Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'3Ds' of built environment</td>
<td>26, 73</td>
</tr>
<tr>
<td>'4Cs' of transportation capabilities</td>
<td>275</td>
</tr>
<tr>
<td>4th Dutch National Environmental Policy Plan (2001)</td>
<td>619–20</td>
</tr>
<tr>
<td>'5Cs' of transportation capabilities</td>
<td>275</td>
</tr>
<tr>
<td>'5Ds' of built environment</td>
<td>26, 73</td>
</tr>
<tr>
<td>'6Cs' of major projects</td>
<td>380</td>
</tr>
<tr>
<td>'7Ds' of built environment</td>
<td>73, 666–7</td>
</tr>
<tr>
<td>A1 (international expressway)</td>
<td>238–9</td>
</tr>
<tr>
<td>A15 project (Netherlands)</td>
<td>620–25, 627</td>
</tr>
<tr>
<td>Aalborg (Denmark)</td>
<td>486–7</td>
</tr>
<tr>
<td>Aarts, H.</td>
<td>493</td>
</tr>
<tr>
<td>access charging</td>
<td>278–81</td>
</tr>
<tr>
<td>see also road pricing</td>
<td></td>
</tr>
<tr>
<td>accessibility</td>
<td></td>
</tr>
<tr>
<td>and community design</td>
<td>209, 214–17</td>
</tr>
<tr>
<td>defining 230</td>
<td></td>
</tr>
<tr>
<td>disaggregated accessibility measures</td>
<td>459–60</td>
</tr>
<tr>
<td>and Dutch transport policy</td>
<td>460–65, 471–2</td>
</tr>
<tr>
<td>and ICTs 503</td>
<td></td>
</tr>
<tr>
<td>and income 414, 421–3, 426</td>
<td></td>
</tr>
<tr>
<td>and JLE impact study</td>
<td>321–2, 324</td>
</tr>
<tr>
<td>measurement of 421–3, 459–60</td>
<td></td>
</tr>
<tr>
<td>and neighbourhood type</td>
<td>179, 181–2, 184</td>
</tr>
<tr>
<td>and new household location</td>
<td>76, 79, 81–2, 83–4</td>
</tr>
<tr>
<td>and non-motorized transport</td>
<td>460, 466–7</td>
</tr>
<tr>
<td>social dimensions 432–5, 437–8, 460, 464</td>
<td></td>
</tr>
<tr>
<td>and transport performance indicators</td>
<td>460–65, 471</td>
</tr>
<tr>
<td>see also car ownership/availability</td>
<td></td>
</tr>
<tr>
<td>active transportation 210, 213, 216–18, 220–21, 224</td>
<td></td>
</tr>
<tr>
<td>active travel 32, 198–206, 531, 534, 581, 584</td>
<td></td>
</tr>
<tr>
<td>activity nodes (land use–transport parameter)</td>
<td>141</td>
</tr>
<tr>
<td>activity-based analysis</td>
<td>556–7, 558, 568–9</td>
</tr>
<tr>
<td>'aerotropolis' concept</td>
<td>371–2, 376</td>
</tr>
<tr>
<td>age effect (cohort analysis)</td>
<td>540</td>
</tr>
<tr>
<td>ageing populations</td>
<td></td>
</tr>
<tr>
<td>and car ownership/accessibility</td>
<td>539–40, 544–51, 553–4</td>
</tr>
<tr>
<td>cessation age for car–driving</td>
<td>539–42</td>
</tr>
<tr>
<td>characteristics of car owners</td>
<td>544–5</td>
</tr>
<tr>
<td>life changes post–car</td>
<td>551–3</td>
</tr>
<tr>
<td>agglomeration economies</td>
<td></td>
</tr>
<tr>
<td>and business location</td>
<td>334, 340, 344</td>
</tr>
<tr>
<td>and economic impact estimation</td>
<td>250, 252</td>
</tr>
<tr>
<td>and wider economic impacts of transport projects</td>
<td>263, 269, 677</td>
</tr>
<tr>
<td>aggregate analysis methods</td>
<td>84, 243, 251–3, 254</td>
</tr>
<tr>
<td>Alonso, W.</td>
<td>234</td>
</tr>
<tr>
<td>Amsterdam (Netherlands)</td>
<td>231</td>
</tr>
<tr>
<td>Anas, A.</td>
<td>91, 97</td>
</tr>
<tr>
<td>Annema, J. A.</td>
<td>396</td>
</tr>
<tr>
<td>Antwerp (Netherlands)</td>
<td>231</td>
</tr>
<tr>
<td>Appleyard, D.</td>
<td>442</td>
</tr>
<tr>
<td>'appraisal optimism'</td>
<td>384</td>
</tr>
<tr>
<td>Aschauer, D.</td>
<td>251, 265</td>
</tr>
<tr>
<td>attitude-related self-selection</td>
<td>150–52, 168–77</td>
</tr>
<tr>
<td>attrition</td>
<td>438</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>and active travel modes</td>
<td>198</td>
</tr>
<tr>
<td>Brisbane oil vulnerability case study</td>
<td>572, 574–83</td>
