 103, 104–05, 119
results of research 93–101
attitudinal factors 103–06
average partial effects 97–9, 103–04
estimation results 94–6
individual and household characteristics 101–03
national differences 100, 110
social motivation 102, 103
socio-demographic characteristics 77, 109
sub-optimality, production and disposal of waste 75
theoretical frameworks 75, 76, 81
trustworthiness of information sources 106, 111
user fee costs/unit-based pricing programmes 75, 76, 77
waste disposal and reduction activities 77, 80
Ichinose, D. 172, 184, 396
illegal dumping 77, 171–85
broken windows theory 172, 175, 180
clean-up costs 171
collection frequency xi, 173, 180, 183
data 178, 179, 180
econometric specification 172, 175–6
empirical results 178, 180
data 176–80
distance-based contiguity 182
estimation results 180–83
queen-type contiguity 180, 181
spatial weight matrix 176, 177, 178, 180
variables 180
equations 173, 174
fly-tipping 172, 176, 179, 180
and interprefectural waste shipments 187, 188
in Japan 213
Lagrange multiplier test 175
links among neighbours 176
model 173–5
Moran’s I test 175
penalties 172, 173
perST coefficient 180, 183
spatial error model 175, 180
spatial lag model 175, 180
theoretical frameworks 184
waste treatment facilities, shortage 172, 174
Imbens, Guido W. 228
import prohibition 209–10
import surcharge 210
import tariffs, and optimal recycling subsidies 355–60
optimal, without recycling subsidy 358–9
incineration 16, 18
India 219
Industrial Research Institute (IRI), Ghana 241
industrial waste shipments 186–215
across jurisdictions, determinants 192–204
equations 195, 198
estimation methods and data 192, 194–7
estimation results 198–204
and illegal dumping 187, 188
interprefectural shipments and local policies of industrial waste, Japan 188–93
marginal effects of shipments 202
Information

