Index

Activity Analysis (Koopmans) 24
adjusted net saving (genuine saving) 115
Ahmad, N. 151
Aldermashian, H. 474
Allan, G.J. 338–40, 350
Almon, Clopper 7, 16, 24–6, 160
almost ideal demand system (AIDS) 362
The American Economy to 1975 25
Amores, A.F. 168, 391, 430
Andrew, R. 409
Antràs, P. 306, 314
Arbel, A. 470
Armington, P.S. 367
Armstrong, P.A. 159, 166, 167
Aulin-Ahmavaara, P. 231
average propagation lengths (APLs) 305
Azevedo, I.L. 346, 348
Baboulet, O. 207
Bacharach, M. 99
balance of payments (BoP) 63
balancing supply and use table 97–108
automatic procedures 107
basic identities 106
error-search procedures 107
plausibility and credibility, of data 106–7
sequential balancing 107–8
simultaneous balancing 107–8
Balassa, B. 299
Baldwin, Richard E. 278, 286, 300, 305, 313
Baldwin, Robert 308, 309
Balk, B.M. 238
Basu, S. 375
Bems, R. 320
Bernard, A.B. 284
bill of goods 9
Black, M. 237
Blair, P.D. 408
Bouwmeester, M.C. 107, 196, 409
Bowen, H.P. 310, 311
Braschler, C. 429
Briggs, F.E.A. 427
Brown, D.M. 428
Bullard, C.W. 425, 444, 454
Bureau of Economic Analysis (BEA) 11
Bureau of Labor Statistics (BLS) 15, 17, 29
Burnside, C. 375
Bussière, M. 320
Byron, R.P. 99
Campa, J. 281
Canadian economy 396, 397
carbon footprints 184–5
Carroll, C.D. 367
Carter, Anne 7, 16
Carvalho, V.M. 320
Cas, A. 231
causal indeterminacy, instability 470–72
Caves, D.W. 238
Cella, G. 390
Central Product Classification (CPC) 46, 49
Champernowne, D.G. 99
Chen, X. 281, 286
Chi, A.C. 476–8
Christ, C.F. 423–5, 433, 453
closed dynamic input–output system 468–9
Čmiel, A. 451
Cobb–Douglas utility function 362
Coelli, T. 238
COICOP (Classification of Individual Consumption According to Purpose) 72, 73
decommodity-flow method 69–71, 129
see also product flow method
decommodity technology 29
decomplementarity problem 387, 388
computable general equilibrium (CGE) model 27, 349, 355–70, 473
full-fledged CGE model 362–5
household consumption in 367–9
production and trade in 365–7
SAM multiplier model 361–2
static input–output approach 357–61
Conference on Research in Income and Wealth (CRIW) 10
constant elasticity of substitution (CES) model 363
COPNI (Classifications of the Purposes of Non-Profit Institutions Serving Households) 72, 73
Costinot, A. 313, 315
cost, insurance, freight (CIF) price 56, 66, 74
Cruz, J.B. Jr 474
cultural values 267–8

Daly, H.E. 342, 343
Danilov, D. 448
data envelopment analysis (DEA) 237–8, 381
Davis, D.R. 310–11
DEA 239, 398
De Backer, K. 295, 307
Debreu, G. 372, 382
Dedrick, J. 279
De la Cruz, J. 286
demand-driven environmental IO model
footprint accounting 334–7
interregional input–output framework 334–7
materials balance principle 341–3
polluting externalities, cleansing industries 337–40
pollution generation and 332–43
single region/country framework 332–4
demand-side models 253
descriptive indicators 286–307
global economic structure, perspectives 287–91
global value chain indicators 296–300
value-added exports indicators 301–7
vertical specialization indicators 291–6
De Vries, G.J. 282, 293
Dietzenbacher, E. 284, 286, 293, 297, 305, 426, 435–7, 445
Diewert, W.E. 237, 239, 382
Di Giovanni, J. 321
direct material consumption (DMC) 186
Dixon, P. 356
Doeksen, G.A. 409
Domar aggregation approach 234, 394
Domar decomposition 395–6
domestic commodity price 359
domestic extraction (DE) 186
Drivers-Pressure-State-Impact-Response (DPSIR) framework 181, 191
Druckman, A. 345
dual price set 379–80
Duchin, F. 470
Dwyer, P.S. 422–3
dynamic inoperability input–output model 477
dynamic input–output model
closed dynamic input–output system 468–9
dynamic Leontief models 469–72
extended models, environmental account 474–5
growth model, integration 473
Leontief’s 465–9
open dynamic input–output system 465–7
dynamic interaction effect 246
dynamic Leontief models 469–72
capital matrix, singularity of 470
causal indeterminacy, instability 470–72
dynamic variable input–output models 478