</tr>
<tr>
<td>Sydney 'familial automobility' study</td>
<td>529–31</td>
</tr>
<tr>
<td>'automobility' 434, 438, 483, 526, 528, 529–36</td>
<td></td>
</tr>
<tr>
<td>'automotive emotions'</td>
<td>483</td>
</tr>
<tr>
<td>B2C (business to consumer) e-commerce</td>
<td>516, 518, 520</td>
</tr>
<tr>
<td>'backcasting' 661</td>
<td></td>
</tr>
<tr>
<td>Banister, D.</td>
<td>238, 295, 481, 587, 594</td>
</tr>
<tr>
<td>Barroso, J. M.</td>
<td>654, 656</td>
</tr>
<tr>
<td>BART (Bay Area Rapid Transit)</td>
<td>508</td>
</tr>
<tr>
<td>'baseline conditions' (JLE impact study)</td>
<td>321, 330</td>
</tr>
<tr>
<td>Batty, M.</td>
<td>459</td>
</tr>
<tr>
<td>Beijing (China)</td>
<td>684</td>
</tr>
<tr>
<td>benefit-cost analysis</td>
<td></td>
</tr>
<tr>
<td>see cost-benefit analysis</td>
<td></td>
</tr>
<tr>
<td>betweenness centrality (SNAMUTS indicator)</td>
<td>141</td>
</tr>
<tr>
<td>Beveridge, W.</td>
<td>432</td>
</tr>
<tr>
<td>BHLS (buses with high level of service)</td>
<td></td>
</tr>
<tr>
<td>advanced technology utilization</td>
<td>358–9</td>
</tr>
<tr>
<td>Asian systems 355–6, 358</td>
<td></td>
</tr>
<tr>
<td>Australian and New Zealand systems 356–7</td>
<td></td>
</tr>
<tr>
<td>components of 348–9</td>
<td></td>
</tr>
<tr>
<td>defining 346</td>
<td></td>
</tr>
<tr>
<td>European systems 354–5</td>
<td></td>
</tr>
<tr>
<td>global status of 351–7</td>
<td></td>
</tr>
<tr>
<td>Latin American systems 352–4, 358</td>
<td></td>
</tr>
<tr>
<td>'bicycle-friendly' communities</td>
<td>204</td>
</tr>
<tr>
<td>Bikeability project (Denmark)</td>
<td>484–5</td>
</tr>
<tr>
<td>Birol, F.</td>
<td>572</td>
</tr>
</tbody>
</table>
‘black box’ character of models 254–5
Blackpool (UK) 311, 314
Bogota (Columbia) 296, 297, 346–7, 349, 353, 360
BRT (bus rapid transit) systems
African systems 357
Asian systems 355–6, 358
Australian and New Zealand systems 356–7
components of 348–9
defining 346
European systems 354–5
global status of 351–7
and land development 360
Latin American systems 352–4, 358
and spatial implications of public transport investment 290, 291–2, 294, 296–7
US/Canadian systems 351–2, 353
Bruinsma, F. 238–9
Buchanan Report (1963) 465, 487–8
California (USA) 210–12
see also Northern California
Canary Wharf (London) 238, 323, 330, 331
Cao, X. 32, 149, 152–3, 170, 173
‘car addicts’ 494, 665
carbon dioxide/greenhouse gas emissions
and climate change policy 599, 603, 604–6, 607–8, 609, 610–11
and energy consumption 37, 41–6, 49–52, 55, 57–8
and European transport policy 648–9
modal energy use comparisons 36, 37, 41–4
and non-motorized transport use 49–50
and population density 46, 48–50, 57
and public transport 44–7, 55–7, 58
reduction strategies 36, 37, 51–8
see also climate change
carbon rationing 607–9, 611
car dependency
and new household location 77–8, 80, 82–3, 84
and oil price volatility 571, 572, 573, 574, 575, 578, 579, 581, 582, 584
car ownership/availability
and ageing populations 539–40, 544–51, 553–4
and income 414, 415, 416–17, 418–19, 424, 427–8
and neighbourhood design 444, 453–4
‘car-fixation’ 491–9
‘car-free’ development 441
car-pooling 530, 534
carsharing schemes 534–5, 536, 604, 686
Cato Institute 368
CeMoRe (Centre for Mobilities Research) 482
central place theory 513
Cervero, R. 26, 27, 90, 91, 295, 360, 666–7
Chen, C.-L. 305, 306
Christaller, W. 513
‘city of short distances’ concept 447, 450–51
Clark, C. 229, 232–3, 290, 301, 679
closest distance
and C&C policies 607–10, 611
and carbon rationing 607–9, 611
and economic growth 602–3, 604
and energy consumption 600–601, 603, 605–6, 608–9
