Index

Abramovitz, M.A. 189, 193
academic spin-offs
administrative inadequacy
future research opportunity 59
hypothesis posited 40–41, 43, 45
impact on academic job positions 43, 45, 48, 58
results 54–8
variables 49–50
alternatives to 40
heterogeneity in 43–6
high teaching loads
hypothesis posited 40, 42–3
impact on academic job positions 41, 43, 45, 48, 58
results 53–7
variables 49–50
hypotheses development 41–3, 46
Italian universities as study choice 41
lack of academic job positions
future research opportunity 59
hypothesis posited 40, 42, 45
impact of administrative support 43, 45, 48, 58
impact of high teaching load 41, 43
moderating effects for 48
ratio calculating 48
results 52–8
variables 49–50
motivations 39–40, 45, 58–9
organizational factors 40
rate of establishment 39
relevance of age 41–2
research design
models and variables 48–9
sample 46–8
results 49–58
students willing to become faculty members 42
study conclusions 2–3, 58–9, 251–3
team ventures 41–2
Acs, Z.J. 7, 201, 222–3
activities of daily living (ADL) 16, 18–20
Agarwal, R. 71, 222
agency theory
assumption that shareholders are risk neutral 156
attempting to align interests of agent and principal 189
on boards
and assessment of risk 174
and custodians of shareholder value 163
and decision control process 157
calls for less negative view of 178
effective employment of branches of 177
on efficient innovation projects 163–4
on investors and firm-related risks 162
negative bias against CEO duality 177
normative view of 156–7
positive 175
recognition of different risk preferences 160
on separation of decision control and monitoring 177
and value appropriation 156, 162–3
Aggarwal, V.A. 67–8
aging
analysis of 19–20
commercialization recommendations for 24
as receptive market for QoLT 20
roadmap 25, 27
similarity to Wounded Warrior pathway 28
Aidis, R. 187, 189, 195–7
Aldrich, H.E. 115, 157, 220, 237
Aldridge, T. 43, 187, 199
Allen, T.J. 121, 150
Almeida, P. 69, 121
Alvarez, S.A. 218, 237
Amburgey, T.L. 130, 148
American Chemistry Council 116–17
Anokhin, S. 7, 8, 27
Antonelli, C. 40, 43
Arora, A. 65, 68
aspirations
cOMPetitive 76–7
historical 76
organizational vs. personal 87
performance relative to 66–7, 69
attainment discrepancy 75, 77, 87
call for incorporation of 89
hypotheses 71–2
investment banks 72
necessity of search influenced by
results 83, 86–7
assistive technologies
kitchen as desirable site for 19
previous studies 10
purchase price influence 20
suite of 16–18
transfer of
pathways for 27
tensions existing within 9–10
Autio, E. 66, 221, 234, 238, 241
Balkin, D.B. 166
Barnett, W.P. 116, 151
Barney, J.B. 218, 237
Bauer, S.M. 9–10, 20
Baughn, C. 188–9, 198
Baum, J.A.C. 67, 70, 72, 130
Baumol, W. 189, 193
Baysinger, B. 155, 160–162, 166–7, 174
Reach, S.R. 10, 20
Bessette, R.W. 206, 210, 212
biopharmaceutical industry see
biotechnology industry;
pharmaceutical industry
biotechnology industry
characteristics as evaluation
elements 101–2
constituents 99–102
development largely based on SMEs
93
as important part of world economy
110
model for 103–5
reliance on research-intensive life
sciences sector 94
support
ability to access 100
policies for 93
technology credit scoring model for
data and variables 102–5
introduction 93–4
literature review 94–9
overview 3
results of logistics regression
105–9
study conclusion 110–111
ventures in
data sample 72–4
empirical analyses 74–80
introduction 65–7
overview 3
results 80–85
study discussion and conclusion
86–9
theory and hypotheses 67–72
white, red and green 100–101
Bock, A.J. 218–19, 221, 223, 237
Boeker, W. 89, 160–161, 174
Bonacich measure 80, 129
Bonardo, D. 46, 59
Borisoff, J.F. 7, 10
Boyd, B.K. 163, 165, 178
Bramwell, A. 207, 209
Brandt, E.N. 117–18, 121, 123
Burt, R.S. 122, 129, 150
business licenses, obtaining 194–5
Cameron, A.C. 125–6
capabilities
to evaluate, develop and transfer
