afforestation 50, 95–6, 205, 254, 379
cost of 208, 255
agriculture 54
chemical fertilizers and pesticides 94
cereals 43–4
ecosystem disservices of 278–9
ecosystem services of 280
groundwater salinization 55
land use 50
alteration in 45, 48
discounting 50–52
market values of 50
output 45
agroforestry practices 379–80, 389, 392
adoption of agricultural and forestry technology 379
economic incentives in forestry adoption 379–80
farmers’ demand for planting trees 378–82, 385, 387
farmers’ preferences 18, 380, 392, 397
forestry laws 392
participation in conservation programmes 396, 401–2, 405, 408
scenarios 381–2, 385
tree seedling 379–80, 385–7, 389–91
willingness to plant trees 18, 379–80, 382, 387, 391–2
air pollution absorption services 215, 261
availability of substitute and complementary sites and services
distance decay 10, 104
non-constancy of marginal values 10
Bangladesh 141
Barcelona Convention
Integrated Coastal Zone Management Protocol 314, 330
Bateman, Ian 12, 23, 24, 35, 38, 40, 43, 45, 48, 112, 113, 115, 319–20
Bauer, Dana 148, 149, 151, 157
‘The Macroeconomic Cost of Catastrophic Pollinator Declines’ (2011) 181–2
beneficiaries 80, 82, 134, 170, 182, 280–81
distant 110–11, 114–15
global 168
of carbon sequestration 135
of water storage services 135
benefit–cost ratio (BCR) 275–6
benefit transfer (BT) 12, 134, 136
advances in 13, 79–81, 83–7
concept of 10
credible and ‘incredible’ approaches 78–80, 86–8
Environmental Values Reference Inventory (EVRI) 83–4
function transfer 81, 83–5
Integrated Valuation of Environmental Services and Tradeoffs (InVEST) 85–6
measurement of 80–81
property rights 80
transfer errors 10, 85, 329
scaling up values 10
use in ESV 79–80, 85–7
valuation databases 84
value transfer 39, 81–2
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beukering, Pieter van</td>
<td>221–2, 264, 269, 272</td>
</tr>
<tr>
<td>biodiversity</td>
<td>1, 120, 230–31, 408</td>
</tr>
<tr>
<td>biodiversity/ecosystem services offsets</td>
<td>11, 62, 304</td>
</tr>
<tr>
<td>extinction rates</td>
<td>1–2, 57, 231</td>
</tr>
<tr>
<td>amphibian species</td>
<td>1–2</td>
</tr>
<tr>
<td>bird species</td>
<td>1–2</td>
</tr>
<tr>
<td>freshwater species</td>
<td>1–2</td>
</tr>
<tr>
<td>mammal species</td>
<td>1–2</td>
</tr>
<tr>
<td>marine species</td>
<td>1–2</td>
</tr>
<tr>
<td>terrestrial species</td>
<td>1–2</td>
</tr>
<tr>
<td>tropical species</td>
<td>1–2</td>
</tr>
<tr>
<td>global</td>
<td>231</td>
</tr>
<tr>
<td>hotspot</td>
<td>13, 120</td>
</tr>
<tr>
<td>joint products</td>
<td>230</td>
</tr>
<tr>
<td>Living Planet Index</td>
<td>1–2</td>
</tr>
<tr>
<td>local</td>
<td>231</td>
</tr>
<tr>
<td>marine</td>
<td>325</td>
</tr>
<tr>
<td>rate of loss</td>
<td>1, 109, 140, 149</td>
</tr>
<tr>
<td>remote</td>
<td>111, 121</td>
</tr>
<tr>
<td>richness</td>
<td>320, 325</td>
</tr>
<tr>
<td>strategic plan for</td>
<td>3</td>
</tr>
<tr>
<td>tropical</td>
<td>109, 114–15, 121</td>
</tr>
<tr>
<td>valuation</td>
<td>112</td>
</tr>
<tr>
<td>biomass</td>
<td>253, 337, 362, 365, 370</td>
</tr>
<tr>
<td>above ground</td>
<td>208, 254, 258, 366</td>
</tr>
<tr>
<td>below ground</td>
<td>255</td>
</tr>
<tr>
<td>carbon in</td>
<td>365, 370</td>
</tr>
<tr>
<td>enhancement</td>
<td>338, 347</td>
</tr>
<tr>
<td>expansion factor</td>
<td>205, 208, 254</td>
</tr>
<tr>
<td>forest</td>
<td>221, 257</td>
</tr>
<tr>
<td>harvested</td>
<td>338</td>
</tr>
<tr>
<td>living</td>
<td>42, 48, 205, 254, 362, 364</td>
</tr>
<tr>
<td>mangrove</td>
<td>370</td>
</tr>
<tr>
<td>non-stem</td>
<td>208</td>
</tr>
<tr>
<td>productivity</td>
<td>258</td>
</tr>
<tr>
<td>salt marsh</td>
<td>370</td>
</tr>
<tr>
<td>stocks</td>
<td>257</td>
</tr>
<tr>
<td>biomes</td>
<td>124</td>
</tr>
<tr>
<td>annual value of ecosystem services of 4</td>
<td>intangible benefits 4</td>
</tr>
<tr>
<td>Borneo</td>
<td>228</td>
</tr>
<tr>
<td>Brander, Luke</td>
<td>40, 42, 269, 315</td>
</tr>
<tr>
<td>Brazil</td>
<td>Rio de Janeiro 240</td>
</tr>
<tr>
<td>Brookings Sprawl Index</td>
<td>299</td>
</tr>
<tr>
<td>Burgess, Neil D.</td>
<td>109, 114</td>
</tr>
<tr>
<td>Cameroon</td>
<td>110, 379, 389</td>
</tr>
<tr>
<td>Highlands</td>
<td>110, 115–17</td>
</tr>
<tr>
<td>Korup National Park</td>
<td>204</td>
</tr>
<tr>
<td>Canada</td>
<td>114, 219, 253, 316</td>
</tr>
<tr>
<td>capital</td>
<td>151, 159, 161</td>
</tr>
<tr>
<td>annuity</td>
<td>211, 218, 252</td>
</tr>
<tr>
<td>borrowing cost of 252</td>
<td>built xx, 13, 132</td>
</tr>
<tr>
<td>human xix–xx</td>
<td>13, 25, 28–9, 32, 34, 132, 136, 396</td>
</tr>
<tr>
<td>inputs</td>
<td>29, 32–3</td>
</tr>
<tr>
<td>manufactured</td>
<td>25, 28, 32, 34, 80</td>
</tr>
<tr>
<td>market</td>
<td>135</td>
</tr>
<tr>
<td>natural xviii, xix, 11, 13, 34, 53, 80, 132, 295–6</td>
<td>estimated value of 134</td>
</tr>
<tr>
<td>inputs</td>
<td>32–3</td>
</tr>
<tr>
<td>opportunity cost of 252</td>
<td>social xx, 13, 132, 300–301</td>
</tr>
<tr>
<td>concept of 300</td>
<td>social time preference rate 252</td>
</tr>
<tr>
<td>carbon capture and storage</td>
<td>41–2, 48, 50, 133, 362, 364–5, 375, 402</td>
</tr>
<tr>
<td>atmospheric carbon stocks</td>
<td>208, 255</td>
</tr>
<tr>
<td>biogeochemical processes</td>
<td>205, 254</td>
</tr>
<tr>
<td>blue carbon</td>
<td>361–2, 367–9, 372–3, 375</td>
</tr>
<tr>
<td>coastal</td>
<td>366</td>
</tr>
<tr>
<td>financial economics of 368</td>
<td>financial value of blue carbon benefits 371</td>
</tr>
<tr>
<td>avoided mangrove conversion projects 18, 371</td>
<td></td>
</tr>
<tr>
<td>flows</td>
<td>371</td>
</tr>
<tr>
<td>gross values of 371</td>
<td>mangroves 362, 364–5, 370</td>
</tr>
<tr>
<td>payment</td>
<td>361, 366, 368</td>
</tr>
<tr>
<td>salt marshes</td>
<td>362, 374</td>
</tr>
<tr>
<td>seagrass meadows</td>
<td>362, 370, 374</td>
</tr>
<tr>
<td>carbon sinks</td>
<td>205</td>
</tr>
<tr>
<td>marginal benefit of 42</td>
<td>net 48</td>
</tr>
<tr>
<td>social cost of carbon</td>
<td>50, 255, 369</td>
</tr>
<tr>
<td>value of carbon accumulated in forest soils 208, 255</td>
<td></td>
</tr>
<tr>
<td>carbon credits</td>
<td>375</td>
</tr>
<tr>
<td>revenue potential from 18</td>
<td>temporary carbon credits (tCER) 255</td>
</tr>
<tr>
<td>voluntary market for 367</td>
<td></td>
</tr>
</tbody>
</table>
carbon dioxide (CO₂) emissions 205, 254, 361, 365, 368–71
attempts to reduce 205, 303, 362
habitat degradation 369–70
carbon footprints 2, 367
attempts to reduce 205
emerging 365
potential role in mitigation of annual carbon emissions 365
carbon pools 362
soil carbon pool 362–3, 366
carbon price 18, 208, 255, 371
European 372
expected 18, 368
near-term 371
carbon sequestration 222
concept of 221
joint products 205
carbon taxes 205, 208, 255
Carson, Rachel
Silent Spring (1962) 135
Casey, Frank 78, 410
China 140–41, 161, 198, 215, 219, 261
Beijing 204, 208, 215, 221, 250
Changbaishan Mountain Biosphere Reserve 215, 253
Guangzhou 261
markets for forest lands in 204
Xingshan County 199, 204
choice experiment (CE) 16, 112, 114, 118, 271–2, 280, 316, 397
questions in 402–4
status quo (SQ) variable in 405
use of CBA in 272–3, 275–6
Climate Action Reserve (CAR) 367
climate change
land-use pattern shift 45
projects of 30
Climate Institute 255
climate regulation
values of 4
costal protection services
costal erosion reduction 17
conventional armouring 17
conventional coastal armouring 17, 346
erosion prevention 4
fisheries enhancement 335
net benefit from 347
future shoreline developments 17
impacts from climate-change-induced coastal erosion and flooding 335
maintenance cost 351
sediment accretion 17, 350
shoreline armouring 350–52
net welfare gains from avoided 346, 350
social net benefits 17, 351
social return on investment 17, 352
wave attenuation 335, 344, 346
wave height and energy 17, 344–6, 348
wind-generated 347
coastal recreation 314–17, 319, 321–2, 324–5
beach recreation 317
costal access policies 328–9
costal tourism 328
day-trip visitors 320
multiple-day trips 320
empirical studies of 315–16
option and quasi-option values 316
EU/Mediterranean coast 313, 321, 325, 329
international recreation value 326, 328
recreational trips 321–2
spatial scale 330
winners/losers of alternative policies 330
costal wetland 4, 133
storm protection services of 13, 132, 135–7, 139
value of 3, 134
waste treatment 4
Cobb–Douglas (CD) production function 33–4, 43
competitive market 35, 178
computable general equilibrium (CGE)
multi-sector model 157
single-country model 156
Conference of Parties
Sixth Meeting (COP6) 1
Valuing ecosystem services

