Index

actors in REDD+ project 235–42, 246
adaptability 55, 156
adaptation
 agricultural 28, 34, 115, 120
 community-based 69–70, 79, 257–60, 262
 ecosystem-based 9–11
 institution-based 79
adaptation actions 11, 46–7, 49–52
adaptation decision-making 254
adaptation economics 41–2
adaptation funding 11–13, 71
adaptation initiative 257–60, 262
adaptation options 7–8, 43–5, 47–54
adaptation planning
 in Bangladesh and Vietnam 184–92
 committees at ward and county levels 252–6, 262
 monitoring and phasing approach to 92–3
adaptation practices 43, 45–54, 116–19, 122, 126
adaptation projects
 private sector funding of 13
 responsibility for small-scale 187
adaptation strategies
 Copenhagen example 67
 of CSA 127
 Dhaka lacking climate change 188
 of Indian farmers 48–9
 integration of nature in 71
 need for 155
 Portland’s climate action plans 78–9
 for reducing and managing climate change risks 4–5
adaptation to climate change
 impact on land use and water quality analysis 27–35
 methods 36–8
 study conclusions 35–6
IPCC Working Group II 98–9, 107, 110
 overview 14–16
adaptive approach 159
adaptive capacity
 air pollution and urban heat 85–90
 framework for increasing 156–7
 indicators
 analysis 49–52
 community-level 44–5
 literature on 42–3
 results 54
 in Mozambique 41–2, 44
 in Orissa, India
 relation to vulnerability 4, 6, 41, 82–4, 90
adaptive co-management 80, 92
adaptive functions 9–10
adaptive intervention 80, 92
adaptive landscapes 79–83, 88–93
Adgers, W.N. 4
afforestation 7–8
Africa
 access to credit 54
 adaptive capacity studies 44–5
 agricultural carbon for smallholder farmers 124
 assessment of social vulnerability across 42–3
 carbon pricing policies 226
 democratising climate finance 251–62
 enhancing use of seasonal climate forecasts 43
 estimated GDP losses 3
 future urban growth forecasts 183
 losses in potential fish catch 153
 natural regeneration 124–6
 projected increase in population 18
promoting conservation agriculture 122–3
REDD+ project 235–47
agricultural adaptation 28, 34, 115, 120
agricultural carbon 124
agricultural incomes 10, 32, 34–5, 123, 125
agricultural land 29, 32, 36–7, 188–90
agricultural policy 126–7
agricultural practices 43, 52, 116–19, 121–6
agricultural production 9, 28–9, 32–5, 172
agricultural products 116, 166
agriculture
adaptation
categories of measures 43
options in 43
potential effects of 35, 42
of California 166–7, 174, 178
and climate change
high exposure to 16
role in mitigation 16, 115
significant impact 115, 154
impact of temperature and precipitation 29–30
impact on Great Barrier Reef 144
land use model 36–8
loss of biological diversity 107
Orissa, India 46–55
relationship with water quality 27–9, 31–5
see also climate smart agriculture (CSA); conservation agriculture (CA)
agro-ecology 119
agro-forestry 7, 9, 124–6
air pollution 15, 18, 61, 78, 80–83, 85–6, 90
ambient energy 200
amortized cost 197–9, 203, 205
amortized capital cost 197–8
animal protein 108, 153
anthropogenic GHG 1, 16, 99, 115, 132, 231
anthropogenic pressures 107, 143–4, 157
approaches to building climate resilience
behavioural 7
community-based 16, 98, 110
ecosystem-based 7–11
engineering-based 7–8
hybrid 7–8
social 7
aquaculture 137, 159
aquatic ecosystems 28–9, 31–5, 37–8, 165–78
aquifers 107, 167–8, 175–7
Arakelyan, I. 16–17
Asia
adaptive capacity studies 45
estimated GDP losses 3
future urban growth forecasts 183
impacts of climate change 18
projected increase in population 18
tsunami 12
Asian cities see Dhaka; Ho Chi Minh City (HCMC)
Asian Development Bank (ADB) 6
atmosphere as open access resource 20, 279
attitudes and values 7
Australia
carbon pricing revenue usage in policy practice 224–5
CO₂ emissions 1–2
coral reefs 138, 144
Bangladesh
demand for urban land in 187
legislative framework on climate change 186–7
population in low-elevation coastal zones 184
urban planning
aspects of governance absent from 192
use of 184
Barcelona, Spain 68
Barrage, L. 19, 216, 226–7
Bateman, I.J. 28–9, 36–8