technologies 192
lack of effective technical and social
192
social, to make institutional changes
193
Index

Carroll, G.R. 116, 151
Carver, C.S. 237, 241
Casper, S. 157, 159–60
CEO duality
ability to erode board independence 162–3
as measure 165
negative bias of agency theory 177
positive correlation with ownership
centeration 177
positive implications for risky
decisions 175
positively related to R&D
expenditure 4
relation with innovation 163, 174
results 170–173
Certificate Program in Leadership and
Ethics (CPLE)
Class of 2015 15, 21–2
competency of civic/social
engagement 14
leadership course as integral part
of 12
raison d’être 15–16
undergraduate team 12–13
Certo, S.T. 155, 160
change in R&D
assimilation of new inventors
analytical techniques and
dependent variables 127
control variable 130
independent variable 128–9
as process 122–3
results 143–6, 148–9
carriers of
analytical techniques and
dependent variables 126–7
independent variable 128
as process 120–121
results 141–3, 148–9
content of
analytical techniques and
dependent variables 125–6
control variable 129
independent variable 127–8
leading, following or inertia
118–20
results 130–140, 147–8
control variables 129–30
vs. organizational inertia 117–18
performance implications 120
analytical techniques and
dependent variables 126
control variable 129–30
independent variable 128
results 140–141, 148
Chrisman, J.J. 207, 210
Chung, K.H. 157, 159–60, 169
Clark, B.R. 207, 209
Clarysse, B. 42, 219, 222
Cobb-Douglas production function
208
Cohen, G. 188, 192
Cohen, S. 121, 150
Cohen, W.M. 119, 130, 240
collaborative knowledge 233–4, 235–6,
239–40, 243
Colombo, M.G. 39, 69, 209, 235
corporalization
academic entrepreneurs usually
lacking expertise in 222, 235
of academic research
administration affecting 54
focus on technology 44
teaching load affecting 58
challenges to 10
and decision to invest in R&D 174
development requiring time and
costs 110
of intellectual property for profit 159
modes for misfit technologies 27
of new products 65, 67–8, 158–9,
177–8
novel paths for R&D alliances 66–9,
71–2, 86, 88, 252
at odds with traditional academic
culture 232
pathways to 10
CSR/CSP concepts in 15
as dependent on multiple factors
29–30
resources and staffing needs 23
roadmaps for 23–7
for technology transition of
assistive technologies 27
potential of technological 97, 101
recommendations
for Smart Kitchen technologies
22
for target populations 24
ecosystem development in regenerative medicine
entrepreneurial ecosystems
220–221
characteristics 238–40
coping strategies and institutional culture 237–8
development paths 240–243
differences across 232–4
differences between informant roles across 236–7
and informant role comparisons 229, 232
investigating 224–5
knowledge spillover and creation 222–3
regenerative medicine 223–4
university-centric 221–2
findings 229–37
introduction 218–19
limitations and research directions 243–4
methods
investigation 224–5
long interview 225–7
procedures 227–9
overview 5–6
study conclusion 244
study discussion 237–43
education and training systems
lack of effective 190–192
opposing discrimination 198
policy recommendations for 201–2
entrepreneurial ecosystems see ecosystem development in regenerative medicine
entrepreneurship capital
as conduit 209
explanations about level of 213–14
representing capacity to engage in and generate entrepreneurial activity 206
and role of universities 207
universities associated with outcomes of 208–9
entrepreneurship, technology-driven, constraints see institutional inertias
Estrin, S. 187, 189, 195–7
Etzkowitz, H. 218, 221
Fama, E. 156, 160, 163
Feldman, M.P. 218, 221–3, 243
Fini, R. 40, 46–7
Finkelstein, S. 130, 163, 175
Fleming, L. 124, 130, 167
Folta, T.B. 67, 78–9, 84, 88
Freeman, C. 186, 188–9
Freeman, J. 115, 120, 147–8, 150
Fukuyama, F. 187, 196, 199
