Index

access
to train stations
population distribution and access to stations 132–4

time
modes
accessibility
basic level of 4–5
definitions 3, 211
criteria for selection of indicators 217
description of selected indicators 217–19
in European road and rail transport 210–40
Hansen-style measure of 60
high-speed rail networks, levels of 125–40
impact of mobility costs on, in Munich 83–106
indicator, potential accessibility 217–18, 227–9, 231–2, 235–7, 239
indicator, potential-demand accessibility 218, 227–9, 231–3, 235–7, 239–40
industrial 167–84
justice-oriented 5
labour market, 64–6, 77
link to efficiency and equity 4–5
measures of
calculations 129–30, 134–5
European transport 211–14, 217–19, 223–40
simple vs. complex 36
types 29
uses 216
see also Gini coefficient for accessibility; Gini index for accessibility, public transport accessibility

population
depopulation in Norway 55–78
in Huambo, Angola 112–13, 116–18
in Madrid-Levante HSR corridor 132–4, 137–8
in Portuguese interior 33–52
in Swiss municipalities 11–29
public transport
factors, improvements dependent on 33
HSR 139–40
time constraints 37
weakening over time 12, 23–8
rail transport, Europe
existing patterns of 223–4, 239
increasing with cohesion infrastructure 227, 231–3, 239
indicator results 233, 238
measure of dispersion in 235, 237
spatial distribution of 224, 226–7
road transport, Europe
existing patterns of 223–4, 239
increasing with cohesion infrastructure 227–30, 239
indicator results 233, 238
measure of dispersion in 235–6
spatial distribution of 224–5, 227
shrinking services 37–8
train station access and train use in Netherlands 144–6
use, and costs, in Munich 85–106
Adamos, G. 127, 140
Anderson, S.T. 195–6, 200–201, 204
Axhausen, K.W. 13, 15, 29
Banister, D. 3, 11, 15, 125–8, 139
Ben-Akiva, M.E. 15, 146
Berechman, J. 3, 15, 125
Accessibility, equity and efficiency