Ebiefung, A.A. 349
ecological footprint 181–4
Economic Census 10, 14, 30
economic–environmental interaction 329, 330
Economic Systems Research 6
economies, system of 386–8
economy–environment nexus 330–32
Edmonston, J.H. 157

efficiency change 233–6
input–output framework 238–9
emissions embodied in bilateral trade (EEBT) 203
employees, compensation 46, 72
employment sponge 245
endogenous variables 410
Engel’s Law effect 251
environmental accounting, history of 178–80
environmental-economic accounting system 108–17
accounts and tables 110
monetary supply and use tables (SUTs) 110–16
parts of 116–17
physical supply and use tables (PSUTs) 110–16
environmental economics 329–52
environmental footprints 175–216
aggregation error 196, 197
bilateral trade methods 194–5
business 206–7
carbon footprints 184–5
case studies 196, 198–216
countries 198–202
ecological footprint 181–4
embodiment approach 178
environmental impacts, environmental pressures 191
goals and scope of 177–8
historic analysis versus modeling 195
households 207–8, 211
indicators used in 181–8
input–output framework, environmental extension 189–90
land footprints 187–8
life-cycle approaches 190–91
link to policy 210, 212–16
material footprints 185–7
methodological frameworks 188–96
multiregional input–output analysis 191–4
of population 183
production and trade coefficients 195
product level 208–9
subnational studies 203–4, 206
trade 203
trade, impacts 194
water footprints 187
environmental policies extension 398–402
empirical applications 400–402
theory 399–400
equation nomenclature 188
Ethier, W.J. 312
European Emissions Trading System 336
European System of Integrated Economic Accounts method 165
Eurostat 151
Eurostat Manual of Supply, Use and Input–Output Tables 43, 48
Evans, W.D. 422–4, 433, 453
Extended dynamic Leontief models 472
factor contents 224–8
consolidated coefficients and 242–3
Fally, T. 306, 314
Färe, R. 238, 398
Farrell, M.J. 372
feasibility constraints 376–9
Feenstra, R.C. 281–2
Fernald, J. 375
Fernández-Vázquez, E. 449, 450
financial balance axiom 148
First Law of Thermodynamics 111
First Welfare Theorem 4
Fisher, I. 234
fixed capital, consumption of 72
fixed industry sales structure assumption 139
fixed product sales structure model 140
Flám, S.D. 434
Foran, B. 207
Ford, D. 350
Forssell, O. 342
FORTRAN model 25
Foster-McGregor, N. 293
Foundations (Samuelson) 24
Fox, G. 439, 452
free-on-board (FOB) price 56, 63, 66, 74
F-test 153
full-fledged CGE model 362–5
The Future of the World Economy 23