and greenhouse gas emissions 599, 603, 604–6, 607–8, 609, 610–11
prospects for future generations 600, 605–6
see also carbon dioxide emissions
C-MUS (Centre for Mobilities and Urban Studies) 482, 485
Cohen-Blankshtain, G. 291–2, 504
c-location 74, 78–80, 83, 84–5, 91–2, 93, 102, 252, 681
community design
and accessibility 209, 214–17
and active travel 198–206
measuring 203–5
and population density 201, 202, 203
and street networks 210, 220, 224
see also neighbourhood design
commuting
house move choices influencing travel distance 67–8
and leisure travel 587, 590, 593–4
longer-distance commuting choices 66–9, 70, 78
and neighbourhood design characteristics 181, 193–4
and new household location 74, 76–8, 79–83
and wider economic impacts of transport projects 260, 262, 263, 267
compact cities 73, 137, 438, 588–91, 594, 681
congestion
and spatial structure 90–91, 93, 96–7, 101
as transportation capability 275
and urban freight distribution 273, 274, 278, 279
congestion charge (London) 54, 397, 398, 399, 407
‘control’ areas (JLE impact study) 320–21, 329
cost forecast inaccuracies 380, 381–4, 389–90
cost overruns 380–85, 387, 389, 391
cost-benefit analysis (CBA)
and carbon dioxide emissions 52
and Dutch road pricing study 394, 397–9, 402, 405, 407–8, 409–11
Index 691

and economic impact estimation 243–4, 249, 253
and Jubilee Line Extension 318–19
and major projects 380, 390
and wider economic impacts of transport projects 259–60, 261, 266, 270
‘counter-urbanisation’ 60, 63, 69
Crossrail scheme (London) 269–70

cultural perspectives (on family/parenting)
528–33
cultures of mobilities
and ‘mobilities turn’ 479, 481–4, 485, 487, 488
‘staging mobilities’ 486–7
and transportation research 479, 480–81, 487–9
Curitiba BRT system (Brazil) 294, 296–7, 346–7, 351–4
Curtis, C. 140, 421
cycling see non-motorized transport
‘death of distance’ 503
densification 114, 133, 660, 670
‘desirable cities’ 683
‘discernment factors’ 74
distance decay function 230
dormitory’ cities 337
Dowling, R. 532
Dutch National Transport Model System (LMS) 400, 405, 410, 460–62
Echenique, M. H. 115
econometric estimation models 252–3, 265, 296
economic growth
and accessibility 463, 465
and climate change 602–3, 604
and economic impact estimation 243, 251, 253
and European transport policy 652–3, 655, 656
and social policy 430–31, 434
and wider economic impacts of transport projects 260–61, 264–5, 268

economic growth theory 87
economic impact estimation
and ‘accessibility’ 247–9, 254
and agglomeration economies 250, 252
and aggregate analysis methods 251–3, 254
and benefit-cost analyses 243–4, 249, 253
cliometric methods 253, 254
and induced demand 245–6
see also wider economic impacts of transport projects

economies of scale 232, 236, 264, 268, 284, 514, 606, 683
desirable cities 98, 233, 371
emissions see carbon dioxide/greenhouse gas emissions
energy consumption
and carbon dioxide emissions 37, 41–6, 49–52, 55, 57–8
and climate change 600–601, 603, 605–6, 608–9
and leisure travel 587, 588–9, 591, 592–3, 594, 595–6
and new household location 73, 76, 77–85
and population density 665
and renewable energy 43, 365, 368, 375, 382, 601, 603, 608, 610, 683
Escobar, A. 431
European transport policy
and economic growth 652–3, 655, 656
and European transport policy 645–7, 655
and sustainable mobility 647–50, 652, 653–4, 656
and Trans-European Transport Network initiative 250, 269, 650–52, 655, 656
Ewing, R. 22, 23, 25, 26, 27, 296, 666–7
Feitelson, E. 291–2
Flyvbjerg, B. 381–2, 383, 384, 389
‘forced car ownership’ 415, 424
Freiburg (Germany) 441, 444, 445, 446, 448–52, 453–6