Sixteenth Meeting (COP16) 366
Cancun Agreement 366
Tenth Meeting (COP10) 3
Aichi Biodiversity targets 3
benefits of 111, 180
biodiversity 221, 245, 395, 408
forest 199, 262
outcomes 3, 5, 189, 246, 264
policies/strategies of 56–7, 157, 169, 395–8, 401, 403–9
riparian 304
sites 13, 109, 112, 114, 116–17, 123–4, 200, 269
soil and water 9, 190, 204–5, 222, 249–51, 253, 260, 262, 398
conservation organizations 398, 403–5, 408–9
fund-raising approaches of 110–11
maintenance of 112
Consumer Price Index (CPI) 190, 341
Convention on Biological Diversity (CBD) 1
Cooley, David 361
cost–benefit analysis (CBA) 5, 16, 90, 110, 113, 189, 245, 272–3
concept of 11
extended 270, 276
use in CE 272–3, 275–6
Costa Rica 169, 215, 219
PES programme in 396
Tapanti National Park 212
critical thresholds 10, 53, 264
Cyprus 329
dams
annual economic value of the water purification function of 260, 278
cost of controlling sediments in dams 260
cost of storing water in reservoirs 199, 251
direct/indirect costs of construction 199
life of reservoirs 251, 260
maintenance cost 251–2, 285–7, 289, 379
sand arrestation dam 283, 287–8
sediment control 200
avoided cost 200
storage capacity of dam effective 252, 260
water control dam 283, 285–8
Defenders of Wildlife 398
deforestation 94, 221, 228, 260, 264, 361, 366
causes of 200, 205
greenhouse gas emissions of 254
loss of top soils/nutrients 200, 252
Degroote, R. 23
deliberative processes 10–11
dichotomous choice (DC) model 340–41
discounting 12, 25, 50–51
cost of 48, 52, 58
debates regarding 51
ethics based 60
double counting 26, 204–5, 222
avoidance of 27, 86
ecosystem 4, 8, 191
Dujon, Veronica 295
ecological assets 12, 26–7
ecological feedbacks 4, 191
Index

