Index

accessibility
 to terminals 126–48
 paradox with sustainability 224–5, 227, 240–241
AdT and FS (Amici della Terra’ and ‘Ferrovie dello Stato’) 163, 177
price elasticities 192–6
AHP (Analytic Hierarchy Process) 252, 255–6, 263
air pollutant emissions 180, 192–201
air transport 126–48
 access time 139–40
 access time to terminals 133, 140–144
 competition with HST 127, 144–7
 competitiveness 142–4
 disruption caused by weather 35, 37
 marginal utility of travel time 136–8, 146–7
 probability of using 143–6
Ajala, L. 102, 103
Algeciras
 port 72
 hinterland 97
Antwerp
 competitiveness 92
 hinterland 95
 Oosterweel road connection 258, 266
 port 72
Aronietis, R. 14–15, 16, 18–19
Atocha HST station 127, 129, 138–47
Bain, R. 52, 55
Banister, D. 3, 30, 227
Banville, C. 249, 257, 258
Barajas airport 127, 128, 138–46
Barcelona
 hinterland 96
 port 82, 84, 88–90
 see also Madrid-Barcelona corridor
 barge transport 38, 39, 41, 224
 barriers to entry 105–6, 114, 115
 Bay Rapid Transit System (BART) 57–8
Beddow, M. 102, 103
Bektas, E. 108, 109
Belgium 75, 81, 93
Ben-Akiva, M. 19, 134
benchmarks 58–9
 stakeholder bias 248–66
Bleimer, M. C. J. 59, 128
Borda count method 263, 265
Bradley, M. A. 130, 134, 148
Bremerhaven
 hinterland 95
 level of competitiveness 92
 port 72
Bressers, N. E. W. 235, 240
Brundtland Report 29, 225–6
buffer inventories 176
build–operate–transfer projects 55
bus travel
 effects of weather on 43–4
 Madrid-Barcelona corridor 132, 135–8
 Munich, Germany 185
Button, K. J. 50, 51, 52, 55, 58
Cable, J. R. 105, 109, 112
Campania region
 interporti 161–4
 sea-land intermodal logistics system
 in 159–60
 capacity utilization
 overprediction of 51
 rail, in Campania region 165, 175
 and weather 38–41
car ownership forecast inaccuracies 51, 56
car travel
effects of weather 42–3, 44
Madrid-Barcelona corridor 127–9, 130, 132, 135–8, 140–1, 143, 144–7
car user costs study 180–181, 199–201
methodology 181–3
relationship between car travel demand and air pollutant emissions 192–9
simulation 187–9
catastrophes, climate-related 41–2
CCNI shipping company 101, 117, 120–122, 124–5
Charleston port 76, 77, 85
Chen, Y. 187, 192
Chung, E. 42–3
climate change
climate and disruptions in transport networks 35–8
climate and travel demand 42–5
impact of catastrophes on 41–2
mitigation and adaptation 29–32
and policy 45–6, 242
weather and capacity utilization 38–41
cognitive bias 250
Combes, F. 19, 176
commercial traffic 186–7
commodity categories 76, 78, 79, 85
common ranking method 263, 265
commuter traffic 185–6
competition
in logistics chains 10, 20–21, 24
modal 126–9, 140–147
between supply chains 13–14
see also port competition
congestion charging 56
container liner shipping industry
entry and exit conditions 99–100
involvement in TOCs 25
market structure 99
operators 101
profitability of 100–103
loops 14
vertical integration by 22
see also port hinterland container logistics study
containerized trade data
data description 72–6
data source and data preparation 70–72
content analysis 1, 4–7
Coppens, F. 11, 12
Cornell, J.A. 211–12
‘corruption’ in forecasts 61
COSCO Container L. shipping company 22–3, 25, 101, 102, 103, 110, 112, 117
counting stations 190–192
CSAV shipping company 23, 101, 103, 117, 120–122, 124–5
CSCL (China Shg C.L.) shipping company 101, 102, 103, 118, 120–122, 124–5
Cullinane, K. 99, 151
Cycling 3, 42–5
Daly, A.J. 130, 134, 148
data challenges for forecasters 53–4
Davies, J.E. 99, 116–17
decision making
complexity of, in transport sector 228–9, 230, 238
forecasts as technical input into 59
need for good forecasts 49–50, 51–2
transport studies on 3–7
within supply chain 14–15
and uncertainty 61
see also multi-criteria group decision making (MGDM)
dedicated terminals 24, 26
demand side data (Munich) 184–7
Demirel, E. 38, 41
disaggregate discrete mode split model 57–8
discounting procedures 61
discrete choice experiment (DCE) 128–9, 148
dishonesty 251, 252
do-nothing solution 56–7, 66
‘doctoring’ of cases 62
Index