fuel poverty 423, 424, 435

Garden City Movement (UK) 442–3
Gärting, T. 498
Geels, F. 502–3, 616, 617

gender
and ageing populations’ car ownership/ accessibility 539, 540–45, 552–3, 554
and familial relationships 527–8, 529–31, 536
and travel-mode socialization 496–7, 499
Geurs, K. 230, 410, 459
GFC (global financial crisis) 571
GLA (Greater London reference area) 324–5, 327–8
Goetz, A. R. 480, 482
Good Roads Movement (USA) 209
Good, P. 25, 74, 79, 83, 90, 93
Gössling, S. 594
Graham, D. J. 252
Great Britain National Travel Survey 415–16
Greater London (UK) 104–16

see also London
‘Green Belt’ areas 61–2
Green Party (Germany) 631
Grieco, M. 481
GTC (generalized transport costs) 177
GWB (‘general well-being’) 431
Halden, D. 460, 472
Hall, P. 305, 306, 315
Hamer, R. 507
Hampstead Garden Suburb (London) 442–3
Handy, S. 149
‘Happiness Index’ 431–2
HATS (Household Activity-Travel Simulator) 671
hedonic price functions 247–8
Hensher, D. A. 274, 286
Hickman, R. 79
high mobility cities 680–81
Highway Capacity Manual (US) 460
Hjorthol, R. J. 519, 546
Holden, E. 589–90, 591, 592
‘home zones’ 444, 445, 448, 449
HS2 (proposed HST network) 315, 604–5
HSL-South project (Netherlands) 386–8, 389, 391
HSTs (high-speed trains)
and agglomeration economies 301, 304, 313
and climate change 604–5
and political leadership and governance 312–13
hub airports
and accessibility 373–4
and ‘aerotropolis’ concept 371–2, 376
and sustainable development 365, 376
‘hypermobility’ 434
IATA (International Air Transport Association) 363
ICTs (information and communications technologies)
and accessibility 503
and BRT systems 346, 348, 358–9
and carsharing schemes 535
and e-retailing 512–21
relationship with travel 502–9
and substitution effects 502, 503–7, 508–9
and telecommuting 503, 504–5, 507
and travel time 507
IEA (International Energy Agency) 358, 572
Illich, I. 434
IMD (Index of Multiple Deprivation) 420, 421–3, 431, 432
‘inadequate mobility’ 433, 437–8
income
and accessibility 414, 421–3, 426
and car ownership 414, 415, 416–17, 418–19, 424, 427–8
characteristics of low income people 415–16
and new household location 82–3, 84
and oil vulnerability 573, 575, 578–9, 583, 584
and ‘transport poverty’ 414–16, 421, 423–5, 426–8
indirect effects 292, 369, 399, 400, 401–2, 405
induced demand 245–6
industrial location theory 334, 367
‘innovators’ 75, 77–8, 84
Internet
and ‘change’ 678–9
and e-retailing 512, 514–17, 519–21
and network society 514–16
IPCC (Intergovernmental Panel on Climate Change) 36, 599
Isle of Dogs (London) 321–2, 323, 330
Jensen, O. B. 483, 484, 486–7, 488
Jevons Effect 52
JIT (just-in-time) strategies 232, 285–6
JLE (Jubilee Line Extension, London)
accessibility impacts 321–2, 324
benefit-cost analysis 318–19
employment/economic development impacts 324–5
‘incumbent’ and ‘migrant’ population impacts 326–9
and micro-level spatial impacts 295
Jones, P. 318
Kasarda, J. D. 371, 376
Kassel RegioTram system (Germany)
balancing ‘local’ and ‘central’ interests 633–41
and North Hesse region 633–5, 637, 638, 643
success of 641–2
Kemp, R. 616
Kemperman, A. D. A. M. 569
Kenworthy, J. 37, 39, 42, 167, 588
Kenyon, S. 507
Kitamura, R. 591
Klöckner, C. 495, 496, 498
‘knowledge economies’ 301, 306–7, 313, 315, 619, 678
‘knowledge workers’ 232, 370
Kockelman, K. 26, 153
Krugman, P. 236, 367, 685
Kwan, M. P. 667
Kyoto Protocol 648, 681

Labour government (UK) 466
labour market (as driver of productivity) 263
land markets 88, 93, 100–101, 102, 247, 292,
334
Landis, J. 91
LATS (London Area Travel Survey, 2001) 104,
106–8, 111, 113
