advanced biofuels 85–109
algae and microorganisms 95, 97, 105
bio-oil upgrading in fast-pyrolysis 92, 95
capital costs 94
cellulosic biomass 2, 92, 95, 97, 99, 101
competitiveness with fossil fuels 6, 86
cost reductions, RD&D effects on 100–101, 105–6
current position and development 86–8, 89
demonstration activities, importance of funding for 97–8
developing countries 101, 106
diffusion 101–4
diffusion, ceiling projection 102
diffusion, potential barriers 102–3
economic and financial barriers 86–7, 103
efficiency improvements, need for 94
enzymes selection in hydrolysis 92
EU public funding for biofuels technologies 87, 88
European Biofuels Technology Platform 87, 101
experts participating in survey 90–91
fermentation 95
first generation technologies, comparison with 86, 104
Fischer-Tropsch process 95, 99
food crops, competition with 85, 102–3, 104
gasification process 92, 95, 97, 99
geographical areas most likely to reach commercial breakthrough 103, 106
and GHG emissions 85–6, 104
knowledge spillovers 103
methanol and ethanol synthesis 95–7
non-food biomass use 86
optimal RD&D budget allocation for 2010–30 94–5
as percentage of global road transport fuels 85
policy recommendations 104–6
private vehicle market 101, 106
RD&D and future costs 98–101
RD&D needs for second and third generation biofuels 92–8
refining processes 92–4, 95, 105
research survey 88–92
sustainability concerns 85, 102–3, 104
sustainability concerns, and certification systems 102–3
technological barriers 92–8
third generation production, difficulties with 86–7
see also biomass power
Agostini, A. 36
agricultural development see land use
Aleluia, Laura ix–xxiv
algae and microorganisms, advanced biofuels 95, 97, 105
Amirault, J. 113
Anadon Diaz, Laura 66–84
anaerobic digestion technical barriers, biomass power 47, 48
Anderman, M. 112
Anderson, D. 112
Angelis-Dimakis, A. 35
Apostolakis, G. 1
Armand, M. 114
Arvizu, D. 23, 28
Axsen, J. 112
Baddeley, M. 4
Innovation under Uncertainty