behavioural approach 7
benefits
of agroforestry 124–6
of conservation agriculture 123
of ecosystem-based adaptation measures 8–11
of forests 35
health benefits
of nature 61–5, 73
realising 66–74
Index

of Kenya Agriculture Carbon Project 124
of mitigation through avoided impacts 266–7, 275
of Portland project 92
from REDD+ efforts 232–3, 240
of sea resources 103, 108, 110
social 74
biodiversity
building knowledge and capacity for 155–6
as co-benefit of ecosystem-based adaptation 9–10, 12
hotspots 64, 234–5
loss 107, 132–3, 136, 153, 158
terrestrial 234–5
value 245–6
biofuel policy 127
biogeochemistry 156
biological resilience 143
biology 156
biomass
burning 124
definition 196
economics 196, 199–200, 208
energy 18, 196, 200, 204–5, 208
forest 231
of marine resources 153–4
blue carbon 103
blue economy 103
blue infrastructure 63–5
border tax adjustment (BTA) 271–2
Brink, Patrick ten 15, 61
building climate resilience
addressing risks 4–5
approaches to 7–11
challenges and opportunities for 11–13
consequences of inaction 3–4
current trends in climatic variables 1–3
need for 5–7
in Vietnam and Bangladesh 183–93
built environment 61, 63, 67–9, 85, 185
business as usual (BAU) scenarios 3, 121, 216–17, 222, 265, 269
CA see conservation agriculture (CA)
California
drought experience
perspective on 168–72
summary 17–18
surface water rights 165
water projects 166–8
water resource management 164–5
challenges facing 165–8
evolving management context 172–7
future directions 177–8
water use practices 166
cap and trade 21, 219, 266, 272, 274
capacity factor 198–200, 203–5, 208
capital
and energy taxes 270, 274
restructuring foreign and domestic 184, 192
capital constraint 199
capital cost 197–9, 202, 207
capital income 213, 215–17, 223, 226–7
capital intensity 18, 199
capital investment 199
carbon accounting 124, 238, 281
carbon credit 124, 126, 238, 242
carbon dioxide (CO₂) emissions
charging companies for damage caused by 20–21, 279–80
fossil fuel-led growth 18, 99
global rise 1–3
as main anthropogenic GHG 99
policies placing price on 19, 213
and REDD+ 19–20, 231–3, 235, 243
trading schemes
China 226
efficiency 215–17
equity 219–21
political feasibility 221–3
see also greenhouse gas (GHG) emissions
carbon finance companies 232
carbon financing 124
carbon-intensive industries 271
carbon leakage effect 270–72, 274–5
carbon markets 121, 234, 238, 240–41
carbon neutrality 198–9
carbon offset projects 72, 281
carbon pricing
efficiency theory and models
carbon taxes 214–16
emissions trading schemes 215–17
equity theory and models
 carbon taxes 217–19
 emissions trading schemes 219–21
policy practice 223–7
political feasibility 221–3
revenue 213–15, 217, 219, 224–6
theory summary 19, 223
carbon sequestration
 investment in projects 283
 in farming 115, 117, 121, 124
 in forests 231–2, 246–7
role of CA 123
carbon sinks 232, 245
carbon subsidising regime 12
carbon taxes
 and clean energy 226
 direct way of raising revenues 213
 impacts
 and economic efficiency 214–16, 223
 and equity 217–19
 as regressive 217–18, 272
 and renewable energy transition 207
 revenue equivalence of, and ETS 217
carbon taxing regime 12
carbon trading 126
Carraro, C. 20
Central Valley Project 166–77, 174
cereal production 36–7, 154
certifying agents 238, 242
challenges
 to building climate resilience 11–13
 in Vietnam and Bangladesh 183–92
 confronting marine ecosystems 17, 133–6
 facing California’s water management community 165–8, 172
 heat stress as public health 59–61
 for small island developing states 102–8
Cheung, W.W.L. 17, 135–6, 147, 151, 153, 155–6, 160
China
 emissions of nitrous oxide 115
 expected rise in incomes 154
 implementation of pilot emissions trading schemes 226, 275
nutrient and sediment discharges into China Sea 144
 share of total global CO₂ emissions 1–2
 technical potential 196
cities see coastal cities, vulnerable;
 Dhaka; Ho Chi Minh City (HCMC); resilient cities
city governance 66–9, 71–2, 187–8, 190–93
city government 183
civil society 72, 157, 160, 279–80