Laube, F. 37
Lefebvre, J. 444
leisure travel
and carbon dioxide emissions 587, 588,
594–5
and compact cities 588–91, 594
and energy consumption 587, 588–9, 591,
592–3, 594, 595–6
growth of 587
and planning policy 588–94, 595
Levinson, D. 239, 680
Linnerud, K. 589–90, 591
location theory 334, 367, 459, 680
London (UK)
congestion charge 54, 397, 398, 399, 407
Crossrail scheme 269–70
HST systems 305, 307, 312–13, 315
and Jubilee Line Extension see JLE
see also Greater London
London Olympics (2012) 323, 472
longer-distance commuting choices 66–9,
70–71, 78
longitudinal designs (methodological
approach) 152, 153, 172, 173
Los Angeles (USA) 21, 22, 181, 232, 360
low mobility cities 680
LRT (light rail transit) systems 290–92, 293,
295–6, 297
Lucas, K. 420, 467, 468
Lyons, G. 483, 507

Maastricht Treaty (1992) 645, 647, 648, 650,
652
Mackie, P. 245, 397
macroeconomic simulation modelling methods
249–50
macro-level spatial impacts 292–4, 297
Madrid Metro Line 12 see Metrosur
Madrid Metropolitan Area (Spain) 335–7,
338
major projects
and accountability 388–91
characteristics of 380
and cost-benefit analysis 380, 390
and cost forecast inaccuracies 380, 381–4,
389–90
and cost overruns 380–85, 387, 389, 391
and decision-making 380, 381–3, 391
Manchester (UK) 296, 302, 307, 308, 312–14
Manchester International Airport (UK)
312–13
Marshall, S. 212–13
'matched pair' analysis 73, 75
Matthies, E. 495, 496, 498
mCenter (Center for Mobilities Research &
Policy) 482
median running ways (BRT systems) 348–9
'megacities' 351, 358, 678, 679, 686
'mega-projects' 244
Mejia-Dorantes, L. 339
Metrobüs (Istanbul) 355
Metrobus (Mexico City) 349
Metrolink (Manchester, UK) 296
Metrosur (Madrid Metro Line)
and business location 335, 337, 339–44
Metz, D. 590
Meyer, A. 607
Millard-Ball, A. 534
Millennium Cities Database for Sustainable
Transport 37–41, 44–50, 56
MLP (multi-level perspective/framework) 616,
617, 627
Mobilities (journal) 482
'mobilities design' 485, 488
'mobilities turn' 479, 481–4, 485, 487, 488
mobility difficulty 415–16, 417
mobility effects 516–20
modification effects 502, 506–7, 508, 512, 513,
516, 521
Mokhtarian, P. 149, 170, 173, 590, 594
mothering 529–31, 535
multinomial logit model approach 339–40,
342–3, 344
multitasking 507, 509
multivariate statistical analyses 121–2
MVV (Munich public transport management
organization) 294
Næss, P. 484, 589, 590–91
NATA ('new approach to appraisal') 466–7
National Travel Survey (UK) 60–61
'need' for transport 422
'neighbourhood classification' 181–2
neighbourhood design
and car-oriented planning 441, 455
and car ownership 453–4
characteristics of 179–80, 181, 183–90,
193–5

Robin Hickman, Moshe Givoni, David Bonilla and David Banister - 9780857937261
Downloaded from Elgar Online at 05/01/2019 09:01:51AM
via free access
Handbook on transport and development

Garden City Movement (UK) 442–3
policy outcomes 452–5
and public transport 444, 445, 446, 447, 448, 449, 454, 456
and self-selection 441
traffic restraint policies 443–4, 445, 447–9, 456
see also community design
neighbourhood type
and design characteristics 179–80, 181, 183–90, 193–5
and non-motorized transport 149, 159
and residential location decisions 179, 180–82, 184, 190, 192–5
and self-selection 149–52, 154–63
network connectivity 141, 201
New Economic Geography 250, 367, 685
new household location
and accessibility 76, 79, 81–2, 83–4
and car dependency 77–8, 80, 82–3, 84
and commuting 74, 76–8, 79–83
‘inmovers’ 75, 77–8, 84
‘outmovers’ 75, 77–8, 84
and population density 79–80, 84
and public transport accessibility 81–2, 84