bicycle trail access
literature and concepts 194–6
and livability 193, 207
measures and methodology
density of bicycle facilities 200–201
distance to bicycle facility 199–200
bicycle travel 148–64
borders 14–15, 27, 40, 45, 119, 175–6, 178
Brasington, D.M. 194, 199
Bröcker, J. 125, 127–9
Brons, M. 125–6, 129, 139, 146, 162
Brownlee, A.T. 33, 37
Bruinsma, F. 35, 212
Buehler, R. 144, 146
bus/tram/metro (BTM)
as station access modes 148–64
 Büttner, B. 83–5, 87–8, 90
Button, K. 35, 127, 182–6
Campa, J. 125–7, 129, 140
cantons see Swiss municipalities
car
as station access mode, 148–64
Carteni, A. 146, 158
Cascetta, E. 146, 158
CBD (central business district)
and house prices 65–73, 77
Chanta, S. 111, 119
Cherchi, E. 144–5, 152, 154–5
Chi, G. 34–6, 50, 52
Christaller, W. 11, 111, 114
co-funding project see Cohesion Fund
infrastructure project; ERDF
(European Regional Development Fund)
Cohesion Fund infrastructure project
accessibility results 239–40
changes in rail transport accessibility 234
changes in road transport accessibility 230
coverage 219–22
description 214–15
goal of 210
testing impacts 210–11
commuting
and accessibility 59
attractiveness, zones for 61–3
in Munich 91, 94–101, 103–4, 106
in Norway 75–6
as counterforce against centralization 56
house prices and peripheral population 65–7
link to labour market 3
location choices and travelling costs 64
connectivity
within first/last mile trips 130–31, 136–8
ICON index formulations 128
importance of, to HSR networks 125–7, 139–40
road, as usual mode for rail services 139
containerization 171
daily accessibility indicator 218–19, 228–9, 233, 235–40
daily activities, accessibility to see mobility costs study
data envelopment analysis (DEA) 128, 180
demand elasticities 179–80
distance decay parameters 217–23
efficiency, economic
link to accessibility and equity 4–5
spatial allocation of public resources 109–10
relation with equity 115, 118–19
of US freight railroads 167–84
egalitarian theories 5
equity
defining 3–4
horizontal 4
generational 4
link to accessibility and efficiency 4–5
outcome, indicators for quantifying 4
social 4
spatial
Gini index for accessibility 112–15, 117–19
issues in Africa 109–10
meaning 4
relation with cost-efficiency 118–19
territorial 4, 139, 239–40
transportation, as difficult to analyse 4
types of 4
Erath, A. 15–16, 29
ERDF (European Regional Development Fund)
accessibility results 239–40
changes in rail transport accessibility 234
changes in road transport accessibility 230
coverage 219–22
description 214–15
goal of 210
testing impacts 210–11
ESPON 213, 216
European Commission 168, 176, 210, 213–16
European transport
Cohesion Fund and ERDF projects for transport infrastructure 214–15
data and methodology
assumptions to estimate impact of improved infrastructure 222–3
description of data and transport model 219–22
freight railroads, comparison with US 175–9
introduction 210–11
results 223–38
study conclusions and further research 238–40
European Union 139, 214–15
first mile trips
as access to HSR station 126, 129
evaluation of importance of 130–31
in Madrid-Levante corridor 136–8
freguencias see Portugal
freight railroads
and accessibility 167–8
changing railroad deregulation and consumer accessibility 168–72
economics of US
demand elasticities 179–80
productivity measures 180–83
factors affecting performance 178–9
outcome of reforms 172–7
patterns of operation 173–4
study conclusions 183–4
Fröhlich, P. 15–16, 29
Garmendia, M. 125, 127, 139
Geurs, K.T. 3–5, 11, 15, 29, 36, 87, 128, 139, 149, 184, 212, 217
GIS 88, 114, 126, 129–30, 135, 155, 158, 197, 199
Givoni, M. 125–8, 139, 146, 162
Guirao, B. 125–7, 129, 140
Gutiérrez, J. 127–9, 211–12
Hague–Rotterdam region, Netherlands 147–64
Haller, M. 84, 88
hedonic modelling
and labour market
dynamic analysis 69–74
previous studies 56–7, 64
study conclusions 77–8
Western Norway example 74–7
willingness to pay premiums 59–60
and migration decisions 64–5
and open space 195
peripheral population and commuting 65–7
possibility of rural depopulation 67–9
and school quality 199, 202
Hensher, D.A. 144–6, 159
housing prices
and bicycle trail access 193, 195–6, 202–5, 207
hedonic modeling 194–7, 206
and migration decisions 64–5
in description of model 59–60
dynamic analysis 69–74
peripheral population and commuting 65–7
possibility of rural depopulation 67–9
previous studies 56–7
HSR (high-speed rail) network accessibility
introduction 125–6
Madrid–Levante corridor case study, 132–5
methodological approach
accessibility calculations 129–30
evaluating importance of first/last
mile trips 130–31
research on
accessibility analyses 127–8
connectivity, importance of 126–7
results analysis 135–8
study conclusions and policy
recommendations 138–40
Huambo, Angola 108–19
ICON index 128
industrial accessibility see freight
railroads
Interstate Commerce Commission
(ICC) 169–70
inverse balancing accessibility indicator
218, 228–9, 231–3, 235–7, 239–40
Isard, W. 11, 111
Johnson, B. 126–8
Knowles, R.D. 11, 27
Koopmans, C. 34, 36, 50, 52
Kotavaara, O. 27, 34–6
Krizek, K. 145, 196
Krugman, P. 11, 108
labour market accessibility, 60–3, 64–6, 77
Lane, B. 126–7
last mile trips
of HSR services 125–6, 129, 130–31, 136–40
Lerman, S.R. 15, 146
Levinson, D.M. 4, 14–15, 27
livability 193, 207
location
of bike trails 195, 199–200, 204, 207
of railway stations 126, 135–40
residential, decisions
in Munich 83–4, 88, 90–91, 94, 96, 105
in Norway 59, 62–5, 69–71, 77
in United States 197–8, 202, 204, 207
of services 111–19
and urban development 11–12, 28
location attributes see bicycle trail
access; Swiss municipalities
locational relativity hypothesis 11, 28
López, E. 125, 127–30, 135, 140, 216
Lorenz curve 112–13, 115–17, 233, 236–7
Madrid–Levante HSR corridor 132–40
Martens, K. 5, 146
Martí-Henneberg, J. 34–5, 39
Martin, J.C. 128–9
Master Plan of Huambo 109–10
McArthur, D.P. 55–7, 59, 61, 64, 77–8
Meyer, J.R. 171, 185–6
Minnesota Metropolitan Area 196–207
mixed logit (ML) model 149–52,
159–61, 164
mobility costs
impact of fuel price shock 83, 93–6,
99–101, 102–5
in Munich region 84
modified daily accessibility indicator
219, 228–9, 231–2, 235–40
Mojica, L. 34–5, 39
Monzón, A. 125, 127–8, 139–40
Morris, J.M. 211, 217
motorway construction 14
mountainous regions 14, 26–8, 75, 195
Munich, Germany 84–106
neo-cultural growth approach 12
nested mixed logit (NML) model
149–52, 159–61, 164
Norway, 55–61, 74–8
Nutley, S.D. 33, 37
NUTS 3 regions 39–40, 133–5, 140,
211, 213–14, 222
Ochojna, A.D. 33, 37
oil shocks, impact of see mobility costs
study
open space 194–6, 198–201, 203–4, 207
Ortega, E. 128–30, 134–5, 139
Index