Valentina Bosetti and Michela Catenacci - 9781782546474
Downloaded from Elgar Online at 04/19/2022 01:22:57AM via free access
Canis, B. 113
carbon dioxide capture and storage (CSS)
 biomass power 49
 expert judgement elicitation protocols
 2
carbon intensity associated with battery
 production 132
Catenacci, Michela ix–xxiv, 1–138
cellulosic biomass, advanced biofuels 2,
 92, 95, 97, 99, 101
certification system
 advance biofuels 102–3
 biomass power 58–9
Chan, G. 2, 14, 68
Christensen, J. 116
Chum, H. 35, 39, 55, 61, 86, 87, 101, 105
Clarke, L. 66
Clemen, R. 3, 67, 68, 71
Clifford, K. 135
climatic change mitigation, and biomass
 power 35
Cluzel, C. 113, 114, 116, 127, 133
Cochran, T. 81
cost reduction probability see
government areas with highest
probability of commercial success
competitiveness
 biomass power 36, 56
 electric vehicles and battery
 technologies 124
 with fossil fuel technology 6, 86
 solar technologies 25, 27, 30
see also cost reduction; economic
factors
conversion processes
 advanced biofuels 95, 104, 105
 biomass power 38–9, 40–41, 43
Cooke, R. 1, 67, 116
cost reduction
 advanced biofuels 100–101, 105–6
 biomass power 36, 37
 electric vehicles and battery
 technologies 113–14
 solar technologies 12–13, 19
see also competitiveness; economic
factors
Crystalline-silicon PV improvement
 costs, solar technologies 19–21
Curtright, A. 2, 14, 24, 68, 71, 116
Dale, V. 85
Dalkey, N. 68
Denholm, P. 13
deployment challenges, electric vehicles
 112
developing countries
 biomass power 37
 electric vehicles and battery
 technologies 130–31
 solar technologies 26, 27
development challenges, nuclear energy
 66–7, 75–6, 81–2
diffusion concerns
 advanced biofuels 101–4
 biomass power 56–9
 electric vehicles and battery
 technologies 129–32
 solar technologies 25–8
Dornburg, V. 35
Douglas, C. 113, 114, 116, 127, 133
Du, Y. 73
Duvall, M. 112
economic factors
 advanced biofuels 86–7, 103
 biomass power 45–9
 nuclear energy 75–6
see also competitiveness; cost
 reduction; RD&D funding
Edenhofer, O. 66
Edwards, R. 87
electric vehicles and battery technologies
 110–38
 alternative fungible materials,
 flexibility in use of 113
 battery charging points 130
 battery development and secrecy 111
 battery recycling, need for
 improvement in 125, 132
 BEV vs. PHEV battery costs 112–13,
 114–16
business as usual (BaU) funding 124
calendar life, need for improvement in
125
carbon intensity associated with
 battery production 132
cost reduction strategies 113
cost-competitiveness issues 124
current technologies 111–14
cycle life, need for improvement in
125
deployment challenges 112
developing countries 130–31
diffusion ceiling 131
diffusion of electric vehicles and non-
technical barriers 129–32
driving behavior, difficulties in
changing 130
EU Climate and Energy Package and
GHG emissions 111
EU investment 114
experts’ cost estimates, variations in 2,
124–8
experts participating in study 116–18
geographical areas with highest
probability of being first to reach
commercial breakthrough 130
GHG emissions and transport sector
110
high energy density needs 114–16
infrastructure, lack of adequate 130
Lead acid (Pb-acid) batteries 114
‘learning-by-searching’ and ‘learning-
by-doing’, effects of 121–2
Lithium Metal Polymer (LMP)
batteries 118, 120–21, 122
Lithium Redox Organic technology
118
lithium-air (Li-air) batteries 116, 118,
120, 122
lithium-ion (Li-ion) batteries 113,
114–16, 118–20, 121, 122, 123,
124, 128–9
lithium-sulphur (Li-sulphur) batteries
116, 118, 120, 121, 122
mining and metals extraction effects
132
molten salt (Zebra) batteries 114, 118,
120–21, 122, 123
Nickel Metal Hydride (Ni-MH)
batteries 114, 118, 120, 121
Nickel-Cadmium (Ni-Cd) batteries
114
optimal allocation of public budget
118
penetration rate in private vehicle
market 130
percentile of battery costs in 2030,
assessment of 122–3
projection of battery costs 112–13,
122–3
public investments for RD&D 114,
118, 127
RD&D and future costs of BEVs and
PHEVs 122–9
RD&D investments and cost reduction
113–14
RD&D and need for electric vehicles
118–22
research survey 114–18
safety standards, guaranteeing
maximum 116
safety standards, need for
improvement 130
stabilization of average global
temperature increase, IEA goals
111–12
stock sales or market share of EVs
announced by different countries
112
supercapacitors 118
technology transfer dynamics 132
thermal management, need for
improvement in 125
thermal runways as potential hazard
116
Zebra batteries 114, 118, 120–21, 122,
123
Zn-air batteries 118, 121, 122
electricity
generation, bioenergy penetration in
56–8
grid, upgrade and integration, solar
technologies 13, 26
share, probability of, solar
technologies 27–8
supply contribution, biomass power 37
electricity, cost estimation
biomass power 39, 49–56
expert judgement elicitation protocols
6
solar technologies 22–4, 27, 150–52
enzymes selection in hydrolysis,
advanced biofuels 92
EU
advanced biofuels public funding 87,
88
biomass power cost competitiveness
56
biomass power public funding 38, 39,
51
biomass power, states’ National
Renewable Energy Action Plan
37
Climate and Energy Package and GHG emissions 111
electric vehicles investment 114
European Bioenergy Industrial Initiative development focus 39
European Biofuels Technology Platform 87, 101
solar technologies and cost-competitiveness 25, 27, 30
expert judgement elicitation protocols 1–11
battery technology for electric drive vehicles 2
carbon capture and storage technologies 2
cellulosic biofuels 2
clean energy technologies 2
cognitive and motivational biases 3, 6–9, 25
competitiveness with traditional fossil fuel technologies, assessment of 6
electricity cost estimation 6
face-to-face interviews, benefits of 4–5
group-think bias avoidance and online questionnaire 8–9
interviews with double question on costs 4–7
overview 2
probability estimate for 2030 technology costs 6–7
protocol designs 3–4
self-assessment of expertise 5–6
techniques 1
web conferences 5
web questionnaire and workshops on future of nuclear energy 7–10
web questionnaire and workshops on future of nuclear energy, graphic displays 9