ecological processes 56
  global 308
non-linearities in 10
ecological services 15, 227
  impact of logging services on 227
economic valuation 8, 10–13, 27, 59–60, 265, 269, 281, 292, 329
cost-effective approaches 39
criticisms of 5, 133, 245
market distortions 35
  of biodiversity 189
  of ecosystem services 13, 132–4, 136, 138–9, 145, 189
  of goods 43
  of pollination services 14, 150–52, 163, 170
  of recreational activities 314
offsetting compensatory projects 39
ecosystem reconstruction 135
ecosystem resilience 148
insurance value of maintaining 52
ecosystem service markets 18, 395–7, 406–7
development of 408–9
establishment of 145
farmers’ interest in 396
ecosystems 90, 114, 168, 171, 227, 265, 279, 327, 395
agricultural 16
  benefits
    intangible 4, 15, 190, 222, 245, 265
tangible 4, 8, 190
costal xxiv, 17–18, 361–2, 365
coral reefs xxiv, 1, 3–4, 12, 317, 362
conversion of 369, 375
cultural values of 315
erosion of 334–5, 346, 348, 350–51
estuaries 317, 335
oyster reef restoration projects 335, 350–51
passive values 315
wetlands 134–9, 296–7, 345–6, 396
disrupted 94–5
forests 5, 14–16, 222–3, 241, 251, 270
marine 329
marsh
  erosion of 344
optimal management of 15
rural 16
  service flows 25, 52–3
threatened 362–3
terrestrial 189, 191
urban 16, 295–6, 298, 300
agricultural 293
aquaculture 1, 36, 361, 365, 370, 372–4
  shrimp farming 370, 374
cultural values 247, 264, 278, 296, 300–301
definitions of 8, 25–6
demand for ecosystem services 9
development of 280
dynamics 220
estimated value of global 4, 134, 140–41, 191, 245
externalities 145
  negative 133, 143
  positive 133, 143
flows of 52–3
  rate of extraction 52
  marginal shadow value of 52–3
  forest 15, 189–90, 212, 215
erosion control 134, 191
global 40
inputs 33–4
intrinsic value of 245
losses of 41
mapping of 143
marginal value 41, 145, 293
market for 143
natural pollination 159–60
neglected 15
payment for (PES) 11–12, 18–19, 378, 380, 385, 390, 392, 396–8, 401–3, 406–10
primary, intermediate and final
  ecosystem services 8, 27–31, 43, 86, 296–7, 304, 335
primary ecological functions 27
shadow value of 52
soil erosion 9, 200, 204–5, 245, 252, 287, 378
economic costs of 205, 253–4
loss of soil nutrients 204
total annual value of the global 191, 245
urban 295–6, 306–8
waste treatment 4, 191, 212, 219
ecosystems services assessments 23–4, 30, 43, 58–9
alternative future scenarios 30–32
criteria of 27–8
economic analysis 26–7, 57–8
Ecosystem Services for Urbanizing Regions (ESUR) 296
Ecosystem Services Partnership xviii
associated producer surplus (PS) 335–6, 341, 343, 347, 351–2
consumer surplus (CS) 335–6, 341–2, 347, 351–2
recreational 338
cost-based approach 9
avoided-cost method 8
criticisms of 5–6, 8–9
ecological pricing method 191
exchange values xx
forest valuation 5, 14–16, 198–9, 221, 262, 264–5
limitations and criticisms levelled against 5, 245
market-based approach 161
non-linear models 10
non-use values xx
production-based approach 8
public benefits 4
public decision-making
use of valuation information in 276
spatial dimensions
context 134
mismatch 134
spatial resolution of measurement 137–9
spatially explicit 145
spatial heterogeneity xxiv, 10–11, 13
spatial scale 78, 81–2
use of BT 79–80, 85–7
use values xx
Ecosystems Valuation Toolkit (EVT) 4
elicitation formats
open-ended (CVM_OE) 319, 324
other (CVM_OTHER) 319
embedding effect 10
emissions trading 255
endogeneity 387–8
environmental/market/policy drivers 24, 28, 31–2, 54
environmental purification services 212, 219–20
provision of by forests 215
environmental resources
future change in quality/quantity of 330
non-market valuation of 381
environmentally harmful subsidy (EHS) 11
eradication techniques 274–6
benefits of 275
rat control 274–5
Ervin, David 295, 297, 303
Ethiopia 255
European Commission (EC) xxiv, 3
European Council 314
European Union (EU) 314, 316–17, 327, 329
Birds and Habitats Directive 56
Common Agricultural Policy 30, 43
coastal zone of 321, 329–30
European Landscape Convention 56
Marine Strategy Directive 56
Water Framework Directive 56
farmland 278, 283, 291–2, 302, 392
crop cultivation on 287–8
ecological functions of 300
organic waste on 288–9
productive 169
Ferrini, Silvia 109
Fezzi, Carlo 23, 43, 124
Finland 215
fixed effects (FE) 386–7
Fisher, Brendan 8, 23, 25–7, 35, 52, 113, 124
flood damage costs 200
avoided 251
forest land 301–2
  average soil thickness of 204
  biomass stocks for 257
  loss of 204–5
    avoided 205, 253–4
    estimated 204
  replacement price method of 204
  soil carbon stocks in 257
  surface run-off rates of 199
  unit value of 252–3
Forest Stewardship Council 228