Index 491
492 Handbook of input–output analysis

Gale, L.R. 350
Garhart, R. Jr 444
Gauss-Seidel solution algorithm 358
General Business Register 44, 67
general equilibrium analysis 355–70
generalized RAS method (GRAS) 107
Georgescu-Roegen, Nicolas 24
Gerking, S.D. 427, 428
Giarratani, F. 428
Gigantes, T. 159, 166
global economic structure 287–91
Global Trade Analysis Project (GTAP) 311
global value chains (GVCs) 286, 289, 295, 316, 319
indicators 296–300
Goicoechea, A. 433
Goldberg, L.S. 281
goods and services account 94, 96
greenhouse gas (GHG) emissions 184, 331
Greenhouse Gas Protocol Corporate Standard 184
gross domestic product (GDP) 43, 46, 47, 54, 125, 128, 278, 291, 360
Grosskopf, S. 238
gross national income (GNI) 116
gross value added (GVA) 45, 64, 71–2
Guau, D.B. 337
Guerra, A.I. 346, 348
Gurgul, H. 409, 451
Gustafson, E.F. 428
Haimes, Y.Y. 477
Handbook of Input–Output Table Compilation and Analysis 27, 48
Haneman, D.J. 428
Hansen, D.R. 433
Hanson, G.H. 281, 282
Harvard Economic Research Project (HERP) 7
beginning of 18–20
International Conferences 22–3
International Input–Output Association 22–3
Leontief and 15–17
1583 Massachusetts Avenue, offices 21–2
post-Harvard era 23
postscript 27
Hawdon, D. 350
Hecksher–Ohlin models 277, 286, 308–12
Hecksher–Ohlin–Samuelson (HOS) model 308
Hecksher–Ohlin–Vanek (HOV) model 296, 310
Henderson, A. 424
Hertwich, E.G. 206, 207
Hewings, G.J.D. 409, 426, 479
Hillberry, R. 314
Hoecka, R. 474
Hoen, A.R. 297
Hoffenberg, Marvin 10
household final consumption expenditure 47
Huang, Y.A. 206
Hubacek, K. 337
Hulten, C.R. 230, 232
Hummels, D. 288, 291, 294
income account 94, 96
income–expenditure identity 378
index numbers 236–7
industry-by-industry input–output tables 125, 126, 139–40, 147–51
analytical potential 143
comparability 143
transparency 143
industry profits 377–8
industry technology assumption 152
industry technology model 138
inforum model 24–6
Inomata, S. 283
input–output accounting framework 135
input–output coefficients 1, 2, 5
construction of 133–71
see also input–output (IO) tables
input–output efficiency measures 486
input–output (IO) methods
energy rebound effects 344–8
physical waste and 344
price effects 348–50
problems of implementation 350–51
supply constraints 348–50
technology change 348–50
water and 343
input–output (IO) tables 7–37, 41–3
of Andalusia 154

Downloaded from Elgar Online at 09/02/2019 01:53:46AM
via free access
Index 493

assumptions, testing 151–6
axiom fulfillment by 145
beginnings 7–15
choice of type of 141–3
consistency over time 31
constant price tables 31–3
construction, generalized forms 135–41
development of 1947 10
devision of labor 6–10
empirical evidence 154–6
EU practice 140–41
factual basis 30
industry-by-industry 139–40, 147–51
internal consistency 31
measurement problems 248–54
myths of 27–34
NAICS 14–15
prices, and income 248–54
product-by-product 137–9, 144–7, 152–4
purchasers’ prices 156
purity 33–4
service industries, interconnectedness 245–71
structural change 248–54
1958 table 11–12
1972 table 12–13
1963 and 1967 tables 12
1997, 2002 and 2007 tables 14–15
technical coefficients 240–41
theoretical properties of 144–51
institutional factors 265–8
interindustry productivity differentials 248
Internal Revenue Service (IRS) 13
international fragmentation, production process 316
International Input–Output Association 22–3
International Input–Output Statistics (IIO) 63
international trade 378–9
input–output analysis of 277–323
intersectoral inefficiency spillover 391
investment irreversibility 465
IO-based general equilibrium analysis 372–404
allocative efficiency 390
behavioral assumptions 375–6
competitive pressure and welfare distribution 392–3
complementarity analysis 382–8
constant returns to scale (CRS) 375
data and fundamentals 374
of efficiency 373–82
efficiency decompositions 389–90
efficiency types 388–93
environmental policies 398–402
feasibility constraints 376–9
free trade gains 388–9
frontier analysis, distance functions and efficiency 379–82
industrial organization efficiency 391–2
industrial specialization efficiency 391–2
industry efficiency and spillovers 390–91
linear programming 382–8
technology 375
TFP growth 393–8
trade efficiency 390
welfare effects 388–93
X-efficiency 390