Fargione, J. 36
Farrell, A. 36, 86
Fiorese, Giulia 1–65, 85–138
Fischer-Tropsch process, advanced biofuels 95, 99
food crops, advanced biofuels competition with 85, 102–3, 104
see also land use
Fritsche, U. 36
funding see RD&D funding
gasification process advanced biofuels 92, 95, 97, 99
biomass power 45–7
Gelfand, I. 36
geographical areas with highest probability of commercial success advanced biofuels 103, 106
biomass power 56
electric vehicles and battery technologies 130
solar technologies 25
GHG emissions advanced biofuels 85–6, 104
biomass power 59
electric vehicles and battery technologies 110, 111
Goldston, R. 66
Goossens, L. 1, 116
Gopal, A. 36
group-think bias avoidance and online questionnaire 8–9
Grubb, M. 30
Grübler, A. 67
Henrion, M. 1, 3, 67, 71, 88
Heywood, J. 112, 113, 127
Hill, J. 86
Hogarth, R. 1, 88
Hultman, E. 73

infrastructure, lack of adequate for electric vehicles 130
installation costs, solar technologies 12–13
investment risk premiums, nuclear energy 76

Jäger-Waldau, A. 13

Kahneman, D. 3
Kalhammer, F. 113
Keeney, R. 3, 67, 68, 71
Keisler, J. 2, 14, 68, 71, 88, 101, 106
Keith, D. 1, 67
knowledge spillovers see technology transfer
Koomey, J. 73
Kromer, M. 112, 113, 127
Lal, R. 35
land use
biomass power and agricultural development, need for improvement in 59
biomass power and land cover changes 35–6
food crops, advanced biofuels competition with 85, 102–3, 104
solar technologies and geographical constraints 27
see also mining and metals extraction
Lead acid (Pb-acid) batteries, electric vehicles 114
learning rate
electric vehicles and battery technologies 121–2
nuclear energy 77–8
solar technologies 24–5
see also technology transfer dynamics
Lee, Audrey 66–84
light-water reactors see under nuclear energy
lithium batteries see under electric vehicles and battery technologies
lock-in effect, solar technologies 26
McKendry, P. 35, 38
Malin, M. 66
Margolis, R. 13
methanol and ethanol synthesis, advanced biofuels 95–7
Meyer, M. 3, 4, 7, 67, 68, 71
mining and metals extraction
electric vehicles and battery technologies 132
solar technology and rare metals’ availability 27
see also land use
molten salt batteries (Zebra), electric vehicles 114, 118, 120–21, 122, 123
Morgan, G. 1, 3, 67, 71, 88
Nemet, G. 13
Newbery, D. 13
nickel batteries see under electric vehicles and battery technologies
Nogueira, L. 106
non-food biomass use, advanced biofuels 86
nuclear energy 66–84
business as usual (BaU) funding scenario 73, 74–5, 76, 77, 78, 79
capital costs 72–5
capital risks 78
development challenges 66–7, 75–6, 81–2
economic choices and interest rates 75–6
experts participating in study 68–71
fuel cycle technologies and fuel materials, RD&D investment into 80
Gen. III/III+ class, light-water reactors (LWRs) 71–2, 73–4, 75, 76, 77
Gen. IV system 74–5, 76, 77, 78, 81
growth rate, recent 66
investment risk premiums 76
life-cycle costs 78
projections for 2030 of costs and performance 71, 72–6, 77
RD&D allocations, recommended 80–81
RD&D government spending projections 71, 73, 76
RD&D recommendations and impact on costs and non-cost factors 76–9
RD&D recommendations and impact on costs and non-cost factors, disruptive innovation effects 78
RD&D recommendations and impact on costs and non-cost factors, industry experts versus experts in public institutions 76–7
RD&D recommendations and impact on costs and non-cost factors, learning-by-researching curve 77–8
research methods 67–72
research methods, individual elicitations followed by group workshops 68
SMRs (small modular reactors) 71–2, 75, 76, 77
sodium-cooled fast reactors (SFR) and increased RD&D 80–81
Very High Temperature Reactor (VHTR) and increased RD&D 80, 81
waste management considerations 81
web questionnaire and workshops on future of 7–10

O’Hagan, A. 3, 5, 7, 67, 71
optimal budget allocation
advanced biofuels 94–5
electric vehicles and battery
technologies 118
solar technologies 19–21
Organic PV improvement costs, solar
technologies 21, 22

Parabolic Trough systems, solar
technologies 13
Parsons, J. 73
Patiño-Echeverri, D. 112
Phillips, L. 3, 71
policy recommendations
advanced biofuels 104–6
biomass power 58–9
solar technologies 29–30
Poppe, M. 106
Price, H. 13, 152

production costs see competitiveness;
cost reduction
public awareness, need for, solar
technologies 26
public funding
advanced biofuels 87, 88
biomass power 38, 39, 51
electric vehicles and battery
technologies 114, 118, 127
pyrolysis
advanced biofuels 92, 95
biomass power 47
Quigley, J. 3, 67, 71