forests/forest ecosystems 1, 15–16, 25,
  50, 79, 134, 190, 198, 212, 229–30,
  240, 245, 250–51, 253, 258, 264–5,
  392
  air purification function 260–61,
    264
    economic value of 261
  as carbon sinks 205, 254–5
  average precipitation 199
  broadleaved 246, 250, 257
  estimated loss of productive land
    area 204–5, 228, 254
  flood protection benefits 200
    averted flood damage cost
    approach 200
  forest valuation
    studies 5, 14–15, 264
  hydrological services 199–200, 219,
    239
    canopy interception rates 199
    direct/indirect costs of dam
      construction 199
    evaporation/run-off rates 199, 250
    flood protection 199–200, 247, 264
    flooding patterns 200
    groundwater recharge rates
      199–200, 251
    hydrological run-off flows 200
    soil porosity 199
    surface run-off rates 199
    value of hydrological flow
      regulation/water storage
      functions 199
    water-holding capacity of forest
      litters 199
    water purification 199, 258, 260,
      278
    intangible benefits 15, 190, 222, 245,
      265
interception ratios (of rainfall)
  249–50
landsides 299
  prevention of 260, 279, 283,
    288
logging 233–7, 240
  heavy logging 230–31, 237, 240
  illegal 240
  profit from 236
  reduced impact logging (RIL)/
    selective logging 229–31,
    240–41
mangrove 361–2
needleleaved 257
native trees 270, 381, 392
native wildlife 270
nutrient composition of forest soils
  204, 252
nutrient cycling 257–8, 264
old growth 114
optimal spatial use of 15, 227, 230,
  236–7, 241
plantation 258
pollution absorption capacity of
  trees 261
primary forest 270
protection of watersheds 199–200,
  204, 220, 240, 249–50, 260
rainforests 111, 122
  Chilean Temperate 204
recreation 246
recreational benefits of 261–2
secondary forest 270
soil erosion prevention 4, 283
soil protection 200, 204, 220, 252
  economic value of 253–4
soil quality/productivity 248
  loss of 252–3
  role in property prices 253
soil water storage capacity 250
spatial heterogeneity of 250
sustainable forest management
  (SFM) 228–30
tropical 4, 191
unsustainable forest practices 205,
  253
value of carbon accumulated in
  forest soils 208, 255
water conservancy functions of 250,
  252