future research
directions for 251–3
suggestions for
academic spin-offs 59
change in R&D 150
corporate governance model building 178
economic impact of public universities 215
ecosystem development 244
mechanisms to effect changes in institutional inertias 202
novelty in product development 88
Gans, J.S. 65–6, 68
Genetics Institute 73–4
George, G. 218–19, 223, 237, 240
Goldberg, M.R. 10, 12
Greve, H.R. 66, 70, 75–7, 87, 89
Guerrero, M. 208–9, 213
Gugler, K. 157, 159–60
Hagedoorn, J. 69, 72
Hambrick, D.C. 130, 148
Hannan, M.T. 115–16, 120, 147–8, 150
Hansen, G.S. 156, 161–2
Haveman, H.A. 115–16, 147
Hayter, C.S. 39, 221
Helfat, C. 118, 129
Hensley, S. 168, 170
Hernandez, E. 79, 223
Hill, C.W.L. 155–7, 160–162, 166
Hoang, H. 71, 220
Hofstede, G. 195, 237
Holmquist, C. 67, 70, 78–9
Hsu, D.H. 67–8
human capital
as driver to growth of start-ups 235
education and training to develop 253
enabling network ties and diverse social networks 219–21
investment in 207
nature of 208
study supports attraction of 214–15
universities associated with outcomes of 209, 213
Human Engineering Research Laboratories (HERL) 8, 13–16, 20–23, 25–6, 28–9
iCorp program 1
industrial biotechnology
advances dependent on knowledge 100
also known as white biotechnology 100
association with technology and marketability attributes 3, 102, 108, 110
domestic economy as factor 111
growth reliant on investment in innovation projects 100
high R&D costs 100, 107, 110
reason for studying 94
requirements for firms 110–111
ROC curve applied to 109
role of market demand 100
sample 103
stepwise logistic regression model for non-default 106
variables 105
inertia see institutional inertias; organizational inertia
informants
coping strategies 234
differences in collaborative knowledge 233–4
emphasis and preference for outcomes 234, 237
motivations 232–3
role
differences between 234–6
differences between, across ecosystems 236–7
and ecosystems comparisons 229, 232
types, in study 228–9
selection and interview 225–7
information, lack of accurate 194, 200
innovation
as catalyst for entrepreneurship and economic development strategies 186
and corporate governance 159–60
CEO duality 163, 173–4
influence of inside board members 174–5
institutional owners 161–2, 173
linkage with 155–6, 162, 164, 177–8
theoretical model 164
estimation 168–70, 175–6
external and internal 157
measures 166–7, 173
in pharmaceutical industry 157–9
risky investment in 156–7, 178
Innovation Institute 13
institutional culture 237–41, 243–4
institutional inertias
formal 189–90
capability to evaluate, develop and transfer technologies 192
diminishing incentives and misuse of talent 193–4
lack of accurate information 194
lack of effective education and training systems 190–192
lack of effective technical and social capabilities 192
obtaining business licenses at minimum cost and time 194–5
social capability to make institutional changes 193
informal 195
bypassing the law 196–7
discrimination against women 197–8
social networks 195–6
tribal cultural values and norms 196
trust and social capital 199
introduction 185–8
overview 4–5
policy recommendations 200–202
study conclusions 202
theory 188–99
Interactive Display 17–18, 24–5
Index 261

international R&D alliances 84–5
benefits of 66, 68–9
biotechnology with highest density 72
boundary conditions for 87–8
to caution due to uncertainty and operational challenges 66
choice to pursue 66
empirical analyses
attainment discrepancy 77
control variables 78–80
dependent variables 74–5
estimation 80
independent variables 75–7
firms in study 72–3
example case 73–4
verification of national origin 74
formation of 65–6
vs. licensing out 65, 67–8, 86
management perceptions of 69
novel commercialization path 66–9, 71–2, 86, 88, 252
overlooking opportunities for 87
partner choice 71–2
performance relative to aspirations 66–7, 69–72, 75–8, 83, 86–9