and self-selection 83
‘stayers’ 75, 77–83, 84
and sustainable development 73, 79, 85
see also residential location
‘New Urbanism’
and accessibility 111–12, 114–15
and commuting 106–11, 112, 113, 114–16
and public transport 104, 111–12, 113, 114–15
and sprawl 137, 138
Newman, P. 52, 167, 588
NGOs (non-governmental organizations) 591
NHOS (New Household Occupier Survey) 74–5, 76–83
NHTS (Nationwide Household Travel Survey) 98–101
non-motorized transport
and accessibility 460, 466–7
and active travel 32, 198–206, 531, 534, 581, 584
and neighbourhood design characteristics 179, 180, 193–4
and neighbourhood type 149, 159
and residential location case studies 120–21, 128, 129–30, 132
and street networks 217
Nordbakke, S. 546
NVV (North Hesse Transport Association) 631, 634, 637–8, 639–40, 643
obesity 220–21, 224
OECD (Organisation for Economic Co-operation and Development) 137
oil prices
Brisbane oil vulnerability case study 572, 574–83
and car-dependency 571, 572, 573, 574, 575, 578, 579, 581, 582, 584
and public transport services 574–5, 578, 579, 581, 582, 584
VAMPIRE Index 576, 578–9, 580, 581, 582–3
VIPER Index 576–8, 581, 582–3
‘oil shock’ (1970s) 136
OLS (ordinary least square) regression model 96, 97–8
Olympic Delivery Authority (UK) 472
optimism bias 384
‘outmovers’ 75, 77–8, 84
parenting 526, 528–34, 535, 536
Paris (France) 303–4, 306
PCA (Personal Carbon Allowance) 608, 611
‘peak’ in global oil production 572
pedestrianization 296, 298, 443, 454, 682
per passenger kilometre (energy use measure) 37, 41–4, 55, 368, 610
per vehicle kilometre (energy use measure) 41, 42, 284
Perry, C. 443, 444
planned behaviour theory 491–2
planning policy
and accessibility 60, 67–8, 70, 459, 460–72
and car dependency 59, 66
and climate change 601–10
and oil vulnerability 579, 581–4
and public transport–oriented development 136, 137–40, 142–3, 144–5
and wider economic impacts of transport projects 259, 260, 268–70
see also European transport policy; road pricing
point pattern analysis 339
population decentralization 96, 97–8
population density
and BRT systems 296–7
and carbon dioxide emissions 46, 48–50, 57
and community design 201, 202, 203
and commuting 79–80, 84
and low mobility cities 680
and neighbourhood type 185–6, 188
and new household location 79–80, 84
and spatial structure 96, 97
and sprawl measurement 21, 28–9
population growth
and hub airports 371, 375
Index 695

and Jubilee Line Extension impacts 323–4
and oil vulnerability 574
and planning policy 59
and PTOD 137
and spatial structure 91, 96, 101
and sprawl 31
and street networks 213–14
and sustainable development 59, 61
Port Sunlight (UK) 443
Portland (USA) 21, 22, 23, 182, 293
‘potential accessibility’ 143, 465, 466, 472
PPPs (public–private partnerships) 277, 386, 388
‘prehension’ 664, 665–6, 667–70
Preston, J. 245
principal component analysis 22, 96–7, 184, 186
principal–agent relationship 384
private ownership 384–6, 388–91
privatization 303, 309, 311, 363, 368, 381, 388
ProRail (Dutch infrastructure management company) 386
Prud’hon, R. 397
PSC (public sector comparator) 387–8
PSM (propensity score matching) 152, 153, 156, 158–63, 172, 173
PTA (Public Transport Authority) 143–4
PTOD (public transport-oriented development)
 accessibility tools 139–44, 145
 and land use–transport integration 138–9, 140–45
 and planning policy 136, 137–40, 142–3, 144–5
 and polycentric development 136, 137–8, 144
 and public transport efficiency 136–7
 and sprawl 137, 138
 and transport corridors 136–7, 139, 142
 and urban structure 136–7
see also TOD