Jackson, R. W. 411, 441, 452
Jackson, W. R. 409
Janssen, M. A. 474
Jensen, R. C. 444, 453
Johnson, L. 356
Johnson, R. C. 301–2, 304, 320, 321
Jorgenson, D. W. 356, 469
Kagawa, S. 379, 400, 401
Karstensen, J. 446
Keynes, J. M. 365
Kiedrowski, R. 471
Kocklauener, G. 428
Konijn, P. J. A. 161, 163, 166, 169
Koopman, R. 286, 293, 295, 296, 299, 305
Kop Jansen, P. S. M. 144–5, 151, 161, 169, 409, 436–8, 453
Kostreva, M. M. 349
Kratenka, K. 356
Krugman, P.R. 312
Kurz, H.D. 473
Kym, K.O. 409
Kyoto Protocol 398, 400

labor market institutions 266–7
labor productivity 228
Lahiri, S. 434–5
Lahr, M.L. 409
land footprints 187–8
Lange, G.-M. 350
Lantner, R. 475
Larsen, H.N. 206, 207
Leamer, E.E. 310
Lecca, P. 345, 346
Lennox, J. 409
Lenzen, M. 141, 196, 206, 207, 331, 350, 409, 445, 446
Leontief-Duchin-Szyld model 473
Levchenko, A.A. 321
Levine, S.H. 475–6
Lian, C. 477
Liew, C.J. 478, 480
Liew, C.K. 478
life-cycle assessment (LCA) 176, 190, 409
linear expenditure system (LES) 356, 370
Little, C.H. 409
Lopez-Gonzalez, J. 300, 305
Los, B. 282, 293, 297, 300, 320, 473
Lowe, I. 183
Luenberger, D.G. 470
Luengo-Prado, M.J. 367, 369
Lugovoy, O. 449
Machado, A.C. 180
Magnus, J.R. 448
Mangasarian, O.L. 163
Maskus, K.E. 310
material footprints 185–7
materials balance principle (MBP) 341–3
Mattey, J. 169, 430
McCamley, F. 432, 438, 453
Meade, D.S. 2
Meade, J.E. 99
Melitz, M.J. 284, 312, 317
Meng, B. 283
Mickle, M.H. 474
micro-based national accounting 485
Miernyk, W.H. 407, 428
Miller, R.E. 107, 180, 408, 446
Minx, J. 336
Miroudot, S. 295, 307
Mohren, P. 239, 242, 309, 389, 396
Monte Carlo analysis 411, 443–7
Morrison, C.J. 239
Morrison, W.J. 422
Mules, T.J. 475
multipliers 224–8
multiregional input–output (MRIO) analysis 3, 191–4, 203
multiregional IO studies 20
multiregional variable input–output (MRVIO) model 478
Munksgaard, J. 336
mutatis mutandis 261