K. N. Ninan - 9781781955161
Downloaded from Elgar Online at 08/21/2019 02:21:05AM
via free access
wildlife population 232, 235–6, 238–9
conservation of 239–40
migration of 238
forest valuation studies 5, 14–15, 198, 221, 264
emission abatement approach 215
France 328
gas regulation services 208
carbon tax method 208, 255
cost of afforestation method 208, 255
cost of industrial oxygen 208
marginal social damage cost approach 208, 255
Geographic Information Systems (GIS) 17, 85–6, 136, 190, 280, 320–21
geoservices 191
Germany 143, 326, 328
Ostvorpommern 326
Rügen 326
Ghermandi, Andrea 17, 313, 314, 315
global assessments 23, 159
global carbon cycle 18
global ecosystem services estimated value of xviii–xx
Global Environment Facility Western Kenya Integrated Ecosystem Management (WKIEM) project 378–9
Global Footprint Network ‘Eco-Deficit’ 141, 143
‘Ecological Footprint’ 140, 143
Global Trade Assessment Project (GTAP) 373–4
goods 32, 58, 78
definitions of 26
market price 35, 47–8
non-market 40, 59
environmental 53
non-use 39
shadow value 48, 50
small 115, 117, 122
surrogate market 9
true value 47
valuation of 26, 35
use of RPM in 38
zero value 34
Gordon, David 153, 361
Granek, Elise 295
Greece 326
greenhouse gas (GHG) emissions 361, 364, 366
benefit flux 367–8
compliance mechanism 367
mitigation of 362
reduction of 375
gross domestic product (GDP) 8, 136, 321, 374
coastal 329
deflator indexes 316
global 78, 140, 191
real per-capita 320, 324, 327
Guannel, Greg 17, 334
Gulf of Mexico 334
Mobile Bay 334–7, 344, 346, 350–52
habitats 4, 10, 30, 124, 170, 173, 176, 179–80, 191, 229, 231–3, 238–40, 264, 293, 368–9, 374, 376
coastal 18, 313, 371–3, 375
converted 365, 370
carbon losses 365
critical 57, 114
degradation 369
destruction of 148, 169, 334, 361–5, 370
loss 117
economic value of 18
rate of 3, 18
natural 95, 182
nesting 177–8
total costs of protection 18
types 362–4, 367, 370
urban 16
valuation of use of CVM in 13
wild pollinator 150, 155, 157–8, 177
wildlife 19, 293, 300, 304–5, 402, 407, 409
Hausman specification test 387, 390
concept of 386
hazard protection 269
hedonic pricing method (HPM) 280–81
heterogeneity 319, 389–90
limiting of 316
spatial xxiv, 10–11, 13, 250
human well-being 28–9, 90
generation of 27
hunting revenues 275
hypothetical bias
concept of 90–91
criticism of 91, 93
mitigation of 92, 105–6
ex-ante 92
ex-post 92–4, 106

Immerzeel, Desirée 269
impervious surface area (ISA) 132, 141, 143
implicit demand/price of environmental attribute
methods to derive 9
India 140–41, 219
Supreme Court 265
Western Ghats 222
Indonesia 215, 219, 364, 374
Leuser National Park 221, 264
Industrial Revolution xviii
Inoue, Makoto 4, 5, 14, 15, 189, 208, 245, 260
insensitivity to scope 10, 113
Institute for Social and Economic Change (ISEC) xxv
Centre for Ecological Economics and Natural Resources (CEENR) xxv
intangible benefits 4, 190
of forests/forest ecosystems 15, 190, 222, 245, 265
Integrated Valuation of Environmental Services and Tradeoffs (InVEST) 85–6, 306–7
Intergovernmental Panel on Climate Change (IPCC) 44–5, 51
Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) 189
creation of xxiv, 3–4
internal rates of returns (IRRs)
use in CBA 11
Iran 219
Italy 111, 326, 328
Japan 15–16, 143, 161, 198, 212, 219, 250–51, 257–8, 261, 278, 280
agricultural sector of 279–81, 292
economy of 198
farmland of 291–2
forest land area of 245, 253–4, 258
Fukushima Prefecture 260
government of 246
Kanagawa Prefecture
Miyagase Dam 251–2, 260
Ministry of Agriculture, Forests and Fisheries (MAFF) 281
Kanto Regional Forest Management (RFM) 246–7
National Institute of Agricultural Economics
Nagoya 3, 257
National Greenhouse Gas Inventory Report (NGGIR)(2010) 255, 257
Oku Aizu Forest Reserve 15, 208, 246–7, 250–55, 258, 260, 262, 264
economic value of air purification functions of 261
water conservancy functions of 252
Oze National Park 261–2
paddy fields 278–9, 284–5, 288, 290
amenities of 281
ecosystem services of 281, 286–7, 291
Tadami River
Tagokura Dam 251
Tokyo 261
Tsukuba 250
upland fields 284–6, 291
urban property prices 253
Jenkins, Aaron 395
Jindal, Rohit 18, 378, 380, 392
Kenya 18, 379, 382, 389–90
farmers’ demand for planting trees in 378–81, 390–92
Kakamega 155
Lake Victoria basin 378–81, 391–2
Nyando River Basin 378–9, 382, 387, 391
Yala River Basin 382, 387, 391
Valuing ecosystem services