public ownership of transport systems 384–6, 388–91
public transport
 and accessibility 76, 79, 81–4, 111–12, 115, 122, 132, 136, 137–45, 460, 462, 465, 467, 469–71
 and carbon dioxide emissions 44–7, 55–7, 58
 and ‘familial automobility’ 528, 529–30
 and impact of oil price volatility 574–5, 578, 579, 581, 582, 584
 and leisure travel 587, 589, 591, 592, 594, 595–6
 and low mobility cities 680
 and neighbourhood design 444, 445, 446, 447, 448, 449, 454, 456
 and new household location 81–2, 84
 ‘New Urbanism’ case study 104, 111–12, 113, 114–15
 public transport-orientated development
 see PTOD
 and self-selection 174
 and sustainable development 686
 and transport corridors 60, 70, 136–7, 139, 142
 and ‘transport poverty’ 414, 419, 422–3, 424, 425, 427
Radburn (New Jersey) 443
rectilinear street network patterns 208–9
‘Red Flag’ Act 441
‘reference’ areas (JLE impact study) 321, 329
regression analysis 24, 91, 96–9, 131–2, 160, 163, 167, 190, 193, 420, 463–4, 496, 589–90, 666
REMI (Regional Economic Models, Inc.) 250
renewable energy 43, 365, 368, 375, 582, 601, 603, 608, 610, 683
resident typology 75, 76–7
residential preferences 154, 157–60, 162
Richardson, H. 25, 74, 79, 83, 90
Rieselfeld (Germany) 445, 446, 448–50, 451–2, 453, 454–5, 456
Rietveld, P. 238–9, 371
Rip, A. 616
road pricing (Netherlands study)
 and carbon dioxide emissions 402, 408–9
 cost-benefit analysis 394, 397–9, 402, 405, 407–8, 409–11
 cost-effectiveness of schemes 394, 398, 399, 400, 405–11
 road safety 157–60, 175–6, 210, 213, 217, 220, 224
Roadmap to a Single European Transport Area (White Paper) 649
Rostow, W. 260, 430
Rotem-Mindali, O. 520
Rotterdam (Netherlands) 620–25, 627
RPAA (Regional Planning Association of America) 443
SACTRA (Standing Advisory Committee on Trunk Road Assessment) 268, 270
‘Safe Routes to School’ programmes 534
Salomon, I. 506, 593
San Diego (USA) 295
San Francisco (USA) 198, 442, 508, 591
SCGE (spatial computable general equilibrium) models 250, 251
Thrift, N. 483
Timmermans, H. J. P. 569
Titheridge, H. 589
TM-cycle (transition management cyclical process model) 618–19
‘to be’ (well-being dimension) 549
‘to have’ (well-being dimension) 549
‘to love’ (well-being dimension) 549
TOD (transit oriented development)
 and BRT systems 360
 and carbon dioxide emissions 56
 and spatial implications of public transport investment 293
 and spatial structure 90
 and sustainable development 683
see also PTOD
‘Too Little Mobility’ (social policy discourse) 433–4, 438
‘Too Much Mobility’ (social policy discourse) 434–5, 438
transition management
 and accessibility 614, 615, 620, 622–4, 626
 and sustainable development 614–16, 617–20, 622–7
 and transition theory 616–17
transport appraisal 465, 466–7, 472, 483
transport corridors 60, 70, 136–7, 139, 142
transport costs
 and accessibility 230, 235, 239, 461, 462, 464, 465
 and agglomeration economies 233, 234–7, 250
definition of 229
 and self-selection 166
 and spatial development 230
 and spatial structure 88, 90
transport geography 434, 480–81
transport performance indicators 460–65, 471
‘transport poverty’ 414–16, 421, 423–5, 426–8
‘transport rationales’ 484
Transport Studies Unit (University of Oxford) 4
‘transport wealth’ 425–6
Transport White Papers (EU) 653–4
transportation capabilities 275
Transportation Research Board (USA) 115
‘transport-proofed’ social policies 438
Transumo (Transition to Sustainable Mobility) programmes 620–25, 627
travel distance
 and accessibility 421–2, 462–3
 and ageing populations 559–62, 569
 and house move choices 67–8
 and income 417–18, 420
 and increased transport speeds 229