National Accounts Review (NAR) 11
National Bureau of Economic Research (NBER) 8, 9
National Income and Product Accounts (NIPA) 15
negative product technology coefficients 157–63
activity technology model 161
Almon procedure 160
Armstrong procedure 159–60
non-negativity conditions 163
Rainer procedure 160–61
rectangular matrices 163
Stahmer procedure 161–2
Steenge procedure 161
United States procedure 162–3
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nestor, D.V.</td>
<td>340</td>
</tr>
<tr>
<td>net operating surplus</td>
<td>72</td>
</tr>
<tr>
<td>Neumann expansion, differential operator</td>
<td>26</td>
</tr>
<tr>
<td>Nijkamp, P.</td>
<td>451</td>
</tr>
<tr>
<td>Noguera, G.</td>
<td>301, 302, 304</td>
</tr>
<tr>
<td>Nomaler, Ö.</td>
<td>307</td>
</tr>
<tr>
<td>non-profit institutions serving households (NPISHs)</td>
<td>47, 64, 73</td>
</tr>
<tr>
<td>North American Industry Classification System (NAICS)</td>
<td>14–15</td>
</tr>
<tr>
<td>Office of Business Economics (OBE)</td>
<td>11</td>
</tr>
<tr>
<td>offshoring</td>
<td>268</td>
</tr>
<tr>
<td>Okuyama, Y.</td>
<td>476</td>
</tr>
<tr>
<td>Oosterhaven, J.</td>
<td>196, 305, 409</td>
</tr>
<tr>
<td>open dynamic input–output system</td>
<td>465–7</td>
</tr>
<tr>
<td>ordinary least squares (OLS)</td>
<td>427</td>
</tr>
<tr>
<td>Organisation for Economic Co-operation and Development (OECD)</td>
<td>151, 284</td>
</tr>
<tr>
<td>Pan, H.</td>
<td>349, 377, 392</td>
</tr>
<tr>
<td>Park, S.-H.</td>
<td>424, 425, 444</td>
</tr>
<tr>
<td>Pasinetti, L.</td>
<td>297</td>
</tr>
<tr>
<td>Pasurka, C.A.</td>
<td>340</td>
</tr>
<tr>
<td>Pearson, P.</td>
<td>350</td>
</tr>
<tr>
<td>Pedersen, K.A.</td>
<td>336</td>
</tr>
<tr>
<td>Pei, J.</td>
<td>286</td>
</tr>
<tr>
<td>Perkins, D.H.</td>
<td>282</td>
</tr>
<tr>
<td>Peters, G.M.</td>
<td>207</td>
</tr>
<tr>
<td>Peters, G.P.</td>
<td>214, 409</td>
</tr>
<tr>
<td>Petroeschevsky, A.</td>
<td>183</td>
</tr>
<tr>
<td>Pica, G.</td>
<td>390</td>
</tr>
<tr>
<td>polar decompositions</td>
<td>262, 263</td>
</tr>
<tr>
<td>polarization condition</td>
<td>266</td>
</tr>
<tr>
<td>Polenske, K.R.</td>
<td>342</td>
</tr>
<tr>
<td>price differentiation</td>
<td>359</td>
</tr>
<tr>
<td>probability density function (PDF)</td>
<td>411, 439–43</td>
</tr>
<tr>
<td>product-by-product input–output tables</td>
<td>122–4, 137–9, 144–7, 151, 152–4, 485</td>
</tr>
<tr>
<td>input structure</td>
<td>143</td>
</tr>
<tr>
<td>product flow method</td>
<td>129</td>
</tr>
<tr>
<td>production account</td>
<td>94, 96</td>
</tr>
<tr>
<td>production factors</td>
<td>377</td>
</tr>
<tr>
<td>production matrix</td>
<td>58–60</td>
</tr>
<tr>
<td>production possibility set</td>
<td>379</td>
</tr>
<tr>
<td>productivity</td>
<td>224</td>
</tr>
<tr>
<td>input–output framework for</td>
<td>254–8</td>
</tr>
<tr>
<td>input–output framework of</td>
<td>229–33</td>
</tr>
<tr>
<td>observed prices</td>
<td>241–2</td>
</tr>
<tr>
<td>shadow prices</td>
<td>241–2</td>
</tr>
<tr>
<td>productivity growth</td>
<td>225, 228</td>
</tr>
<tr>
<td>product market competition</td>
<td>267</td>
</tr>
<tr>
<td>product price invariance</td>
<td>148</td>
</tr>
<tr>
<td>product technology assumption</td>
<td>152, 153</td>
</tr>
<tr>
<td>product technology model</td>
<td>138, 147</td>
</tr>
<tr>
<td>resources and timeliness</td>
<td>143</td>
</tr>
<tr>
<td>product-to-product (PTP) algorithm</td>
<td>33</td>
</tr>
<tr>
<td>Pyatt, G.</td>
<td>355, 357, 369</td>
</tr>
<tr>
<td>Quandt, R.E.</td>
<td>431, 432, 443</td>
</tr>
<tr>
<td>quantity equation</td>
<td>133, 144</td>
</tr>
<tr>
<td>Quirk, J.</td>
<td>439, 452</td>
</tr>
<tr>
<td>Rainer, N.</td>
<td>160</td>
</tr>
<tr>
<td>Rao, D.S.P.</td>
<td>238</td>
</tr>
<tr>
<td>raw material consumption (RMC)</td>
<td>186</td>
</tr>
<tr>
<td>raw material equivalents (RME)</td>
<td>186</td>
</tr>
<tr>
<td>rebound value</td>
<td>344</td>
</tr>
<tr>
<td>Rees, W.E.</td>
<td>183</td>
</tr>
<tr>
<td>regional purchase coefficients (RPCs)</td>
<td>444</td>
</tr>
<tr>
<td>Reimer, J.J.</td>
<td>311</td>
</tr>
<tr>
<td>relative standard deviations (RSDs)</td>
<td>446</td>
</tr>
<tr>
<td>residual sum of squares (RSS)</td>
<td>153, 154</td>
</tr>
<tr>
<td>Rey, S.J.</td>
<td>447</td>
</tr>
<tr>
<td>Richter, J.</td>
<td>160</td>
</tr>
<tr>
<td>Rickman, D.S.</td>
<td>449</td>
</tr>
<tr>
<td>Robinson, S.</td>
<td>364, 365</td>
</tr>
<tr>
<td>Rodrigues, J.F.D.</td>
<td>449</td>
</tr>
<tr>
<td>Rodriguez-Clare, A.</td>
<td>315</td>
</tr>
<tr>
<td>Roland-Holst, D.</td>
<td>445</td>
</tr>
<tr>
<td>Romanoff, E.</td>
<td>475–6</td>
</tr>
<tr>
<td>Romero, I.</td>
<td>305</td>
</tr>
<tr>
<td>Rose, Adam</td>
<td>486</td>
</tr>
<tr>
<td>Rueda-Cantuche, J.M.</td>
<td>141, 144, 147, 151, 154, 157, 168–9, 430, 445, 450</td>
</tr>
<tr>
<td>Rymes, T.K.</td>
<td>231</td>
</tr>
</tbody>
</table>
Handbook of input–output analysis