Asymmetry of see asymmetry of information in waste treatment contract

Municipal solid waste

Characterization, New York City 5–6, 7, 13–15, 31–3

Injunctive norms 54, 55, 56

Ito, H. 396

Integrated waste management 16

International aspects of waste management 216–37

Global landfilling 217–19

Global recycling 219–22

Global reuse, 222–5

Waste haven effect on recycling 221–2

Inverse Mill's ratio 251

Ishikawa, J. 366

Iso-pollution-emission curve 348

Italy

Convergence failures 258

Data sources 261–3

‘Ecological islands’ 265

Environmental Code 416

Environmental Hygiene Tariff 416

Household waste management 100

Monetary incentives, introducing 316–35

Actual and predicted waste sorting levels 330, 331, 332

Counterfactual scenario 333–4

Framework 319–27

Municipal solid waste in 256–7, 258, 261

‘North–south Italian divide’ 258, 279

Clustering waste performances beyond 260, 263–78

Provinces, clustering practices (from 2000–08) 263–78

Aggregation of provinces into homogeneous units 264

Cluster adjustments 271

Cluster profiles 267

Clusters in 2000, 2004 and 2008 269, 275

Evolution of cluster 266, 273

‘Leaders’ and ‘laggards’ 278

‘Pre-classificatory’ methodologies 264

Variable means by cluster 274

Ronchi's decree 416

Separately collected waste by province 259

Spatial and decentralised policy settings 256–61

Tariff system 262–3, 279, 281, 440

Treviso District, waste management in 319–21

Cui 321, 322

TV3 320, 322

Variables 322–7

Waste crisis 256, 257, 280

Waste generation and disposal trends 260

Iwate, Japan 190

Jamelske, Eric 149, 150, 162

Japan

digital TV transition policy 217, 218, 225–6

Fukushima pilot project on reusable glass bottles 379, 380, 381–3

General Social Survey 380

Geospatial Information Authority (GSI) 194

Household Appliances Recycling Law 362

Illegal dumping in 213

Innerprefectural shipments and local policies of industrial waste 188–93

Koriyama container reuse campaign 381–2

Questionnaires 383–4

Sales and returns 382–3

Law of Decentralization 191

Local Tax Law 191
Index

<table>
<thead>
<tr>
<th>Ministry of Environment</th>
<th>119, 171, 189, 194, 205, 379, 395</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry of Finance</td>
<td>224, 226</td>
</tr>
<tr>
<td>Ministry of Internal Affairs and Communications</td>
<td>140, 192, 194, 205, 213</td>
</tr>
<tr>
<td>National Tax Agency</td>
<td>379</td>
</tr>
<tr>
<td>sake, purchase of</td>
<td>390–91</td>
</tr>
<tr>
<td>Survey on Time Use and Leisure Activities</td>
<td>119, 120, 122–4, 145</td>
</tr>
<tr>
<td>volunteer activities, study of 122</td>
<td></td>
</tr>
<tr>
<td>Waste Disposal and Public Cleansing Law</td>
<td>172</td>
</tr>
<tr>
<td>Waste Management and Public Cleansing Law</td>
<td>188–9, 190</td>
</tr>
<tr>
<td>Jarque Bera tests</td>
<td>175</td>
</tr>
<tr>
<td>Jawaharlal Nehru National Urban Renewal Mission (JNNURM)</td>
<td>253</td>
</tr>
<tr>
<td>Jenkins, S.P.</td>
<td>91, 93, 114, 116</td>
</tr>
<tr>
<td>Jin, Jianjun</td>
<td>149</td>
</tr>
<tr>
<td>Jinji, Naoto</td>
<td>221, 338</td>
</tr>
<tr>
<td>Journal of the Sanitary Division/Journal of the Environmental Engineering Division (ASCE)</td>