Rathmann, R. 85
RD&D funding
advanced biofuels 92–101
biomass power 36, 39–42, 49, 49–56
electric vehicles and battery
technologies 113–14, 118–29
nuclear energy 71, 72–81
solar technologies 19–25
technology costs xv, xix–xxii
recharging
electric vehicle batteries 125, 132
solar technologies and toxic substances
27

see also waste management
refining processes, advanced biofuels
92–4, 95, 105
Reilly, T. 3, 67, 68, 71
resource scarcity, biomass power 35–6
Roman, H. 68
Romero, M. 152

safety standards, electric vehicles and
battery technologies 116, 130
Searchinger, T. 36, 86
self-assessment of expertise 5–6
Shaheen, S. 13
Shropshire, D. 74
Sims, R. 86

SMRs (small modular reactors), nuclear
energy 71–2, 75, 76, 77
sodium-cooled fast reactors (SFR),
nuclear energy 80–81
solar technologies (PV and CSP), future
prospect of 12–34
Concentrating PV improvement costs
21
cost reductions and support schemes
12–13, 19
Crystalline-silicon PV improvement
costs 19–21
demonstration funding 21, 22, 30
developing countries 26, 27
diffusion of 25–8
electricity costs, 2030 estimation 22–4,
27, 150–52
electricity grid upgrade and integration
13
European leadership and cost-
competitiveness 25, 27, 30
expert coverage and specialization in
research 16–18
future costs under different RD&D
scenarios 19–25
future costs under different RD&D
scenarios, assumptions that might
affect costs 22
geographical area with highest
possibility of commercial success
25
government fiscal support 13, 21, 22
installation costs 12–13
land availability and geographical
constraints 27
learning rate estimation 24–5
maximum share of global electricity, probability of 27–8
non-technical barriers and diffusion of solar technologies 25–8
optimal distribution of current RD&D budget 19–21
Organic PV improvement costs 21, 22
Parabolic Trough systems 13
past capital investments in fossil power as non-technical barrier (lock-in effect) 26
policy recommendations 29–30
power pricing rules for feeding into grid 26
public awareness, need for 26
questionnaire 139–49
rare metals’ availability as non-technical barrier 27
research data 14–16
storage systems, need for improved 27
supply intermittancy problems 26–7
technical barriers to development of solar technologies 19
Thin-film PV improvement costs 21
Third Generation PV improvement costs 21, 22
toxic substances, recycling of 27
uncertainty, effects of RD&D on 24
Sorda, G. 85
storage systems, solar technologies 27
supercapacitors, electric vehicles and battery technologies 118
sustainability concerns
advanced biofuels 85, 102–3, 104
biomass power 36, 54, 58, 59
Tarascon, J. 114
technical barriers
advanced biofuels 92–8
biomass power 45–7, 47, 48
solar technologies 19
technology costs
future costs of power technologies, coefficient of variation xvii–xix
investment risks xix–xxii
RD&D spending effects xv, xix–xxii
technology transfer effects xxii
technology transfer dynamics xxii
biomass power 56
electric vehicles and battery technologies 132
knowledge spillovers, advanced biofuels 103
see also learning rate
thermal management, electric vehicles and battery technologies 125
thermal runways as potential hazard, electric vehicles 116
thermochemical conversion, biomass power 45–7, 48, 49, 55
Thin-film PV improvement costs, solar technologies 21
third generation cost concerns
advanced biofuels 86–7
solar technologies 21, 22
Tilman, D. 35, 85
Tollefson, J. 114
torreafaction technical barriers, biomass power 48
Trieb, F. 31
Tversky, A. 3
vehicles, electric see electric vehicles and battery technologies
Verdolini, Elena ix–xixv, 1–65, 85–138
Very High Temperature Reactor (VHTR), nuclear energy 80, 81
Von Winterfeldt, D. 3, 67, 68, 71
Walls, L. 3, 67, 71
waste management nuclear energy 81
see also recycling
web conferences 5
web questionnaires, nuclear energy 7–10
Wiesenthal, T. 114
Wietschel, M. 31
Wise, M. 85
Wood, T. 135
Zebra (molten salt) batteries, electric vehicles 114, 118, 120–21, 122, 123
Zickfeld, K. 71
Zn-air batteries, electric vehicles 118, 121, 122