Sahoo, A. 393
Salvadori, N. 473
Sancho, F. 346, 348
Satchell, S. 434, 435
scale invariance 149
Schäfer, D. 340
Schilderinck, J.H.F. 283
Schumpeter, J. 241
SCOOP (Scientific Computation of Optimum Programs) 10
Sebald, A.V. 425, 444, 454
secondary outputs treatment approaches 163–7
inputs and outputs transfer, methods 166–7
transfer of outputs, methods 165
Second Law of Thermodynamics 111
Second Welfare Theorem 4
sector accounts 89–97
sector-by-industry table (cross-table) 97
SEEA Applications and Extensions 116
Selden, Richard 24
service industries interconnectedness 245–71
service industries, value added 248–54
incomes and tertiariization 251–3
price and income elasticities 249–50
price changes and interindustry productivity differentials 250–51
service growth and measurement issues 248–9
structural change and long-run growth 253–4
Sherman, J. 422
Shestalova, V. 233, 239, 350, 373, 377, 379, 396, 397, 401, 447
shift effect 246
shift-share analysis 246
Sikdar, C. 389
Simonovits, A. 433, 434
Simpson, R.W. 183
single closed economy 383–5
small open economy 385–6
social accounting matrix (SAM) 348, 355, 369, 370, 374
multiplier model 361–2
social metabolism 185
Solow residual 394
Solow, R.M. 230, 236, 464, 469, 471
Sonis, M. 426, 479
Sorrell, S. 344
Sraffa, P. 8, 348
Stadler, K. 196
Stahmer, C. 161, 162, 340
Statistical Office of the United Nations 42
Steel, M.F.J. 436
Steenge, A.E. 161, 163, 166, 169, 471–2, 478
Steen-Olsen, K. 196, 207
Stehr, R. 293
Stevens, B.H. 409
Stone method 167
Stone, Richard 5, 42, 99
Streicher, G. 356
The Structure of American Economy 9
Studies in the Structure of the American Economy 19
supplementary tables 14
supply and use tables (SUTs) 48–55, 357, 430
balancing 97–108
for domestic output and imports 88, 90
fixed industry sales structure assumption 119, 122
fixed product sales structure assumption 119, 122
industry technology assumption 119
IO tables in practice, use of 128–9
product technology assumption 119, 122
sector accounts 89–97
symmetric input–output tables transformation 117–29
transformation, database for 117–19
transformation models, (IO) framework 119–27
supply-side accounts 250
supply tables 56–64
compilation of 58
goods and services imports, compilation 60–63
production matrix, compilation 58–60
and valuation matrices 83, 84
valuation matrix, compilation 63–4
see also supply and use tables
supply-use-based econometric (SUBE) approach 430
Sveikauskas, L. 310
Swan, T.W. 464
symmetric input–output tables 49, 50
System of National Accounts (SNA) 109
balancing process 99
brief history of 41–3
System of National Accounts 2008 (SNA 2008) 41
Szyld, D.B. 470, 471
Takayama, A. 468, 470, 471
Tamba, M. 346
taxes less subsidies 72
products 79–83
technical change 233–6
temporal decomposition technique 479
Temurshoev, U. 107, 446, 450
terms-of-trade effect 394–6, 398
tertiarization 258–65
Balmond disease 264
employment analysis and vertical integration 261–4
productivity gains, industries 260–61
service productivity 264
servitization, goods and services 265
Thage, B. 151
Thissen, M.J.P.M. 471, 472, 478
Thomas, B.A. 346, 348
Thorlund-Petersen, L. 434
time lag production model 476
Timmer, M.P. 282, 293, 297, 299, 300