Kerr, John 18, 378
Kontoleon, Andreas 109, 111, 122
Kramer, Randall 18, 111, 200, 251,
395, 397
Kroeger, Timm 17, 78, 334, 336, 337,
338, 345, 347, 410

labour
movement from rural to urban 278
land-use 168–71, 231
alternative 257, 264
choices 170–71
conversion
compensatory payments for 265
pollination services 173–4, 176–7,
182
land-use, land-change (LULC) patterns
306–7
land values/prices 50, 179, 373
estimation of 374
farm land prices 253
forest land prices 253
reflection of differences in amenities
in housing environment 281
Latvia 329
Lesser, Adriane 395
Lithuania 329
logit model
conditional 402–4
Loomis, John 4, 10, 12, 78, 82, 84, 86,
111, 112, 113, 122, 123, 191, 205,
222, 223, 253, 265, 410

Mace, Georgina M. 23
Malaysia 230, 364
marginal benefit 212, 262
curves 42, 59
of carbon storage 42
of climate change reduction 41
marginal value 10, 53, 59, 78, 221, 405, 409
diminishing 42
of carbon capture 42
of ecosystem services 145, 293
of non-unique and charismatic
species 122
marginal resilience weighted shadow
value (MRSV) 55–6
concept of 54
mean sea level (MSL) 345
Mexico 161
Mexico City 300
micronutrients 148, 215, 258
Mississippi Alabama Sea Grant
Consortium (MASGC) 346
Modifiable Areal Unit Problem
(MAUP) 137–9
Mohammed, Essam Yassin 13, 90
Morse-Jones, Sian 13, 109
multi-criteria analysis (MCA) 10–11
criticisms of 11
Murray, Brian C. 361

National Oceanographic and
Atmospheric Administration
(NOAA) 335, 345
rule on hypothetical bids from
surveys 91
natural systems 23, 297, 308
preservation of 169
net ecosystem productivity (NEP)
208
net present values (NPVs) 275, 352,
371
use in CBA 11
net primary productivity (NPP) 132,
140–41, 143, 208
Netherlands
Hague, The 1
New Zealand 274–5
Wellington 135
nitrogen dioxide (NO2) 254, 260,
289–90
absorption of 254, 261
Ninan, K.N. 1, 4–5, 14, 15, 163, 189,
190, 191, 208, 221, 222, 245, 252,
257, 260
Nomenclature of Territorial Units for
Statistics
Level 2 (NUTS-2) 316, 322, 325
Level 3 (NUTS-3) 316, 321–2,
325–7, 329
non-governmental organization (NGO)
104, 106, 397–8, 409
conservation 404
non-profit organization (NPO) 104,
106
non-timber forest products (NTFP)
246, 264
examples of 247

K. N. Ninan - 9781781955161
Downloaded from Elgar Online at 08/21/2019 02:21:05AM
via free access
Index

Norgaard, R. 5, 10, 57, 189, 245, 334
Northern Ireland 326
Nunes, Paulo A.L.D. 17, 15, 314
Organisation for Economic Co-operation and Development (OECD) 30
Paris Committee (1998) 279
Organisation of East Caribbean States 271

paddy fields
ecosystem services of 279
air purification 289–90
climate mitigation 290–91
flood prevention 284–6
landslide prevention 288
organic waste disposal 288–9
recreational 291–2
soil erosion prevention 287–8
water resource fostering 286–7