Drewry Shipping Consultants 22, 25, 26, 103
dry ports 151, 174
dual interport model 157–8
dynamic social context 242
dynamic view of competitive processes 104

Eads, G.C. 35, 37
EBITDA 100, 108, 117, 120–121
emission modeling tool 182–3
energy conservation study 208–10
 illustration 216–19
 mixture amount experimental designs 213–16
 mixture-amount models 210–212
energy scarcity 29
energy use 29–30
engineering
 forecasting methods based on 49, 57, 58, 59
 increased flexibility 61, 67
environmental sustainability
 air pollutant emissions 196–9
 and transport 2–3, 4–7
 paradox with accessibility 240–241
 retaining principle of 240
 see also sustainable mobility, management of
Euclidean distance 78, 80
European Logistics Centres (ELCs) 15
European waterborne exports 72–6
 experimental design approach 208–10, 213–16
extended gateway 150–153, 173–6
 applications of interport model 161–4
 sea-land intermodal logistics system 159–60
factor analysis 70
Felixstowe
 hinterland 96
 port 72
financing, more flexible 61, 67
flooding 31, 41–2
Flyvbjerg, B. 50, 51, 52, 58, 59, 60, 62
Follmer, R. 185, 189
forecasting see transportation forecasting
 composite functional space 90–91
 composition of hinterlands 81–4, 86–7
 containerized trade data 70–76
 functional space and commodity distribution 85, 89
 functional space and transport with US ports of entry 85, 88
 hinterlands of major European 95–8
MDS results and interpretation 81–91
 ports 91–3
 traffic by commodity type 79
 see also port competition
Fos
 hinterland 97
fossil fuels 29, 256
France 72, 74–5, 81, 91
freight
 combining loads 240
 flows 72, 75, 76, 91, 151
 forwarders 92, 174, 248
 impact of weather on transport 35, 42
 rates 22, 102–3
 shift in transport modes 33, 34
 shipment flows 70–71
 traffic emissions 194–5
 volumes 23
game playing 54–5, 58–9
Ganesh, L.S. 251, 252
Gatrell, A. 68, 80
Geerlings, H. 225, 226, 228, 229, 230, 233, 237, 239
Genoa
 hinterland 96
 port 81–2, 84, 88–90
Geographical Information System 138
Germany 72, 74–5, 81, 182
 see also Munich, Germany
Geroski, P.A. 99, 104–5, 106–7, 108
Gioia Tauro
 hinterland 97
 port 72
Glen, J. 107, 109
Goddard, J.A. 108, 114
Gothenburg
hinterland 97
port 81–2, 84, 88–90
governance, smart
integrative action perspective, need
for 229–31
traditional approach 228–9
greenhouse gas emissions 29–30, 153
Grin, J. 232, 235
group decision making (GDM) 250
group fragmentation 259
Gschwandtner, A. 108, 115
Hajkowicz, S. 249, 252, 263
Hamburg
hinterland 95
level of competitiveness 92
port 16–20, 72
Hanjin Shipping 22–3, 25, 101, 103,
110, 112, 117, 120–122, 124–5
Hapag Lloyd shipping company 22–3,
101, 102–3, 109, 110, 115, 117,
120–122, 124–5
Heaver, T. 24, 99
hinterlands
and port choice 14–15
connectivity 16–17, 26
of European ports 73–4, 80–86,
90–92, 95–8
operators 22
and port congestion 27
transport modes 17–18
HST (high-speed train) networks study
accessibility levels to terminals 147–8
access time to terminals 133,
140–144
presence of station 127
Spanish 126
spatial analysis 138–40, 144–7
Hülsmann, F. 181, 183
Hurricane Katrina 41
Iannone, F. 151, 153, 161, 169, 177
incentive structures 61–2, 67
infrastructure damages 41
inland water transport 38, 39, 41, 224
inner-urban traffic 185
innovation 241–2
interport models 152–3, 156–8, 161–73,
174–7
investment
flexibility 61, 67
impact of poor forecasting on 51–2
port project 16–17, 26
