1. Introduction

Luis C. Corchón and Marco A. Marini

Game theory lies at the heart of modern industrial organization. Over the second half of the last century, it has provided a sound foundation to the main equilibrium concepts adopted in classical industrial economics, as in the Cournot, Bertrand and Stackelberg models. It has also enabled the development of new and rigorous conceptual frameworks for many industrial organization topics, such as product differentiation, predation, delegation, mergers, collusion and R&D in imperfectly competitive markets. Finally, and perhaps most importantly, over the years, game theory has constantly continued to inspire new research areas in the field of industrial organization, which, in some cases, have gone far beyond the scope of the discipline. This occurred, for instance, in the development of dynamic and incomplete information games or in the recent applications of game theory to law and economics, networks, digital economy, auctions, experiments, health economics, intellectual property rights, contests and corruption, just to cite a few. Furthermore, it should be stressed that the relationship between game theory and industrial organization has never been unidirectional.¹

Thus, it is no exaggeration to say that game theory has become the common language of industrial organization.² In particular, the adoption of a sound mathematical language has allowed industrial organization to steadily progress towards new and unexplored fields. As an example, the recent use of experimental game theory in industrial economics has opened the door to behavioral models for the explanation of the bias of consumers and sellers in the market.³

Due to the strong and increasing interlink between game theory and industrial organization, the current volume aims to provide a solid introduction to the main topics lying at the crossroads between these two disciplines. In managing such a – seemingly arduous – task, our major contribution as editors was mainly to attract an impressive array of renowned economists to the challenge of producing up-to-date surveys for the volume. As a final result, and especially thanks to the outstanding quality of the contributors, the current Handbook appears suitable for both established researchers as well as for graduate and advanced undergraduate students.

Given the wide heterogeneity of topics being at the boundary between game theory and industrial organization, our primary aim in assembling the book was to give a rational structure to the great amount of material gathered for its preparation. In our final plan for the Handbook,

¹ As observed by Bagwell and Wolinsky (2002): “First, the needs of industrial organization fed back and exerted a general influence on the agenda of game theory. Second, specific ideas that grew out of problems in industrial organization gained independent importance as game theoretic topics in their own right. Third, it is mostly through industrial organization that game theory was brought on large scale into economics and achieved its current standing as a fundamental branch of economic theory” (Bagwell and Wolinsky, 2002, p. 1852).

² This is confirmed, if ever needed, by Fudenberg and Tirole’s long survey contained in the Handbook of Industrial Economics (1989), actually encompassing most of the relevant topics in non-cooperative game theory.

³ See the survey on “Experimental Industrial Organization” by Brandts and Potters in Chapter 17, Volume 2 of this Handbook.
we judged it appropriate to divide the book into two volumes where, while this first volume is mainly devoted to presenting the major game-theoretic modeling tools currently in use in modern industrial organization, the second is specifically aimed at applying those tools to a wide range of industrial organization topics.

More specifically, the first volume is organized into four parts corresponding to four distinct topics: (I) Basic Games in Industrial Organization; (II) Dynamic Games in Industrial Organization; (III) Games of Collusion in Industrial Organization; and (IV) Information Games. Part I of this first volume of the Handbook aims at providing an overview of the basic game-theoretic tools currently used in modern industrial organization, such as lattice techniques, aggregative games, monopolistic competition models, oligopoly models with product differentiation, welfare analysis and contest theory. Part II introduces the state of the art in the literature, applying dynamic games to well-known dynamic industrial organization topics such as Stackelberg, entry, and evolutionary games. Part III aims at surveying the main cooperative and non-cooperative games commonly adopted for the analysis of horizontal mergers and collusion. Finally, Part IV provides an overview of some important classes of models dealing with informational issues in imperfectly competitive markets, such as trading under asymmetric information, principal–agent under moral hazard, learning in markets and information sharing in oligopoly. In the next sections we describe in more detail the content of each chapter comprising the Handbook.

PART I BASIC GAMES IN INDUSTRIAL ORGANIZATION

In Chapter 2 on strategic complementarities in oligopoly, Xavier Vives provides a detailed overview of many recent results obtained by applying the techniques of supermodular games to the analysis of firm behavior in imperfect competitive markets. Besides offering an excellent introduction to the recent lattice-theoretic methods, the chapter reviews the results obtained in the existence and comparative statics of the Cournot, Bertrand, R&D, advertising, multidimensional and multimarket competition models. In addition, it introduces the use of supermodularity for the analysis of well-known classes of two-stage dynamic games such as entry, dynamic strategic incentives and both Markov and incomplete information games applied to voluntary disclosures and auctions.