 and new household location 73, 78, 80–82, 84
 and residential design 444, 450
 and residential location 127, 128, 131
 socio-economic factors influencing 66–7
 and telecommuting 505
‘travel kurtosis effect’ 76, 84
travel time
 and accessibility 461–4, 465, 466, 469–70, 471–2
 and BRT systems 350, 358, 360
 and community design 200
 and commuting 90, 92–9, 100, 101
 and ‘cultures of mobilities’ 481, 483
 and gender 496
 and hub airports 366
 and ICTs 507
 and parenting 529, 531
 and PTOD 137, 141
 and self-selection effects 166, 168, 175
 and spatial structure 90, 92–101
 and sprawl 24–5, 27
 and wider economic impacts of transport projects 262–3
travel-mode habits 491–9
TravelSmart initiatives (Australia) 534
Tripp, A. 443
‘traps per year’ measures 417–18
Tübingen (Germany) 441, 444–8, 450, 451–2, 453–4, 456
‘two-way road’ argument 264
UITP (International Union of Public Transport) 37
UK (United Kingdom)
 accessibility in transport policy 465–71, 472
 Garden City Movement 442–3
 Unwin, R. 442, 443, 444
‘urban concentration’ policy 61, 65–6
urban containment 60, 104, 133, 681
urban freight distribution
 and access charging 278–81
 business environment trends 281–6
 and congestion 273, 274, 278, 279
 consolidation in distribution 282–5, 287
 and environmental concerns 273, 278
 and productivity 273
 and road infrastructure 273
‘Urban Renaissance’ 104, 116
Urry, J. 481–2, 484
USA (United States of America)
 and active travel modes 198, 202, 203
carbon dioxide emissions data 39, 44, 46, 57
and carsharing schemes 534
and city-size rankings 88–9
and e-retailing 514–15
and high mobility cities 680
and modal energy use comparisons 43–4
and obesity epidemic 220–21
and public transport-oriented development 137–8
and residential location decisions 180, 181–2
and spatial implications of public transport investment 290–91, 293, 295–6
and spatial structure studies 90–101
and sprawl measurement 21–2
and sprawl pattern definitions 20–21
and traffic restraint policies 443
VAMPIRE (Vulnerability Assessment for Mortgage Petroleum and Inflation Risk and Expenses) 576, 578–9, 580, 581, 582–3
van Wee, B. 168, 174, 176, 177, 230, 410, 459
Vauban (Germany) 445, 446, 448, 449, 450, 451–2, 453, 454–5, 456
Vickerman, R. 265
VIPER (Vulnerability Index for Petroleum Expenses and Risks) 576–8, 581, 582–3
VMT/VMD (vehicle miles travelled/driven) 59–60
ICT impacts on 504
and induced demand 245
and neighbourhood type 154, 159–60
and new household location 83
and population growth 213–14
and spatial structure 90, 92
and sprawl 23–5, 27–30, 31
and street networks 213–16
VOT (value of time) 397, 399, 407
VT (Versement Transport) tax 312
VVD-CDA coalition government (Netherlands) 411
walkability index 204
‘walkable’ neighbourhoods 149, 179, 180, 204
walking see non-motorized transport
‘wasteful commuting’ 234
WBCSD (World Business Council for Sustainable Development) 51, 52
WCED (World Commission for Environment and Development) 615
Webber, M. 138, 444
Wegener, M. 296
welfare economics (in transport network evolution) 239–40, 240–41
well-being 25–6, 431, 545–51, 552, 553–4
Wheaton index 97
Whitehead, A. N. 661–72
WHO (World Health Organization) 198, 203
wider economic impacts of transport projects and accessibility 260, 269, 273
and agglomeration economies 263, 269
and cost-benefit analysis 259–60, 261, 266, 270
direct impact 262, 270
and economic growth 260–61, 264–5, 268
empirical evidence 265–8
and ex-post monitoring 267–8
and planning policy 259, 260, 268–70
theoretical evidence 260–65
and transport project appraisal 268–70