Italy 72, 74–5, 91
see also Campania region study
Jacquemin, A. 99, 104–5, 107
Jara-Díaz, S.R. 135, 148
K-Line shipping company 22, 101, 103,
110, 117, 120–122, 124–5
Kain, J. 51, 54, 62
KNMI 31, 32
Kruskal, J.B. 76, 78, 80
La Spezia
hinterland 95
port 72
Le Havre
hinterland 95
port 16–20, 72
Leghorn
hinterland 96
port 81–4, 88–90
Lipczynski, J. 104, 105, 113, 115, 117
Lisbon
hinterland 98
port 81–4, 88–90
Liverpool
hinterland 96
port 81–4, 88–90
load factors 38–9
logistics chains
competition 10, 20–21, 24
port as integral link in 11–13
port hinterland container 150–177
London (port)
hinterland 98
port 81–4, 88–91
London roads 51, 56
loss aversion bias 251
Louviere, J.J. 134, 209
M25 London orbital road 51
Macharis, C. 248, 250, 254, 255, 257,
258
machine-learning algorithms 71
Madrid-Barcelona corridor 126
access times to terminals 140–142
metropolitan area of Madrid 138
modal competitiveness 144–7
nature of travel in 130–133
population and employment
distribution in Madrid 138–44,
147
probability of using air transport
142–4
Maersk Line shipping company 101,
102, 103, 110–115, 117, 120–125
MAMCA (Multi-Actor Multi-Criteria
Analysis)
approach and methodology 253–5,
263, 265–6
stakeholder bias within 255–7
choice of criteria 261–2
choice of criteria weights by
actors 262
choice of stakeholders 257–61
as tool for transport evaluation
248–9, 250
Marcianise interport 159–65, 167,
171–5, 177
market intelligence method 71
market structure 1–6, 99
Martin, J.C. 126, 148
MATSim
simulation approach
choice dimensions 187
utility functions 187–8
simulation procedure 188–9
transport simulation 181–2
learning process 206
modal split 189–90
plan evaluation 205–6
plan generation 204
traffic flow simulation 204–5
Matson shipping company 101,
117–18, 120–122, 124–5
Mcfadden, D. 57, 133, 134, 148
MDS (multidimensional scaling)
analytical fitting process 78, 80
application to matrices 80
Meersman, H. 6, 10, 12, 20, 21, 22,
68, 69
MISC Berhad shipping company 23,
101, 103, 113, 117–18, 120–122,
124–5
misrepresentation of facts 251
Mitsui-OSK L. (MOL) shipping
company 22–3, 25, 101, 103, 117,
120–121, 123–5
mixture-amount experiments
experimental designs
context-dependent mixture-
amount model 216
context variables 215–16
mixture components 213
models 210–212
modal competitiveness
and access time to terminals 140–144
effect of car accessibility 129
and levels of service 127
spatial analysis of 144–7
modal split 189–90
Mueller, D.C. 104–5, 107–8, 109, 112,
113, 114
multi-criteria decision analysis
(MCDA) 249–50, 253, 255, 263
multi-criteria group decision making
(MGDM) 249–50, 252
multinomial logit (MNL) model 134
Munda, G. 250, 257, 258
Munich, Germany 184–201
Naples
in Campania region study 159–77
port 81–4, 88–91
hinterland 97
nested logit (NL) model 134–6
Netherlands 72, 74, 75, 81
changes in temperature and
precipitation 31, 32
energy prices 213
flooding problems 41–2
as leading trading country 72–3
policy making 230–231, 235–6
railway network disruptions 35, 36
trip-making and weather 43–5
see also Transumo A15 experiment
New York/New Jersey (port) 74, 76,
77, 85
Nola interport 159–77
Notteboom, T. 68, 151, 177
NYK shipping company 22–3, 25, 101,
103, 117, 120–121, 123–5
OOCL shipping company 22–3,
25, 101, 103, 113, 114, 117–18,
120–121, 123–5
Ortúzar, J. de D. 134, 135, 136
out-of-pocket expenses 14, 15–16, 18, 19, 26