<td>16</td>
</tr>
<tr>
<td>judgment proof problem</td>
<td>414</td>
</tr>
<tr>
<td>junk food, incentives to reduce eating</td>
<td>316</td>
</tr>
<tr>
<td>Kahn, Matthew E.</td>
<td>223</td>
</tr>
<tr>
<td>Kahneman, Daniel</td>
<td>164–5</td>
</tr>
<tr>
<td>Karousakis, Katia</td>
<td>149, 158</td>
</tr>
<tr>
<td>Kelejian, H.H.</td>
<td>175, 176</td>
</tr>
<tr>
<td>Kellenberg, Derek</td>
<td>218</td>
</tr>
<tr>
<td>Keller, W.</td>
<td>212</td>
</tr>
<tr>
<td>Kelley, H.H.</td>
<td>54</td>
</tr>
<tr>
<td>Kennedy, P.W.</td>
<td>337, 338</td>
</tr>
<tr>
<td>kerbside collection/recycling household waste management</td>
<td>105, 107</td>
</tr>
<tr>
<td>in The Netherlands</td>
<td>303</td>
</tr>
<tr>
<td>in New York City</td>
<td>7, 16, 20, 21, 22</td>
</tr>
<tr>
<td>single-stream recycling, small towns</td>
<td>150, 157</td>
</tr>
<tr>
<td>and social norms</td>
<td>60, 61, 62, 63–4</td>
</tr>
<tr>
<td>Kikang, J.</td>
<td>240</td>
</tr>
<tr>
<td>Kim, G.-S.</td>
<td>172</td>
</tr>
<tr>
<td>Kinnaman, Thomas C.</td>
<td>60, 76, 77, 78, 79, 149, 213, 216, 224, 289, 292, 313, 326, 395</td>
</tr>
<tr>
<td>Kipperberg, Grom</td>
<td>149, 149–50, 162, 313</td>
</tr>
<tr>
<td>Korea</td>
<td>bag-based unit pricing system 77</td>
</tr>
<tr>
<td>household waste management</td>
<td>77, 100</td>
</tr>
<tr>
<td>unit-based pricing (URB)</td>
<td>172</td>
</tr>
<tr>
<td>Koriyama container reuse campaign</td>
<td>381–2, 391</td>
</tr>
<tr>
<td>questionnaires 383–4</td>
<td>sales and returns 382–3</td>
</tr>
<tr>
<td>Kraay, A.C.</td>
<td>328</td>
</tr>
<tr>
<td>Kuhn, Thomas</td>
<td>217–18, 219, 224, 366</td>
</tr>
<tr>
<td>Kyusyu island, Japan</td>
<td>195</td>
</tr>
<tr>
<td>Lagrange multiplier test</td>
<td>175</td>
</tr>
<tr>
<td>landfilling</td>
<td>of biodegradable materials in MSW</td>
</tr>
<tr>
<td>global 216, 217–19</td>
<td>and household waste management 75</td>
</tr>
<tr>
<td>in New York City</td>
<td>9–10, 11, 16, 18, 28, 30</td>
</tr>
<tr>
<td>plastic shopping bags</td>
<td>239</td>
</tr>
<tr>
<td>Lankford, H.</td>
<td>121–2</td>
</tr>
<tr>
<td>Larson, Douglas</td>
<td>150, 162</td>
</tr>
<tr>
<td>Lavee, D.</td>
<td>314</td>
</tr>
<tr>
<td>Leas, C.A.</td>
<td>6–7, 31</td>
</tr>
<tr>
<td>Lee, David S.</td>
<td>228</td>
</tr>
<tr>
<td>Lemieux, Thomas</td>
<td>228</td>
</tr>
<tr>
<td>Levinson, A.</td>
<td>187, 188</td>
</tr>
<tr>
<td>Ley, E.</td>
<td>187</td>
</tr>
<tr>
<td>Lichtenberg, E.</td>
<td>396</td>
</tr>
<tr>
<td>Lindbeck, A.</td>
<td>59</td>
</tr>
<tr>
<td>Linderhof, V.</td>
<td>79</td>
</tr>
<tr>
<td>liquid crystal devices (LCDs)</td>
<td>226</td>
</tr>
<tr>
<td>local waste management, environmental volunteer activities</td>
<td>see environmental volunteer activities (EVAs)</td>
</tr>
<tr>
<td>Lombardy, Italy</td>
<td>268, 276</td>
</tr>
<tr>
<td>Lounsbury, Michael</td>
<td>17, 18</td>
</tr>
<tr>
<td>Louviere, Jordan</td>
<td>155, 212</td>
</tr>
<tr>
<td>low density polyethylene (LDPE)</td>
<td>243</td>
</tr>
<tr>
<td>Managi, Shunsuke</td>
<td>362, 366, 381</td>
</tr>
<tr>
<td>margin analyses, extensive and intensive</td>
<td>128–30</td>
</tr>
<tr>
<td>‘marketable’ waste</td>
<td>7–9, 18</td>
</tr>
</tbody>
</table>