and problemistic search 69–72, 78, 86, 88
results 80, 83
descriptive statistics 81–2
regression 84–5
as strategy to access technological knowledge 69
underperforming ventures’ trouble forming 88–9
Italian universities
possibility that results are specific to 59
sample composed of spin-offs from 46–8, 58
statistics 49
as study choice 41

Jennings, P.D. 224, 238
Jensen, M.C. 155–7, 159–60, 162–3, 175, 177
Johnson, D. 237
Katila, R. 67, 101, 223
Keilbach, M. 207–10

KitchenBot 17, 24–6, 28
knowledge capital
nature of 208
as source of competitive advantage 206
universities associated with outcomes of 209
universities contributing to 208–9
knowledge, collaborative 233–4, 235–6, 239–40, 243
knowledge spillover and creation 222–3
Kochhar, R. 161, 178
Kohlbacher, F. 19–20
Kroll, M. 157, 159–60
Lane, J.P. 9–10
Lant, T.K. 76–7
Lavie, D. 72, 87
law, bypassing 196–7
Leahy, J.A. 10, 27
Ledford, H. 219, 223
Lehmann, E.E. 207, 222
Levin, R.C. 123, 150
Levinthal, D.A. 119, 130, 240
Liang, H. 189, 191
licensing agreements for international markets 24, 65, 67–8, 86
Link, A.N. 40, 43
loan defaults 94–6, 98–9, 102–3, 105–8, 110–111
Lockett, A. 40, 54, 233
Lucas, R., Jr. 207–8
Lundvall, B.-K. 192, 195
Mahajan, H.P. 8, 16–17, 19
Mangematin, V. 11, 42, 93–4, 100–101
March, J.G. 70, 121–2, 195
Markman, G.D. 155, 158, 166, 186
Martinez, M.A. 220, 237
mass market users
analysis of 20
commercialization recommendations for 24
roadmap 27
suggested partnership opportunities 28
Matraves, C. 157, 159–60
McCracken, G. 224, 227
McDougall, P.P. 68, 87, 209
Meckling, W. 157, 160, 162–3, 177
Meltzer, D. 66, 69
Meoli, M. 40
Miller, S.R. 72, 87
Miner, A. 218, 221, 241
misfit technologies 27
Mizruchi, M.S. 155–7
Moon, T.H. 96–9, 102, 107–8, 111
Mosey, S. 219–20
motivation
to create academic spin-offs 39–40, 45, 58–9
diminishing, in DTCs 193–4
of organizational inertia assumption 147
for technology transfer 222
at UI boundary 223, 230, 232–3, 236
Mueller, P. 206, 209–10, 212
Mustar, P. 44, 209, 222
Nath, V. 7, 21
Nelson, R.R. 115, 118–22, 148–9, 185, 189
non-technology spin-offs
abnormal spin-off activity 59
administrative inadequacy 40–41, 43, 45, 54–5, 58
as common among academic spin-offs 44
effect of teaching load 53–4
explanatory case 45
joint effect of moderating variables 57
lack of academic job positions 52–3
organizational deficiencies 41
in sample 47–8
taxonomy and hypotheses 46
technology transfer offices 55–6, 58
North, D.C. 186–90, 193
organizational inertia
assumption of
differentiating various organizational theories 151
motivated by 147
and performance implications 120
rejection of 141
vs. change in R&D 117–20
hypothesis of
and performance implications 124–5
in sourcing 121, 126
institutionalized goals and routine activities leading to 148
inventors embedded in routine leading to 121
notion of 115–16
possibly dominant characteristic in organizational populations 150
O'Shea, R.P. 210, 222
Oviatt, B.M. 68, 87
Oxley, J.E. 69, 72
Paruchuri, S. 115
patents
academic institutions
preference for research and publications 223
region comparison 226
TTO and RM comparison 242
chemicals industry filings 117
disputes over 71
Innovation Institute for 13, 23
knowledge transfer 208–9, 233
as measure
in academic spin-offs study 49–57
in change in R&D study 123–51
in corporate governance study 157–8, 164–9, 172–3, 176–8
in international R&D alliances study 79, 82–3, 85–6
in technology credit scoring model study 97–8, 100, 107, 110–111
protection, for assistive technologies 24
and speed to market 70
time and monetary cost of registering 194–5
Pearlman, J.L. 10, 12
performance relative to aspirations 66–7, 69–72, 75–8, 83, 86–9
Pfeffer, J. 115, 119–20, 148
Phan, P.H. 8, 157
pharmaceutical industry
corporate governance and innovation in introduction 155–6
methods 164–70
results 170–174
study discussion and conclusions 4, 174–8