clean energy research 226
clean energy sources 18
clean energy subsidies 226
Clean Environment Fund 13
clean technologies 11, 20
Clear Water Act 28
climate action 12–13, 265
climate action plan (CAP) 78–80
climate adaptation
 and climate finance 250
 engaging local communities 261
 factors affecting urban 184
 in farming sector 27
 strategies for 67
climate change
 adaptation to
 impact on land use and water quality 27–38
 IPCC Working Group II 98–9, 107, 110
 overview 14–16
 economic costs 3
 mitigation 79, 107, 115, 156, 231, 238, 266–74
 physical basis of 97–8
 vulnerability to
 areas addressing underlying causes 257–8
 components, strategies, approaches 4–5
 in Dhaka 185–6, 192
 in Ho Chi Minh City 188–9, 192
 indicator of 43
 of Portland 82, 92
 of SIDS 98, 100
 small farmers, reducing 124
 see also impacts of climate change
climate events 84, 125, 166, 183
climate finance
climate pact on mobilizing 5
democratising at local levels 250–62
as essential for developing countries 20
climates forecasts 43
climates governance 192
climates information 48–9, 51, 54, 251, 254, 256, 260
climates migrants 190
climates pact 5
climates policies
effects derived from poorly quantified 100
efficiency factors 222–3
gross costs as regressive 220
impact on economy 265–75
interacting with other social goals 99
obstacle to enactment of 221
climates policy revenue 215
climates polluters 280
climates projections 60, 69, 115
climates regimes 79
climates regulation 66–7, 273–4
climates resilience
building
addressing risks 4–5
approaches to 7–11
challenges and opportunities for 11–13
consequences of inaction 3–4
current trends in climatic variables 1–3
need for 5–7
in Vietnam and Bangladesh 183–93
definition 4
and renewable energy policies 206–7
sectoral perspectives 16–19
and sustainable development 96–111
through nature governance 71–2
urban
building 183–93
framework 93
see also co-producing resilience; urban resilience
climate resilience pathways 5, 98–9, 101, 157–8, 250–51, 266
climate resilient marine ecosystems 17, 160
climate resilient policies 12
climate risks 4, 101, 255, 261
climate scenarios 16, 32–4, 38, 96, 115
climate smart agriculture (CSA)
concept 116, 118–19
critique 119–21
definitions 118–19
dualistic trade-offs 127–8
future research directions 128
incentives 121, 127
institutions 126–7
interventions 116, 118, 126
measures
current applications 121–6
examples of potential 117
outcomes 121–3, 126
policies 126–7
climate solutions 13, 20, 59, 64–73, 250
climate variability 42, 46, 164, 253–4, 258, 261
co-benefits 8–11, 98–101, 156, 233
co-producing resilience
case study
co-producing vulnerability assessments 89–92
operationalizing vulnerability 84–9
characterizing vulnerability 82–3
climate vulnerability in cities 79–81
see also climate resilience; urban resilience
CO₂ emissions see carbon dioxide (CO₂) emissions
coastal areas
SIDS in 103, 106–8
Southern California 167
in West Africa 153
coastal barrages 7–8
coastal cities, vulnerable see Dhaka;
Ho Chi Minh City (HCMC)
coastal communities 154
coastal development 106
coastal flooding 8, 188
coastal zones 107, 184
collaborative governance 90–93
command and control regulation 178, 266
commercial fisheries 153–4
common property resources 159
Building a climate resilient economy and society

communities see coastal communities; fishing communities; vulnerable communities
community assets 20, 279
community-based adaptation 69–70, 79, 257–60, 262
community-based approach 16, 98, 110
community engagement 17, 67, 73, 160
community-level indicators 44–5
community support 12
competitiveness 12, 20, 104, 266, 268–71, 274
cost effectiveness 198–200
cost of energy
 conserved (CCE) 202, 208
 levelized 197–9, 203, 205
 renewable energy 197–200
 minimisation of 18–19, 200–208
Costanza, R. 21, 132–3, 139–40, 142–3
County Climate Change Fund (CCCF)
 adaptation committees 254
 funding criteria 253
 monitoring standards and safeguards 257
credit
 access to 44–5, 48–9, 51–4, 122