Thomas C. Kinnaman and Kenji Takeuchi - 9780857936868

Downloaded from Elgar Online at 12/11/2021 01:38:43PM via free access
market-based instruments (MBIs) 240
marketing campaigns, use of norms 58–9
Marques, R. 306, 307, 421
Mata, T.M. 379
material classification 6, 8–9, 27
material recovery facilities (MRFs) 149
Matsumoto, S. 380
Matsunaga, Y. 122
maximum likelihood (ML) method 175
MBIs (market-based instruments) 240
McCarthy, J. 380
McFadden, Daniel 155
Menchik, P.L. 121–2
metal category 6, 9, 16, 18, 20
versus plastics 23
Mexico 100
Milan, Italy 270, 280
Milgram, S. 65
Miller, R. 241
Ministry of Environment (MOE), Japan 119, 171, 189, 194, 205, 379, 395
Ministry of Finance, Japan 224, 226
Ministry of Internal Affairs and Communications (MIAC), Japan 140, 192, 194, 205, 213
Missios, P. 76, 77, 78, 108
modernization 34
monetary incentives, introducing 316–35
actual and predicted waste sorting levels 330, 331, 332
counterfactual scenario 333–4
effect of waste management policies 329–30
framework 319–27
waste management in Treviso District 319–21
and waste sorting 327–34
moral obligation
environmental volunteer activities 120, 121, 130–34
versus warm glow motivation 130–34
Moran’s I test 175
Morgan, J. 121
Morris, G.E. 79
Morrison, P.C.J. 422, 428, 440
MRFs (material recovery facilities) 149
MSW see municipal solid waste (MSW)
multinomial logit models 155–8
multivariate probit model
environmental volunteer activities 128, 133
household waste management 81, 91–6, 109, 116–18
estimation results 94–6, 100–01
Municipal Refuse Disposal (APWA) 12
municipal solid waste (MSW)
alternative programs to dispose of 147–8
biodegradable refuse 28–31
in California 20, 31, 41
characterization
biennial 3
contemporary MSW characterization methods 4–6
definition 1, 3
direct and indirect 3, 29
eyear characterization and first era of refuse utilization 6–11
futures 27–8
history and future 1–49
mid-century era of inattention 12–15
household preferences for disposal services 149–50
and industrial waste shipments 187, 188
information storage and communication 7, 31–3
in Italy 256–7, 258, 261
in New York City 1–49
barriers to utilization of refuse 6–7
biodegradable refuse 28–31
Brooklyn waste-to-energy project 21, 26
choice of New York City, reasons for 4
comparison of 1900 and 1905 MSW characterizations 38
electronic waste (e-waste) 26–7, 44–5
‘Fortunes in Refuse’ article (1901) 7
garbology versus standard MSW characterization 4, 5
era of inattention (mid-twentieth
century) 12–15
second era (later twentieth
century) 15–19
at turn of twenty-first century
20–27

Returnable Container Law 22
sampling and sorting 4–5, 7–9, 10, 16, 20–21
sanitary considerations 6–12
scavenging, assessment of impact 33
variations in categories used 6
see also composition of waste

New York City Department of
Sanitation (NYC DOS) 13, 16, 17, 20

New York Public Interest Research
Group (NYPIRG) 17

Nigbur, D. 55
Nilgiris supermarket chain, India 245
NIMBY (not in my backyard)
syndrome xi
import regulations 213
industrial waste shipments 186, 187, 190, 199, 213
and self-interest 183, 184
trade restrictions, decision-making 206
waste crisis 280
nitrogen, in materials landfilled 10
non-linear SUR estimates (NLSUR) 440
non-refundable deposit system (BBK) 108
norms see social norms

NTE (National Trade Estimate Report
on Foreign Trade Barriers) 365
Numata, Daisuke 381
Nyborg, K. 130
NYC DOS (New York City
Department of Sanitation) 13, 16, 17, 20
NYPIRG (New York Public Interest
Research Group) 17