theory and hypotheses 156–64
innovation in 157–9
pharmaceutical development firms
domestic economy as factor 111
management factors and firm-specific characteristics 3, 101–2, 110
nature of 100–101
reason for studying 94
requirements 102
ROC curve applied to 109
sample 103
stepwise logistic regression model for non-default 106–8
research and development in 115–17
see also Dow Chemical
physically disabled
analysis of 19
commercialization recommendations for 24
focus on KitchenBot technology 28
roadmap 25–6
Pirnay, F. 40, 44–5
Pisano, G.P. 70, 76, 79
Podolny, J.M. 122, 126, 129–30, 150, 199
Porter, M.E. 80, 115, 190, 218, 220, 240
Powell, W.W. 73, 115, 120, 123, 148, 189, 192, 195
problemistic search 69–72, 78, 86, 88
public universities in United Kingdom see economic impact of public universities
quality of life technologies (QoLT)
aging, as receptive market for 20
function and purpose 9
often not coverage by insurance 10
partnership’s mission 13
widespread use of 29–30
R&D see research and development (R&D)
Rajagopalan, N. 116, 151
regenerative medicine see ecosystem development in regenerative medicine
research and development (R&D)
biochemistry in 115
research-based innovation factors 100
see change in R&D:
international R&D alliances
roadmaps
aging 25, 27
coo-ordinated 24–5
mass market 27
physically disabled 25–6
technology 11–12, 21–2
Wounded Warrior/Traumatic Brain Injury 25–6
Roberts, E.B. 39, 42, 44–5, 59
Roessner, D. 206, 209–10
Romer, P. 207–8
Rose, A. 93, 99
Rosenkopf, L. 72, 158
Rothaermel, F.T. 65, 68, 71, 79, 89
Academic entrepreneurship

Sakhartov, A.V 67, 78–9, 84, 88
Salancik, G.R. 115, 119–20, 148
Sampson, R.C. 69, 72
Saxenian, A.L. 121, 219
Schulz, R. 8–10
Scott, J.T. 40, 43
Scott, W.R. 159, 188–9, 192, 195
search behavior see problemistic search
Seelman, K.D. 7, 9–10, 20
service-learning project
benefits of 29
CPLE undergraduate team 12–13
Human Engineering Research Laboratories 13
Innovation Institute 13
project participants 12
purpose of 14–16
Shane, S. 39–40, 43, 67, 206
Siegel, D.S. 7–8, 40, 43, 186, 201, 206, 210
Simha, O. 208, 212–14
Singh, J.V. 118, 130
Smart Kitchen technologies
analyses 20–21
deliverables 21–7
introduction 2, 16–18
methods 18–20
service-learning project 12–16
study
approach to 8–12
conclusions 29–30, 251
discussion 27–8
technology transfer
of assistive technologies 9–10, 27
university-industry 7–8
SMEs (small and medium-sized enterprises)
biotechnology industry development
based on research-intensive 93
and competitiveness 106
cooperation with high-tech firms 110
difficulties affording R&D 94, 107
difficulties arising from capital problems 100
economic indicators 99, 108
funding problems 110
influence of government financial systems on 95, 110
and market potential 107, 110
profits generated from technology transfer 106–7
specific attributes 98, 106, 108
support necessary for 111
technology-based 102–3
technology factors 108, 110
Snell, S. 155–6, 160, 166
social capital and trust 199
social networks 195–6, 220–221
Sohn, S.Y. 94, 96–9, 102, 107–8, 111
Somaya, D. 65–6, 68, 71
Spreitzer, G.M. 116, 151
stepwise logistic regression model 105–9
Stern, S. 65–6, 68
Stuart, T.E. 122, 126, 130
Swamidass, P.M. 8, 42, 221
SWOT analysis 22–3
talent, misuse of 193–4
TBI (Traumatic Brain Injury) see Wounded Warrior/Traumatic Brain Injury
technology commercialization see commercialization
technology credit scoring model
for biotechnology industry 3, 94, 252
data and variables 102–5
economic attributes 98–9
first developed 94, 96
need for recent biotechnology data 111
ROC curves 109
SME specific attributes 98
stepwise variable selection scheme for 105–9
technology-oriented attributes 96–7, 110
technology-driven economic development, constraints see institutional inertias
technology roadmap 11–12, 21–2
Technology Roadmapping (TRM) 10–11
technology spin-offs