People Planet Profit (P3) 1–2, 240
perceptual bias 250
Persistence of Profit (PoP) approach 116, 104–7, 107–9, 115
Pickrell, D.H. 51, 52
Piraeus
 hinterland 98
 port 81–4, 88–90
policy integration 3, 46, 229–30, 241
policy making 3–4, 56, 229–31, 235–6, 245
pollutants 29, 180, 196–9, 201
port competition
 concentration movement of terminal operators 24
 cooperation between authorities 26
 forwarding ports 68–70, 84–5
 as heterogeneous structures 12–13
 nature of 13–14
 capacity interventions assessment 16–17
 decision making within supply chain 14–15
 hinterland transport modes assessment 17–18
 port assessments 15–16
 relationship between size and performance 18–20
 concept 9–10
 extended gateway concept 151–2
 port in logistics chain 11–13
 optimization of 150
 port selection 14–15
 port hinterland container logistics 173–7
 service providers 11–12
 structural evolution within 21
 taking initiatives 26
 see also container liner shipping industry
Port Import Export Reporting Service (PIERS) 71, 91
positive confirmation bias 251
private sector forecasts 55, 60, 67
profitability measures 100
 net profit 124–5
operational results 120–121
return on sales 122–3
ROA (return on assets) as 107–8
profitability of container liner shipping industry 100–103
PROMETHEE method 255
public sector forecasts 55, 60, 66–7
Raghavarao, D. 212, 214
railway network
 cost advantages of water transport 38
 disruption caused by weather 35, 36
 as hinterland transport mode 18
 investment projects 17
 within port hinterlands logistic network 153–8, 160–169, 171–7
 and transportation forecasts 51
 see also HST (high-speed train) networks study
Ramanathan, R. 251, 252
Rand Corporation 61
random utility theory 133–4, 181, 187
RCL shipping company 101, 103, 113, 117–18, 120–121, 123–5
rent seeking behaviour 252
revealed preference (RP) approach 128–9, 130, 133–5, 208–9
Rhine
 uncertainty on water discharges 40
 water levels and load factors 39
Rietveld, P. 31, 37, 148
ROA (return on assets) 107–8
road transport
 access times to terminals 138–9
 and air pollution 182–3
 cost advantages of water transport 38
 disruption caused by weather 35, 37
 as hinterland transport mode 18
 in Munich 184, 187, 190, 196–200
 within port hinterlands logistic network 150, 153–5, 157–8, 160–164, 168–9, 171, 174–5, 177
 renting roads 62
 in Rotterdam 237–9
 and transportation forecasts 51–2, 56
Rodrigue, J.-P. 68, 151
Román, C. 126, 148
ROS (return on sales) 100, 102, 108–9, 122, 123
Rose, J.M. 59, 128
Rotmans, J. 232, 233, 234–5, 236, 238
Rotterdam 16–20, 236–8
 hinterland 95
 level of competitiveness 92
 port 72
 ‘Second Maasvlakte’ 224–5, 237
 Transumo A15 experiment 236–45
RSB 184, 185
safety stock 176
Salerno 159–77
San Francisco International Airport 35, 37
Schumpeter, J. 104
sea-land intermodal logistics system 159–60
sensitivity analyses 59, 201, 258, 263
service providers 11, 25–6
shadow prices 158, 170–173
Shepard plots 80, 81, 85–7
shipping companies
 and port selection 14–16
 as important port clients 21, 26
 as port user 11–12
 capacity increase by 23
 involvement in TOCs 25
 overcapacity 22, 27
 vertical integration by 22
simulation see transport simulation
Sines
 hinterland 98
 port 81–5, 88–91
Southampton
 hinterland 97
 port 81–4, 88–90
Spain 73–5, 81, 108, 126
 see also Madrid-Barcelona corridor
spatial analyses
 car travel and air pollutant emissions 196–9, 200
 Madrid area 138–40
 access times to terminals 140–144
 of modal competitiveness 144–7
 ‘splitting bias’ 252
 stakeholder bias in transport evaluation 248–9, 265–6
 group decision processes 250–252
MAMCA approach 253–5
 multi-criteria group decision making (MGDM) 249–50
 within MAMCA 255–62
stated preference (SP) approach 19, 59, 129–30, 134–7, 185, 209, 210, 213
Stead, D. 229, 230
Stern, N. 29, 61
strategic bias 249, 252, 255, 263, 265–6
stress/stress value 78, 80
Structure-Conduct-Performance (SCP) 104
supply chains
 competition between 13–14
 decision making 14–15
 perspective 258
 successful 25
supply side data (Munich) 184
sustainable mobility, management of
 224–5
 application of new principles in transport 231–5
 application of transition management in transport 235–44
 demand for sustainable transport 225–7
 governance reflex 228–31
 see also environmental sustainability
SWOT analysis 55, 66–7
symmetric bias 58
Sys, C. 99, 110, 117
Tennessee–Tombigbee Waterway project 62
terminal operating companies (TOCs) 10, 21, 25
terminals
 access times to and modal competitiveness 140–144, 147–8
 differences in access time to 130–133
TEU (Twenty-foot Equivalent Unit) 72–5, 79, 95–8
Thore, S. 153, 161, 169, 177
threat of entry 99, 103–4, 105–7, 117
traffic
 commercial 186–7
 commuter 185–6
 inner-urban 185
traffic flows 52, 53, 55, 158, 182–3, 240
transition management in Dutch transport policy making 235–6
concept 231–4
flexible project architecture 243–4
Transumo A15 experiment in the Rotterdam Port area 236–42
transport
transparency 229–30, 265–6
application of new principles 231–5
classification of studies 1–7
climate change adaptation 29–46
demand for sustainable 225–7
transport policy 1-7
transport evaluation see stakeholder bias in transport evaluation
transport simulation approach
choice dimensions 187
utility functions 187–8
with MATSim 181–2, 204–6
procedure 188–9
transportation forecasting 49–50, 62–3
causes of mis-forecasting
implementing forecasts 53–4
technical problems 52–3
using forecasts 54–5
scale of problem and impacts 51–2
SWOT analysis 55, 66–7
bringing more views into 59
correction factors 58–9
do-nothing solution 56–7
engaging private sector 60
flexible financing and engineering 61
forecast methodologies
improvement 57–8