Pakistan 141
Pascual, U. 9–11
Patterson, M.G. 191, 221
Pearce, David 33–4, 53, 56–7, 168, 190, 208, 212, 220–21, 252, 255, 262
Pendleton, Linwood 18, 361, 365, 369, 370
Perrings, Charles 124, 205, 253, 265
Pimentel, D. 191–3, 200, 254
Ping River Quality Improvement Programme 94–6
calibrated value (CPL) in 103–4
cheaptalk script (CT) 98, 100, 102–3
elicitation in 96–7
follow-up certainty question (HY) 97, 100, 102–3
pledge (PL) format in 98–100
Poland 328
policy site 10, 80, 85, 87, 315
characteristics of 82–3
spatial scale of application at 81
pollination services 14, 149–51, 155–6, 159–60, 169, 171–3, 175–82, 215–16
animal-mediated 148, 150
artificial 161
benefits of 14, 148, 150, 162
colony collapse disorder (CCD) 149, 169
contribution of pollination to coffee production 169–70
decline of 155–7
economic valuation of 150–52
expected damage function 158–9
hand 157, 159, 161
land-use allocation for 173–4, 176–7, 182
managed 149, 155–7, 160–61
mechanized 157, 159, 161
natural 159–60, 169–70
replacement costs of 161–2
self-pollination 219
wild 149–51, 155–7, 160–62
pollinator populations 148, 170–73, 175–6, 178–80, 182
decreases in 14, 149, 151–3, 155–8, 162, 169
regional 157
forest-based 219
managed 149, 155, 157, 161–3
marginal 172, 178–9, 181
natural 169, 174
pollinator diversity 219
pollinator habitat 150, 155, 177
wild 149–50, 157, 161–2, 180
insect 148, 155, 160
Portland–Vancouver ULTRA-Ex project 297, 306
Portugal 326
Lisbon 322
preferences 8–9, 12–13, 18, 38, 51, 60, 109–11, 114, 121, 123, 271, 314, 324, 379–80, 387
consumer 320
decomposition 117
farmers’ 318, 397
for non-market goods 58
for wildlife/wildlife conservation 120, 124
land owner 409–10
respondent 406
sensitivity of 117
social 307
stated (SP) 109–10, 123
theoretical consistency of 110, 112, 115
value 16, 40
primary valuation study 10, 17, 314–16, 324, 329
methodology used in 78
probit model
random parameters 118
property rights 80, 143, 157
definitions of 133, 135
private 329
Purchasing Power Parity (PPP) 190, 198, 205, 219, 316
estimation of 212
Ramsar Convention on Wetlands
provisions of 278
random effects (RE) 386–7, 389–90
tobit model 387
random utility model (RUM) 340–41
recreational value function 330
reducing emissions from deforestation and degradation (REDD+) 205, 361, 366
reefs 335, 343–5, 352
as breakwaters 17, 344, 346, 350
coral 1, 4, 12, 317
fishery enhancement 336–9, 347
economies of scale 351–2
finfish/crab harvests 17, 334, 342–3, 347
recreational anglers 338, 347
harvester profits 343
harvesting techniques/harvest volumes 334
recreational fishing 317, 340
oyster 17, 334–5, 342, 344
demand for oyster meat 341
marginal production cost of 341
total net social welfare gain 341
restoration of 17, 334–5, 342–4, 348, 350–51
seafood harvests 335, 337–8
commercial 341–2
price of seafood 341–2
recreational 350
seafood landings 342–3
seafood value-added chain 343–4
welfare gain generated by 336, 347
wildlife production 336
replacement cost method (RCM) 16, 280–82, 292–3
criticisms of 292
Republic of Ireland 326
Research Council of Japan 281
revealed preference methods (RPM) 38
contingent behaviour method 316, 324
tavel cost method (TCM) 9, 40, 212, 280, 291, 316
use in valuation of goods 38
Richardson, Leslie 78, 111, 123
Romania 329
Tulcea 326
Russian Federation
Siberia 134
safe minimum standard (SMS)
examples of 56–7
proposals for 57
Saudi Arabia 143, 161
scaling-up techniques 315, 329
scenario analyses 24, 29–30, 44, 58
baseline and alternative scenario 30, 42
development of 330
scope and substitution effects 112–13, 320, 324
ignoring 4, 191
in economic assessments 58
in recreational sites 329
for non-endemic charismatic species 13, 122–3
sensitivity analysis 9, 155, 159, 273, 276
service flows 334
economic value of 30
ecosystem 25, 52–3
Shandas, Vivek 16, 295, 302, 306
Simpson, R. David 14, 163, 168, 171, 175
Singapore 134
Slovenia 329
social costs and benefits
measurements of 5, 246
social welfare 14, 151, 163
estimation of changes to 150
impacts 156
loss in 157
net 341–2
social well-being
optimal 12, 60
Index

Soil and Water Conservation Society 396–7
South Africa
   Johannesburg 241
   Western Cape 161
Spain 326–7, 329
   Balearic Islands 325
   Canary Islands 325
spatial analysis 329
   spatially explicit assessments 13, 135, 139–40, 143
   ecological fallacy 137–8
spatial resolution 85, 137–9, 330
   downscaling of 329
   map 139
   of measurement 138
species abundance 16, 271
   lower 273
species classification 117, 123
   charismatic/endemic species 13, 110–12, 114, 120, 122–3
   non-unique and charismatic (SMNUC) 117, 121
   non-unique and non-charismatic 121
   tropical 112
   unique and charismatic (UC) species 117, 120–21
   unique and non-charismatic (UNC) species 117, 120–21
ecological niches 175
flagship species 111, 121
reef-dependent species 334, 336
saltwater species 340
species diversity 31
   decline in 148, 275
stakeholder approach 11
stated preference methods (SPM) 109–10
choice modelling (CM) 9–10
contingent valuation method (CVM) 9, 13, 78, 84, 87, 90–92, 97, 99, 104, 112, 190, 212, 280–81, 314, 316, 319, 380
   hypothetical bias in 91
   uses of 13
   group valuation (GV) 9
study site 10, 80, 82, 335, 344
   characteristics of 83
sulphur dioxide (SO2) 260, 289–90
   absorption of 254, 261
   dry deposition rates of 261
   engineering cost of controlling 215, 261
Sumatra 228
   sustainable development 139–40
   sustainable governance
      of coastal tourism 314
sustainable societies 301
sustainable urbanism 295
sustainability xix, 12, 24–5, 27, 30, 34, 39, 52, 54–6, 58, 139–41, 295–6, 303–4
   assessment of 52
   measurement of 140–41, 143
   resilience approach to 56
   requirements for 124
   strong 33
   weak 34
Sutton, Paul C. 13, 132, 140, 141
Sweden
   carbon tax 208
   Stockholm 322
Tanzania 13
   Eastern Arc Mountains 110, 114–18
   theoretical consistency of preferences 110, 115
   indicators of 113
Thailand 13
   Chao Phraya River 94
   Ping River 94–5, 104–5
   Chiang Mai Province 94, 99
   Chiang Mai City 96
Tisdell, Clem 15, 111, 199, 204, 205, 215, 222, 223, 227, 228–9, 231, 239, 249, 251, 253–4, 257, 261, 265
top soil erosion 220, 245, 252
   estimated cost of 200, 204, 253
   prevention of 287–8
travel cost (TC) model 340–41
Trinidad and Tobago
   Centre Hills 269–72, 275–6
   Montserrat 269–72, 274, 276
Turner, R. Kerry 10, 23, 25, 27, 53, 109, 190, 221, 222