Oates, W. 257
Ocean Conservancy 119
OECD (Organisation of Economic
Co-operation and Development) 76, 80, 86, 103
Ohlsson, H. 419
oil, illegal dumping 172
Okinawa, Japan 195, 214
ONS shapefile data 178
on-site incineration 16
opportunity cost of time spent
environmental volunteer activities 130
household waste management 101–02, 112, 113
recycling 60–61
ordinary least squares (OLS) estimates 227–8
organics category 6, 10, 34
Organisation of Economic
Co-operation and Development
see OECD (Organisation of
Economic Co-operation and
Development)
Osaka Bay Phoenix Plan 192, 213
Oskamp, S. 64, 68
Ostrom, E. 53, 54, 57
overload (uncertainty of urban life) 65
packaging choices 381
Palfrey, T.R. 69
paper category 6, 8–9, 16, 18, 20, 32
colored versus white 20
computer paper 31
PGT (paper, glass and textile) 302
versus plastics 23, 239
parametric analyses 386–91
participatory decision analysis 124–5, 127
PAYT (per-unit pricing system) 316–18
Treviso District (Italy) 320, 321, 322, 326, 328, 332, 334
Pearce, D. 240
peer effects/peer approval effects
environmental volunteer activities 120, 136–44
household waste management 102
social norms and pro-environmental
behaviour 62, 64, 68
Pellitiere, Danilo 222
Perry, G.D.R. 64
personal computers (PCs), and e-waste 223
Pethig, R. 341
PGT (paper, glass and textile) 302
Pigouvian tax 338
Pincus, Sol 12
Plastax (levy on plastic bags), Ireland 241
plastic shopping bags (PSBs)
appeal of 238–9
costs 239–40
curbing usage (Chennai, India) 238–55
background 242–5
data collection and sample 247–9
equations 246–7
Plastic Waste (Management and Handling) Rules 2011 243–4
policy implications 252–3
results of research 249–52
social and economic characteristics of households 250
theoretical framework 245–7
WTP (willingness to pay) amount 249, 250, 251, 252
landfilling 239
policy instruments 240, 241
single-use 239
Plastic Waste Management Committee (PWMC), Ghana 241
plastics category
in New York City 6, 16, 22–3
composition studies 18–19
containers 26
MSW characterization categories 24–5
versus paper 23, 239
Podolsky, M.J. 79
Pohlmeier, W. 142
Poisson models, zero-inflated 142
polluter pays principle (PPP) 403
pollution haven hypothesis 217
polyethylene (plastic) 243
polymers 23
polypropylene (plastic) 243
polyvinyl chloride (PVC) 20, 26
population averaged (PA) model 206
preference-changing norms 56–7
Prisbrey, J.E. 69
Prucha, I.R. 175, 176
PVC (polyvinyl chloride) 20, 26
quantitative waste prevention 81, 85, 102, 105, 109
pick-up frequency 107–08
questionnaires, environmental volunteer activities 123
rags 8, 9, 18
RAI (Retailers’ Association of India) 251–2
random effects estimation 68, 206, 208
random sampling 4, 16
Rathje, William 5
rationality-limiting norms 56
RCRA (Resource Recovery norms) 1976 13, 26
RD (regression discontinuity) 228, 230
recycling centers 150
co-mingled materials 149
community programs 147–8
dual-stream 150
and environmental quality 61
global 216, 219–22
waste haven effect on 221–2
heterogeneity in recyclability 360, 364, 365
household preferences for services 149–50
household waste management 77, 83, 101, 103, 104–05, 119
kerbside see kerbside collection/recycling
monetary and non-monetary incentives 53, 59
The Netherlands 290
opportunity cost of time spent 60–61
optimal subsidies and import tariffs 355–60
optimal recycling subsidy rate under free trade 356–8
renewed use of term 15–16
service types 108–09, 112, 150
single-stream see single-stream recycling, small towns
social norms see under social norms and pro-environmental behaviour
source-separated 17
in United States 147, 148
see also New York City, characterization of municipal solid waste
vertically related models, optimal policies 337–78
see also door-to-door collection (DTD); PAYT (per-unit pricing system)
recycling subsidies and import tariffs 355–60
optimal import tariff rate without 358–9
optimal joint policy of recycling subsidy and import tariff 359–60
optimal rates 356–8
in United States 366
reduction, reuse and recycling (3Rs) principle 186, 188, 189, 191, 209
Reeves, E. 420
refundable deposit system (RFD), recycling 108
refuse collection, size and density economies 416–41
customer density economies 422
data description 425–7
density economies at different density levels 436
economies at different simulated output and network variable levels 433
economies for all sample municipalities 435