improve incentive structures 61–2
Transportation Research Board (TRB) 226, 227
Transumo A15 experiment 236–45
trips, effects of weather on 43–5

Turcksin, L. 256, 258

UASC shipping company 22–3, 101, 117–18, 120–121, 123–5

UASC shipping company 22–3, 101, 117–18, 120–121, 123–5

uncertainties in climate change 31–2, 39–41, 45
and forecasting 59, 61, 66–7
United Kingdom 73–5, 81
urban bus performance 43
US-bound containerized traffic 72–5, 79, 95–8
US ports of entry 76–7, 85

Valencia
hinterland 96
port 72
value trees 250, 252
Van de Voorde, E. 3, 6, 7, 9, 10, 11, 20, 21, 22
van Wee, B. 50, 54
Vanelslander, T. 6, 9
Veldman, S. 9, 69
Verhoeff, J.M. 9, 13
vessel operating common carriers 100
virtual interport nodes 153–6, 157

Wachs, M. 50, 54–5, 56–7, 62
Wan Hai Lines 23, 101, 103, 117, 120–121, 123–5
Waring, G.F. 104, 108
water levels 34, 39
weather and capacity utilization 38–41
disruption to transport networks 35–8
warnings 38
willingness to pay (WTP) measures 128
Willumsen, L.G. 134, 136
Wilson, J.O.S. 108, 114
Wish, M. 76, 78, 80

World Commission on Environment and Development (WCED) 29, 225–6
Yang Ming Line 22–3, 25, 101, 103, 110, 117, 120–121, 123–5
Yurtoglu, B. 107, 108, 109

Zeebrugge, port of 16–20

ZIM shipping company 22–3, 101, 117, 120–121, 123–5