mixed logit (ML) and nested mixed logit (NML) 149–52
scenarios and market shares of train ridership 161–4
study conclusions 164
VTTS by trip purpose and model structure 159–61
Reggiani, A. 14, 126–9
revealed preference (RP) see bicycle trail access; railway station access, egress and train use
Ribeiro, A. 36, 39, 50, 112
Rietveld, P. 35, 146, 162, 186, 212, 216
Ritsema van Eck, J.R. 15, 29, 128
road investment
co-funding of 239–40
and house prices 71–2
increasing labour market accessibility 61–2
in Portuguese interior 34, 37–9, 51
slowing depopulation process 35, 71
road transport accessibility Europe, see accessibility
Rodríguez, D.A. 14, 27
Rose, J.M. 144, 146, 159
rural population
change
and accessibility 34–7, 51–2
in Africa 109
decline
in Norway 55–78
in Portugal 33–52
scan-explore-prepare methodology 84–5
school quality 194, 199, 202
Schwartz, M. 11–12, 27–9
slum areas 108–10, 113–14
Smith, V.K. 195, 202, 206
social equity 4
spatial equity 4
Spiekermann, K. 212–13, 216
Staggers Rail Act 167–8, 171
stated preference (SP) 193, 206
see also railway station access, egress and train use
stress test 91–105
Swiss municipalities
geographical elements of Switzerland 13–14

Ortúzar, J. 144–5, 152, 154–5
Osland, L. 59–60, 64
Paez, A. 14, 27, 36, 212
park-and-ride 93, 99, 106
Portnov, B.A. 11–12, 14, 27–9
Portugal, 33–51
potential accessibility indicator 217–18, 227–9, 231–2, 235–7, 239
potential-demand accessibility indicator 218, 227–9, 231–3, 235–7, 239–40
principal component analysis (PCA) 128–9
private transport accessibility by growing in importance 12, 23–8
linked with reduction of road travel times 33, 36, 42–3
reasons for use, and costs, in Munich 87–106
productivity measures 180–83
public services allocation
driver of Angolan economy 109–10
Gini index for accessibility 112–15, 117–19
Huambo Province 109
justification of 108–9
location of services 111–12, 113–18
spatial equity issues 109–10
study conclusions 118–19
urban population of Africa 108–9
public transport accessibility, see accessibility
Pucher, J. 144, 146
rail transport accessibility in Europe, see accessibility
railroads, freight see freight railroads
railway disinvestment
effects on economic activity and social structures 35–6
in Portugal 37–9, 51–2
railway station access, egress and train use
case study area, data collection and survey design 147–9
joint RP-SP estimation, 144–5, 152–3, 155–8
location 126, 135–40