In Chapter 3 on Cournot and Bertrand oligopolies and the theory of supermodular games, Rabah Amir surveys two important strands of literature in oligopoly theory, one dealing with the existence of Cournot equilibrium in the general asymmetric and symmetric cases and the other with the effects of exogenous entry on market performance in a Cournot industry. This chapter emphasizes that these two strands of literature share one important unifying common feature: both are achieved via the application of lattice-theoretic methods. This also provides a bridge to the previous chapter.

In Chapter 4 on aggregative games, Martin Kaee Jensen nicely complements the first two chapters by introducing three important classes of widely used aggregative games: (1) linearly aggregative games; (2) generalized aggregative games; and (3) quasi-aggregative games. These games are very useful in industrial organization since they drastically simplify the analysis of the existence, comparative statics and uniqueness of Nash equilibria and unify a vast amount of literature since they apply to a wide array of models like Cournot and Bertrand oligopoly, tournaments, work in teams, contests, patent races and network games.
In Chapter 5 on monopolistic competition without apology, Jacques-François Thise and Philip Ushchev review what has been accomplished under the heading of monopolistic competition in industrial organization and in other closely related economic fields. Among other things, the authors argue that monopolistic competition is a market structure in its own right, which encompasses a much broader setup than the celebrated constant elasticity of substitution (CES) model. Also, although oligopolistic and monopolistic competition compete for adherents within the economics profession, the authors explain how such dichotomy is, to a large extent, unwarranted, in that both models are complements rather than substitutes.

In Chapter 6 on oligopoly and product differentiation, Jean J. Gabszewicz and Ornella Tarola overview old and new oligopoly models on product differentiation characterized by local competition. Starting from the microeconomic theory of consumer demand based on characteristics, as introduced by Gorman (1956 and 1980) and then popularized by Lancaster (1966), they present horizontal product differentiation as based on Hotelling (1929) and vertical product differentiation as based on Gabszewicz and Thise (1979). Finally, they review the model nesting both horizontal and vertical product differentiation and propose two applications of this approach, one based on network externalities and the other on environmental economics.

In Chapter 7 on oligopolistic competition and welfare, Robert A. Ritz nicely reviews the recent developments in the study of social welfare in oligopoly markets. In particular, the chapter covers the usefulness of the rate of cost pass-through for the analysis of market performance and includes a careful analysis of welfare losses due to market power in various widely used models (with symmetric and asymmetric firms, and with or without endogenous entry).

PART II DYNAMIC GAMES IN INDUSTRIAL ORGANIZATION

This second part of the book offers a collection of chapters focusing on the use of dynamic games in a set of well-known industrial organization issues.

Chapter 8 by Klaus Ritzberger on dynamic games sets the scene by introducing three alternative definitions of game trees and extensive forms and also discussing in detail their pros and cons. In the following sections, the author returns to the normal form associated with the extensive form and explains the concept of perfect recall and its significance for economic applications.

In Chapter 9 on strategic refinements, Carlos Pimienta examines the classical literature on equilibrium refinements. Starting with Nash’s definition of equilibrium, the chapter presents a comprehensive review of the most successful equilibrium concepts adopted in economic applications as well as the most recent contributions to the subject. The chapter explains in detail how a few decision-theoretic criteria – admissibility, backwards induction, forward induction and invariance – shape the definition of stable sets of equilibria and how they translate into their corresponding mathematical formulation.

In Chapter 10 on Stackelberg games, Ludovic Julien introduces three classes of deterministic non-cooperative Stackelberg games with increasing levels of generality. The first is the basic duopoly game. The second is the oligopoly multiple leader–follower game. The third extends the multiple leader–follower setup within the framework of bilateral oligopoly to describe a multicommodity market. In each case, the author defines and characterizes the
equilibrium and the welfare consequences of market power. The chapter also considers the issues of endogenous timing, merging and free entry.

In Chapter on 11 entry games and free entry equilibria, Michele Polo reviews how a wide range of symmetric oligopoly models share some common comparative statics properties. Individual profits and quantities decrease in the number of firms, and tend to competitive or monopolistic competitive equilibria when the number of firms increases indefinitely. The maximum number of firms sustainable in a symmetric long-run equilibrium is shown to depend on technology (economies of scale), preferences (market size) and strategies (toughness of price competition). On the normative side, in homogeneous product markets the business-stealing effect drives the result of excessive entry, whereas adding product differentiation and the utility from variety may reverse this result. In addition, the author considers asymmetric free-entry equilibria using the aggregative nature of many oligopoly models as we noted before. Finally, he discusses the issue of endogenous sunk costs, persistent concentration and frictionless entry in contestable markets.