and electricity industry 422
extended model 434, 437
impact of density on average or total costs 418–21
literature review 417–18
measurement of density economies 421–4
model and estimation 424–5
models with single output 429
models with two outputs 430
output density economies 422
parameter estimates 425
results of research 427–35, 439
spatial density economies 422
Translog specification 425, 437
refuse utilization, in New York City first era (1875–1930) 9–11
era of inattention (mid-twentieth century) 12–15
second era (later twentieth century) 15–19
at turn of twenty-first century 20–27
Rege, M. 59
Regional Agency for Environmental Protection and Protection of Veneto 324
regression discontinuity (RD) 228, 230
Reinert, Kenneth A. 222
Requate, T. 338
residential composition of waste in California 41
in New York City 38, 39
from 1989–1990 42–3
household hazardous waste and electronic waste categories and composition 44–5
source data 46–9
in Seattle 20, 40
see also household waste; household waste management
resource recovery 18
Resource Recovery Act (RCRA) 1976 13, 26
restaurant tipping, norm for 62
Retailers’ Association of India (RAI) 251–2
reuse, global 216, 222–5
economics 222–3
and e-waste 223–5
Revelt, D. 158, 160
Rimini, Italy 276
Roberts, M.J. 422, 428, 431
Rokka, J. 380–81
Rome, MSW crisis 256
Rosendahl, K.E. 338
Ross, T.W. 396
rubbish 7, 8–9, 18
rural versus urban environments 65, 103
sampling and sorting of waste
effect of monetary incentives in sorting 327–30
in New York City 4–5, 7–9, 10, 16, 20–21
sanitary engineering 16
Sarkhel, Prasenjit 149
Sasao, Toshiaki 186, 187–8
Savage, George 3
scavenging 9, 33
scientific management principles 9
scrap trading 9, 15, 18, 32–3
Seattle
 computer paper category 31
 household hazardous waste and
electronic waste 44–5
 residential refuse composition (1989)
 20, 40
Segal, L.M. 122
segmented-market assumption 342
self-image, and recycling behaviour 57
Sempere, J. 337–8
Sen, Amartya Kumar 222
separation of waste
 in The Netherlands 303–06
 in New York City 7, 17
Sepúlveda, A. 219
sequential time allocation 120, 134–6
Shikoku island, Japan 195
Shinkuma, Takayoshi 362, 366, 396
Sicily, MSW crisis 256
Sigman, Hilary 172
Simões, P. 306, 307, 421
single-stream recycling, small towns
 147–68
 data 150–55
 definitions 148
 description/summary statistics for
 socioeconomic variables 154
 kerbside 150, 157
 municipal adoption 149
 national recycling rate and per
capital recycling 148
origins and development 148–9
program attributes 151–2, 165
 compensating surplus (CS) 163–4
 implicit prices 162, 163
 willingness to pay for 161–5
regression analysis results 155–61
 experimental design of choice
 alternatives 157
 mixed logit models 158–61
 multinomial logit models 155–8
sample choice set 151
sampling frame 152–3
study area 153
survey design 150–55
town-level socioeconomic statistics
 and survey response rates 153
size and density economies, refuse
collection see refuse collection,
size and density economies
Smith, M.A.M 222
smoking, incentives to reduce 316
social capital 256, 281
social identity theory 55–6
social norms and pro-environmental
behaviour 53–74, 54
compliance, predisposition towards
 54, 55, 57
descriptive norms 54–5, 56, 57
and empirical analysis 57, 63–7, 68
environmental concern 60, 68
environmental economics 53
equilibrium-selection 56–7
group allegiance 55–6
habits and social norms 69
injunctive norms 54, 55, 56
literature review 54–8
locality, importance 64
messages and information
 campaigns, norms in 58–9
 monetary and non-monetary
 incentives 53, 59
peer approval 62, 64, 68
persuasive nature of social norms
 53–4
policy implications 58–60, 68
preference-changing norms 56–7
rationality-limiting norms 56
recycling 59–68
 control variables 65, 66
 data and sources 73–4
 empirical model and results 63–7,
 68
 estimation results 66, 67, 68
 kerbside collection 60, 61, 62,
 63–4
 model 60–63
religion norms 57
self-image 57
sociodemographic characteristics 64
sociology and psychology, norms in
 53
urban versus rural environments 65
warm glow motivation 60, 68
and work 59
Söderholm, Patrik 216, 220
Solid Waste Disposal Act (SWDA) 1965, US 13
Solid Wastes Program (Department of Health, Education and Welfare), US 13
Somanathan, R. 240
sorted waste ratio (SWR) 316, 317, 318, 322, 324, 326, 330, 332, 334
sorting of waste see sampling and sorting