K. N. Ninan - 9781781955161
Downloaded from Elgar Online at 08/21/2019 02:21:05AM via free access
Valuing ecosystem services

Uganda 379
uncertainty 10, 14, 32, 56, 58–9, 92, 182, 273, 371, 379, 401
methodological 133
United Kingdom (UK) 13, 30, 42, 44–5, 109, 111–12, 114, 118, 123, 162, 313, 328
Blackpool 326
Day Visits Survey (1998) 322
House of Commons 24
Environmental Audit Committee 24
Kingston upon Hull 326
London 326
National Ecosystem Assessment (UK NEA) 23–4, 28, 30–32, 34, 42, 59–60
SMS in 56–7
Southampton 326
United Nations (UN)
Earth Summit (1992) Agenda 21 240–41
Earth Summit (2002) 241
Environment Programme (UNEP) xxiv, 3, 189
World Conservation Monitoring Centre (UNEP-WCMC) 23
Food and Agriculture Organization (FAO) 30, 158, 362
Framework Convention on Climate Change (UNFCCC) 366–7
Kyoto Protocol 366
Clean Development Mechanisms (CDMs) 205, 255, 366, 372
Millennium Declaration (2000) 241
Millennium Ecosystem Assessment (MEA)(2005) xviii, 1, 5, 8, 23, 25–6, 132, 145, 189, 245, 279, 313
United States of America (USA) 17–18, 84, 136–42, 192–3, 219, 253, 303, 305–6, 316, 336, 340–42, 365, 376, 403
Agricultural Census (2002) 399–402
agricultural sector of 149–50, 152, 398–401
Cayuga Heights Village, NY 192
Department of Agriculture (USDA) 407
Natural Resources Conservation Service (NRCS) 398
Department of Defense 85
Denver, CO 134
Endangered Species Act (ESA) 56–7, 87, 302
Environmental Protection Agency (EPA) 305, 398
government of 145
Hawaii 134, 251, 274
Hohokus, NJ 134
Madison City 192
New York City 258, 260, 300
North Carolina State Cooperative Extension Service 398–9, 407
Portland, OR 16, 296, 301–7
Bull Run Watershed 302
Regional Greenhouse Gas Initiative (RGGI) 367
Savannah, GA 134
seafood industry of 342–4
US Bureau of Labor Statistics 190
US Fish and Wildlife Service 395, 397
Red Wolf Recovery Programme (RWRP) 395–7, 399
urban governance 307
urban ecosystem services 297–8, 300
built replacement services 297
distance from central business district (CBD) 299
energy efficient/savings 303
green building 16, 296, 303–4, 308
ecological impacts of replacement power 303
environmental impact of conventional construction 303
green infrastructure projects 305
greenspace 306
human dominated landscapes 297–8, 301
renewable and non-renewable resources 295, 303
sewage treatment 296
Index

social systems 16, 296–8, 300–301
storm-water management 16, 296, 302–3, 305–6
urban storm-water runoff 305
urban green space 296–7
urban property prices 253
vegetation 16, 296, 299, 303–4, 307
urban growth boundary (UGB) 296, 299–300, 302, 304
greenbelts 299–300
utility function 118–19

value 3
economic concept of 48
habitat value 13, 18
shadow 48, 50, 55–6, 58
marginal 52–4, 59
value transfer estimates 338
validity tests of 329
variance inflation factor (VIF) 324
Vegh, Tibor 361
Vivid Economics 255
Voluntary Carbon Standard (VCS) 367

waste/waste disposal
disposal costs 289
municipal/human waste 283, 289
organic waste disposal 283, 288–9
water erosion 287
water purification 222
avoided costs (sediment control) 200
in forest ecosystems 199, 258, 260, 278
water quality 19, 228, 240, 278, 300, 304–5, 320, 334, 361, 375, 379, 402, 409
anthropogenic pressure on 17, 325
degraded 374
groundwater quality 83
impact of sedimentation on 260
implicit prices 162
improving 249, 305, 407
use of breakwater reefs 351
negative impacts on 260, 275
river 94
water resources 56, 279, 286
flow regime 286
wildlife conservation 122
orangutans 15, 228–9, 232–3, 237–9
willingness-to-accept (WTA) 10, 80, 380
estimation of 93, 97, 102, 338, 340–41
marginal 119, 122–3, 273
function 82, 340
impact of endemism on 111–12
true 99
Wing, Ian Sue
‘The Macroeconomic Cost of Catastrophic Pollinator Declines’ (2011) 181–2
World Agroforestry Center (ICRAF) 379, 391
World Bank (WB) 190, 255, 373–4
‘Changing Wealth of Nations, The’ 373
World Conservation Union (IUCN) Red List 1
World Wildlife Fund (WWF) 118
Yeakley, J. Alan 295, 297, 304
Yoshida, Kentaro 265, 278
Zambia 379