In Chapter 12 on evolutionary oligopoly games with heterogeneous adaptive players, Gian Italo Bischi, Fabio Lamantia and Davide Radi analyze the properties of evolutionary switching models in oligopoly games, where boundedly rational agents can follow different behavioral rules (or heuristics) to update their production through repeated adaptive decisions. In particular, they focus on well-known heuristics such as best replies with naive expectations, local monopolistic approximation and gradient dynamics on marginal profits. Hence, the chapter examines some specific examples of evolutionary systems where the coexistence of heterogeneous behaviors and of oscillatory time patterns are obtained as possible outcomes.

PART III GAMES OF COLLUSION IN INDUSTRIAL ORGANIZATION

In this part of the volume we gather two theoretical contributions on collusion and mergers in oligopolies. In the first chapter, Chapter 13, on coalitions and networks in oligopolies, Francis Bloch reviews the models on endogenous formation of coalitions and networks in oligopolies. It weaves together a literature in game theory on cooperation and a literature in industrial organization on the formation of groups of oligopolistic firms. The discussion of cooperation in oligopolies starts with a brief presentation of the game-theoretic models used to predict the formation of coalitions and networks. Two different forms of cooperation are considered: (1) cartels and horizontal mergers; and (2) strategic alliances, which encompass both research joint ventures and information exchange platforms.

In Chapter 14 on transferable utility (TU) oligopoly games and industrial cooperation, Jingang Zhao surveys the existing results on TU cooperative games applied to oligopolies and lists nine promising future areas for TU oligopoly games. On the theoretical side, TU oligopoly games are shown to make advances on the refinements and applications of the core, one of the most important solution concepts in cooperative game theory. On the empirical side, the author shows how cooperative games can enable the analysis of industrial cooperation and, hence, the understanding of all forces at work behind industrial changes with and without regulatory policies.
PART IV INFORMATION GAMES

The final part of the Volume I of the Handbook looks at the various effects occurring in markets when relaxing the assumption of symmetric information.

In Chapter 15 on trading under asymmetric information: positive and normative implications, Andrea Attar and Claude d’Aspremont mainly focus their attention on screening models. They divide the chapter into two sections. The first section adopts a simple mechanism design approach with only one mechanism designer. When the mechanism designer is an outsider (say a public authority), all traders may have private information and play simultaneously. When the mechanism designer is an insider (a principal, buyer or seller), he or she is uninformed and has no private information. Three illustrative applications are taken into account: bilateral trade, auctions and insurance. In the second part of the chapter, these models are extended to the case of several principals who are uninformed and have no private information but compete by designing mechanisms.

In Chapter 16 on moral hazard: base models and two extensions, Inés Macho-Stadler and David Pérez-Castrillo analyze first the optimal contracts in static moral hazard situations, where the agent’s effort is not verifiable. Then, they present the main trade-offs of the principal–agent model. Furthermore, they cover in detail the trade-off of incentives (motivation) vs risk-sharing (efficiency), incentives vs rents (when the agent is protected by limited liability), incentives to a task vs incentives to another (in a multitask situation), and incentives to the agent vs incentives to the principal (when both exert a non-verifiable effort). Finally, they discuss how the predictions of the classical moral hazard model are affected when: (1) there are behavioral biases of individuals; and (2) in presence of a matching market.

In Chapter 17 on learning in markets, Amparo Urbano surveys the problem of market learning as well as that of experimentation (or active market learning) in dynamic models incorporating a Bayesian expectation revision mechanism. Through the lens of this perspective, she reviews the extensive literature on this topic. The experimentation literature has by and large focused on broadly defined bandit models, and thus the starting point is the monopolist experimentation with the classic two-armed bandit problem. The chapter extends to surveying the impact of price competition on experimentation, the role of externalities in social learning and learning in experience good markets.

In Chapter 18 on information sharing in oligopoly, Sergio Currarini and Francesco Feri review the theoretical literature on information sharing in oligopoly and discuss some recent contributions extending the traditional multilateral model to encompass the possibility of bilateral sharing agreements. In the first part of the survey, the authors revisit the early insights of the literature, stressing the role of quantity vs price competition and of common vs private values. In the second part, following some more recent contributions, they discuss the bilateral model of information sharing, stressing the role of signals’ correlation for the emergence of information sharing in equilibrium and its effect on the architecture of sharing networks. Finally, they conclude the analysis by discussing the emergence of core–periphery networks when firms possess asymmetric information.
REFERENCES