Sorting Things Out: Classification and its consequences (Bowker and Star) 34
spatial and decentralised policy settings, economics of waste in 256–61
spatial dependence, fly-tipping 172, 178, 180
spatial error model, illegal dumping 175, 180
spatial lag model, illegal dumping 175, 180
spatial weight matrix (SWM) 176, 177, 178, 180
Spencer, Barbara J. 365, 366
spillover-related drivers 261
spontaneous combustion 171
Staley, Bryan F. 30
Star, Susan Leigh 34
Stedman, R.C. 65
Sterner, T. 79
Stevens, B.J. 417, 419
Stoodley, B.H. 64
subsidies, recycling see recycling subsidies
Sugeta, H. 366
Sullivan, A.M. 395
Summers, A. 64
Sunstein, C.R. 56, 58
Survey on Time Use and Leisure Activities (Japan) 119, 120, 122–4, 145
SWDA (Solid Waste Disposal Act) 1965, US 13
Sweden, household waste management 100, 110
SWM (spatial weight matrix) 176, 177, 178, 180
SWR (sorted waste ratio) 316, 317, 318, 322, 324, 326, 330, 332, 334
Takahashi, Y. 380, 381
TARES (household waste management tariff), Italy 281, 440
taxation, industrial waste 186–7, 207, 208–09
Types A, B and C 191–2, 194, 195, 200, 204, 211
television, used exports
cathode ray tube (CRT) TVs 225–35
data 226–7
digital TV transition policy in Japan 217, 218, 225–6
estimation strategy 227–8
OLS estimates 227–8
results of research 228–31, 234, 235
waste haven effect 225–31
Terazono, A. 224
terms-of-trade (TOT) effect 356
Terry, D.J. 56
Thibaut, J.W. 54
Thøgersen, J. 55, 62
Thomas, J.M. 420
Thoumi, Francisco E. 222
3Rs principle see reduction, reuse and recycling (3Rs) principle
TIA (household waste management tariff), Italy 262, 279, 281, 440
tinware category 9
Toronto, characterization of waste in 8–9
Torres, M. 422, 428, 440
TOT (terms-of-trade) effect 356
trade restrictions, waste
advantages and disadvantages 190
decision-making 204–10
estimation methods and data 205–07
estimation results 206–10
explanatory variables 205
import prohibition 209–10
import surcharge 210
and industrial waste shipments 190
and industrial waste taxation 186–7, 207, 208–09
prior procedures 209
random effects (RE) model 206, 208
see also industrial waste shipments
Train, Kenneth E. 155, 158, 160
transboundary pollution 217
Translog specification 425
Trentino Alto Adige, Italy 277, 279
Treviso District (Italy), waste management in consortia 319
Priula 321, 322, 327
TV3 320, 322, 327, 334
Contarina (company) 322
variables 322–7
context 325–6
demographic 326–7
policy 324–5
time 327
Trivedi, T.P. 208
Tröst, M.R. 55, 59
Truffer, B. 260
Turin, Italy 268, 280
Turner, K. 240
Tuscany, Italy 268, 277
twine and string category 8
Ulph, Alistair 365
Ulrich, V. 142
UN Comtrade Database, Harmonized System (HS) 221, 236
unit-based pricing (URB)
household waste management 75, 76, 77
Korea 172
The Netherlands 172, 287, 290, 291, 292, 298–9, 302, 303, 305, 311
effectiveness of different systems over time 294–5, 296, 297
United Kingdom (UK)
DEFRA (Department for Environment, Food and Rural Affairs) 172, 176, 178
England, waste management policy 171–85
Environment Agency 171
fly-tipping, England 172, 176, 179, 180
social norms research see social norms and pro-environmental behaviour
UK Time Use Survey 122
United States (US)
American Time Use Survey 122
Anti-Toxics movement (1970s) 17, 27
Department of Health, Education and Welfare (HEW) 13
Environmental Protection Agency (EPA) 3, 171, 172
export regulations 213
New York City see New York City, characterization of municipal solid waste
oil, illegal dumping 172
recycling industry 147, 148
recycling subsidies 366
used cars from 222–3
see also Boston, characterization of waste in; California; Florida; Seattle
urban versus rural environments 65, 103
used goods, export 216–17
‘useless’ waste 7–8
Usui, T. 212
Uusitalo, L. 380–81
Uzzell, D. 65
Van Beukering, Pieter J.H. 220–21
Van Dijk, J. 122
Van Houtven, G.L. 79
variance inflation factor (VIF) 195, 213
Veneto, Italy 268, 276
Venice 276
vertically related models, optimal trade and recycling policies in 337–78
Autarky equilibrium, derivation 369–72
basic model 339–55
Assumption 1 344–6
Assumption 2 346–9
Assumption 3 351–2
Cournot–Nash equilibrium 343, 345
Lemma 1 347–8
Lemma 2 348–9
material balance equation 342, 347
Proposition 1 349–50
Proposition 2 350–51
Proposition 3 352–4
Proposition 4a and 4b 354–5
Proposition 5 355
segmented-market assumption 342
upstream monopoly markets 349–55
Handbook on waste management