Törnqvist, L. 234
total factor productivity (TFP) growth 229–34, 248, 257, 258, 261, 311, 366, 393–8
behavioral assumptions 235
data 235
data envelopment analysis 237–8
defined 395
definition of 235–6
empirical applications 396–8
index numbers 236–7
mainstream approaches to 236–8
Solow’s residual 236
technology 235
theory 394–6
total material requirements (TMR) 186
Trade in Value-Added (TiVA) database 284, 286
trade issues
global input–output tables 282–6
increasing, in intermediate inputs 279–82
input–output data 279–86
trade margins 76–8
trade, offshoring and 268
trade theories, testing 308–16
Heckscher–Ohlin models 308–12
inter-industry trade and producer heterogeneity 312–13
internationally fragmented production 313–16
transport margins 78–9
Trefler, D. 296, 310–12
Tukker, A. 284
Turner, K. 336, 337, 344
two-earner households 267–8
two-stage least squares (2SLS) estimators 427, 428
uncertainty treatment 407–56
Bayesian and entropy approaches 447–50
deterministic error analysis 420–26
econometric statistical approaches 426–31
input–output uncertainty 407–10
literature, roadmap and macro-overview 410–12
Monte Carlo analysis 443–7
non-Bayesian/cross entropy statistical approaches 426–31
probabilistic approach 431–9
probability density function 439–43
random error analysis 431–9
scope of survey 407–10
sources and solutions, notations and
details 412–20
UN *Handbook of Input–Output
Compilation and Analysis* 141
United Nations Intergovernmental
Panel on Climate Change
(UNIPCC) 175
United Nations Statistical Commission
(UNSC) 42
United Nations System of National
Accounts 1
UNIVAC I 24–6
UN Revised System of National
Accounts 157
use tables 64–74
compilation of 67
exports, goods and services 74
final consumptions expenditure
72–3
gross capital formation 73–4
gross value added 71–2
input approach 67–9
intermediate consumption 71
matrices 64
objectives 64
output approach 69–71
and valuation matrices 83, 85–7
*see also* supply and use tables
valuation matrices 63–4, 75–87
and supply table 83, 84
taxes less subsidies 79–83
trade margins 76–8
transport margins 78–9
and use table 83, 85–7
value-added exports (VAX) indicators
286, 289, 301–7
value change 100
value of output 100
value of supply 100
Van der Linden, J.A. 305
Van der Ploeg, R. 161, 429
Vanek, J. 310
Van Tongeren, J.W. 448
variable input–output (VIO) model
478
Venables, A.J. 313
Verspagen, B. 307
vertical specialization (VS) indicators
286, 291–6
Victor, P.A. 341, 342
virtual water 343
Vogel, J. 313
Vogt, W.G. 474
Von Bortkiewicz, L. 8
Wackernagel, M. 183
Wainwright, K. 476–8
Walras, Leon 8
Wang, S. 313
Wang, Z. 286, 293
Watanabe, T. 283
water footprints 187
Waugh, F.V. 422, 423
Weinstein, D.E. 310, 311
Wei, S.-J. 286, 293
welfare state 266–7
West, G.R. 355, 356, 409, 425, 435,
436, 444, 452
Wiedmann, T. 336
Wilting, H.C. 446
within-industry effect 246
Wolff, E.N. 230, 242, 243, 297
Woodbury, M.A. 422
Wood, R. 196, 207
World Bank 116
World Input–Output Database
(WIOD) 281, 293, 294, 300, 307,
317, 351
Wurtele, Z.S. 472
Yamano, N. 151
Yang, C. 286
Yi, K.-M. 288, 315
Young, A. 162
Zhang, J.S. 473
Zhang, Y. 283
Zhu, K. 293
Zhu, S.C. 296, 311, 312

*Handbook of Input–Output Analysis*