Karst T. Geurs, Roberto Patuelli and Tomaz Ponce Dentinho - 9781784717896
Downloaded from Elgar Online at 04/17/2019 03:28:24AM via free access
local growth and accessibility, 14–16, 28–9, 16–18
location relativity hypothesis 11, 28

Taylor, Z. 33, 36

TEN-Ts (trans-European transport networks) 128, 214–15, 222
territorial cohesion and accessibility 215–16
indicators 233–8
investment in road infrastructure 51
and regional inequalities 239–40
relationship with transportation investments 210

studies at European level 213–14
tension with efficient use of public funds 108

territorial equity 4, 139
Thompsonous, N. 3–4
Thorsen, I. 59–60, 64
toregas, C. 111–12

trans and train stations see rail transport, Europe; railway disinvestment; railway station access

TRANS-TOOLS 211, 219, 222–3
transport infrastructure
accessibility, and population decline 51
Cohesion Fund and ERDF projects for 214–15, 220–21
disinvestment in 35–6
impact of improved 212–13, 222–3, 238–40
investment in 35, 78, 210–11, 238–40
negative spillover from 35 projects for 227, 239
role for economic development 211, 213, 216
role in territorial connectivity 216, 238
interdependence with land use 83–4, 87
modes 33, 52, 144–8, 156–61, 164, 213, 222–3

network changes in accessibility after improvements in 226–7, 233
European investment in 214–15, 239–40
European model 222–3
importance for regional development 216
importance in European transportation policy 211–12
indicators of accessibility to 45
level of access to, and options provided by 42–3, 45–50
regions with dense 224
role of, as push or pull factor for migration in rural areas 33
and rural population change 34–7
see also private transport; public transport

Transport Infrastructure Needs Assessment (TINA) project 214

Tschopp, M. 14, 29

United Kingdom (UK)
accessibility analyses and planning 5
privatization of railway system 176

United States (US)
accessibility analyses and planning 5
bicycle trail access in Minnesota 196–207
see also freight railroads

urban attraction 64–5
urban development 11–12, 28
urban economic theory 64
Ureña, J. 125–7

utilitarianism theory 5

van Wee, B. 3–5, 11, 15, 36, 128, 139, 184, 212, 217
vertical equity 4
Vickerman, R.W. 15, 128, 216
Voss, P.R. 34–6, 50, 52
VTTS (value of travel time savings) 145, 164
by trip purpose and model structure 159–61
vulnerability assessment 85–7

Waddell, P. 64, 194
walking as means of accessing railway station 148–9, 164
in RP and SP contexts 150–58
<table>
<thead>
<tr>
<th>Index</th>
<th>249</th>
</tr>
</thead>
<tbody>
<tr>
<td>in scenarios 161–4</td>
<td></td>
</tr>
<tr>
<td>in VTTS and WTP context</td>
<td></td>
</tr>
<tr>
<td>159–61</td>
<td></td>
</tr>
<tr>
<td>Wang, F.H. 111, 119</td>
<td></td>
</tr>
<tr>
<td>weather conditions 15, 28</td>
<td></td>
</tr>
<tr>
<td>Wegener, M. 84, 212–14, 216, 233</td>
<td></td>
</tr>
<tr>
<td>West, S.E. 195–6, 200–201, 204</td>
<td></td>
</tr>
<tr>
<td>Whitelegg, J. 33, 36</td>
<td></td>
</tr>
<tr>
<td>Wilson, W.W. 174–5, 185–6</td>
<td></td>
</tr>
<tr>
<td>WTP (willingness to pay) 145 for access and egress journeys</td>
<td></td>
</tr>
<tr>
<td>159–60</td>
<td></td>
</tr>
</tbody>
</table>