administrative inadequacy 54–5
creation requirements 45
distinguished from others 44
effect of teaching load 41, 45, 53–4, 58
Index

explanatory case 44–5
joint effect of moderating variables 57
lack of academic job positions 52–3, 251–2
in sample 47–8
taxonomy and hypotheses 46
technology transfer offices 56
technology transfer and administrative activity 54, 58
in areas of technological sophistication and high levels of uncertainty 237
in assistive technology industries difficulties 20
impact on 9–10
and capability 192
as complex, non-linear process 185
drivers of motivation for 222
and DTCs
facing unique challenges in 200
missing links in developing 186
policy recommendations for 200–202
problems in capturing benefits of efforts 190
recognizing importance of 186
women’s level of involvement in 197–8
implications for commercialization recommendations 22
objectives of 192–3
SMEs generating profit through 106–7
students learning about 15, 29
university-industry, benefits of 7–8
use of scoring models for effective 111
technology transfer offices (TTOs)
and academic spin-offs 42–3, 54–5, 58
activity in universities studied 226, 230, 233, 244
DTC opening, in engineering schools 186
as important engines of economic growth 221
in Smart Kitchen technologies study 23, 28
Teece, D.J. 115, 148, 240
Telson, J. 8, 16–17
‘third mission’ 40, 42, 45, 59
Thomas, L.D.W. 224, 241
translation project see Smart Kitchen technologies
Traore, N. 93, 99
tribal cultural values and norms 196
Trivedi, P.K. 125–6
trust and social capital 199
Tsang, E. 12, 14
Tushman, M.L. 150, 158
United Kingdom see economic impact of public universities
universities
as drivers of regional economic outcomes 218
entrepreneurial 206–15, 240
Italian 41, 46–9, 58–9
role in knowledge creation 222
university-centric ecosystems 221–2
university-industry technology transfer 7–8
university-industry (UI) boundary ecosystems 218–44
see also economic impact of public universities
University of Edinburgh 218–44
University of Wisconsin-Madison 218–44
Urbano, D. 208–9, 213
value appropriation
and agency theory 156, 162–3
and innovation expenditures 156
link with value creation 156, 174, 177
value creation
activities, less is more 159
and CEO duality 162–3
and corporate governance role 174, 178
indicator of potential 167
insiders for evaluation of strategies 175
linkage with value appropriation 156, 174, 177
outside ratio of board members 163
principal method of 157
and routine decision-making 177
Van de Ven, A.H. 155, 163
Van Vught, F. 208, 212
venture development
associated with knowledge creation and collaboration 240
clustered, benefits of 220
comparison of factors across ecosystems 239
coping strategies 234
data structure 230
de novo 243
differences between informant roles 234–6
different emphasis on 237, 239
disproportionately driven 239
ecosystem and informant role comparisons 232
funding linked to 235
gaining knowledge through human capital and spillovers 219
under irreducible uncertainty 223–4, 240
learning about 233
motivation toward 232, 236
regenerative medicine 222–4, 242
role of social networks 220–221
TTO personnel influencing 233
at university-industry boundary 218, 222, 241, 243
Verheul, I. 200–202
Vuong, Q.H. 125–6
Vuong statistic 125–6, 131–40
Wang, J. 8, 16, 19
Welter, F. 188, 197–8
Wennberg, K. 67, 70, 78–9
White, H. 125, 127
Whitehead, D. 117–18
Whittington, K.B. 65, 87
Williamson, O.E. 148, 191
Winter, S.G. 115, 118–22, 148–9
Wolfe, D.A. 207, 209
women, discrimination against 197–8, 202
Wounded Warrior/Traumatic Brain Injury
analysis of 18–19
commercialization recommendations for 24
Cueing Kitchen for 17
roadmap 25–6
similarity to aging pathway 28
Wright, M. 41, 209, 218, 219–20, 222–3, 233, 243
Wright, P. 157, 159–60
Yiin, W. 8, 16
Zahra, S.A. 86, 155, 160, 166, 170, 174, 178, 218, 240
Zucker, L.G. 121, 189, 219