downstream duopoly markets 338, 343–9
equations 372–3, 376–8
heterogeneity in recyclability 364, 365
optimal recycling rates 361–4
 Proposition 9 362
 Proposition 10 364
optimal recycling subsidies and import tariffs 355–60
optimal import tariff without recycling subsidy 358–9
optimal joint policy of recycling subsidy and import tariff 359–60
optimal recycling rate under free trade 356–8
optimal recycling rates 361–4
profit-shifting effect 358–9
 Proposition 6 358–9
 Proposition 7 359
 Proposition 8 360
symmetrical model 373–6
proof of propositions 374, 378
upstream monopoly markets 349–55

Viscusi, W.K. 130
Visser, M. 240
Vollebergh, H.R.J. 396
Vuong, Q./Vuong tests 143

Walls, Margaret 366
Walsh, Daniel 4
Walz, U. 365
Waring, George 7
warm glow motivation
 environmental volunteer activities 120, 121, 122, 130–34
 versus moral obligation 130–34
 and social norms 60, 68
Warner, Bridget 240
Washington DC, characterization of waste in 9
Waste Data Flow database 176
Waste Disposal and Public Cleansing Law, Japan 172

Waste Disposal Problem in New York City: Proposal for Action (NYC DOS) 16
waste futures research 32
waste haven effect
 defined 217, 218, 231
 on global recycling 221–2
 on used TV exports 225–31
waste management and disposal (WM&D), Italy 278, 279, 280
Waste Management and Public Cleansing Law (WMPCL), Japan 188–9, 190
waste prevention 77, 80, 100, 113
 qualitative 81, 84, 102, 105, 108, 109
 quantitative 81, 85, 102, 105, 107–08, 109
waste treatment facilities, shortage 172
wastes, classification see classification of waste
waste-to-energy 17–18, 21, 26
WEEE (waste electrical and electronic equipment) Directive 362
 Article 7 337
weight, of waste 5
Weisbrod, B.A. 121–2
Wellisch, D. 365
Williams, I.D. 64
willingness to pay (WTP) 161–5
WM&D (waste management and disposal), Italy 278, 279, 280
WMPCL (Waste Management and Public Cleansing Law), Japan 188–9, 190
Wolfe, B. 64
wood category 18
 ‘worthless’ waste 8

Yamamoto, M. 172, 184
Yokoo, Hide-Fumi 216, 224
Yoshida, A. 224
Young, H.P. 53, 55
Zarin, Daniel 9
Zellner, A. 420, 425