 carbon 124, 126–7, 238, 242
 environmental earned income tax 217–19
 international 268
 profit 240
 REDD+ 243
CRGE (Climate-Resilient Green Economy) 235
crop diversification 54, 173–4
crop farming 10, 13, 28, 43–4, 52, 116–17, 122–5, 166, 174, 254
crop insurance 15, 48–9, 51–3
crop revenue 174
crop selection 43, 116
CSA see Climate Smart Agriculture (CSA)
current generation 137, 156
Cury, P.M. 17, 158
cyclone shelters 7
cyclones 6–7, 43, 46, 183
damage claims 280
Davide, M. 20
decentralised approach 176–7
deforestation see REDD+
degradation
 environmental 160
 forest 231–5, 242, 245
 habitat 10
 water quality 171
Dekker, S. 15
demand curve 141, 201
depletion
 groundwater 166
 oxygen 134
 of resources 106
Index

developed countries 1, 11, 116, 118–20, 126–8, 141, 154, 242, 250

Dhaka
adaptation at national level/urban scale 186–8, 192–3
climate change vulnerabilities 185–6, 192
flood loss rankings 183–4
differential vulnerabilities 17–18, 165–8
disaster management 186–7
disaster risk management 6–7, 12–13, 68, 189–90
disaster risk reduction 16, 98, 110, 184, 186, 192
disasters 5–7, 106
discounting 137–8
distributional consequences/effects of carbon taxes and emissions trading schemes 217–22, 227 of changes in marine ecosystems 133 of EU climate policy 271–5 donor agencies 118, 237, 242
drivers of agricultural land use 36 of differential adaptive capacity 42–4 of distributional effects 272 of freshwater quality 28
drought buffer 172–4, 176, 258
drought experience 17–18, 49, 168–72
drought frequency 47–54
drought prone areas 4, 7, 46, 125, 164–5, 183, 258
drought resilience 117, 173, 175, 257–60
drought risk 14–15, 107
drought years 166–7, 172, 175, 178
droughts
early warning system 255, 258
as extreme weather event 8, 125
dry and arid regions see California

Earth Atmospheric Trust 281, 284
Earth Summit 103, 236–7
ecological assumptions, validity of 138–9
ecological knowledge 138–9, 147
ecological modelling 139
ecological outcomes (REDD+) 245–6
ecological vulnerability 192
ecology
climate change altering marine ecosystem 151–2
economic adjustment 143–5
economic benefit 139, 144, 227, 245
economic costs of climate change 3
economic efficiency 214–17, 223
economic impacts of climate change 3–4, 136–9 of EU mitigation policies 266–74 of GHG-induced changes in marine ecosystems 17, 132–4
economic losses for additional temperature rises 3–4 approaches for reducing 17–18 due to GHG-induced changes 139
economic modelling 136–7, 214–23, 226
economic policies for marine ecosystems
adjustment policies based on assumption that changes are inevitable 144–5
economic aspects of policies to slow changes 143–4 need for more information on values 147
economic resilience 104, 107, 146–7
economic theory 214–23, 266, 272–4
economic value of coral reefs 139–42, 144
discounting 137–8 of ecosystem services 132–3
economic vulnerability 104
economic welfare 141–2
economics of adaptation 41–2
economics of renewable energy 196–208
ecosystem-based adaptation 9–11
ecosystem-based approach 7–11
ecosystem-based fisheries management 159
ecosystems see aquatic ecosystems; freshwater ecosystems; marine ecosystems; natural ecosystems; urban ecosystems; water ecosystems
ecosystem approach to fisheries (EAF) 155, 158
ecosystem change 143–7
ecosystem services
changing supply of marine 133
forest 231–2
human well-being benefits from 62
trade-offs between two 27–38
value provided by marine areas 132–3, 139–42
efficiency economic 214–17, 223
energy
marginal cost 202–3, 208
performance 268
gain 214–15, 223, 227
standards 202–3
electricity cost 198–200, 205–6, 272–3
electricity flow 197, 200, 205
electricity sources 198
Elhadi, Y. 250
emission paths 100
emission reductions
aims of CRGE 235–6
benefits of 4–5, 101
from business as usual level 215–16
EU measures 20, 265–8, 270, 271, 274
roadmap for 265
role of farmers and land managers 115
SIDS favouring 98
emission reductions targets 126, 223, 226–7, 266–7, 271
emission scenarios 2–3, 6, 99–100, 102
emissions trading schemes (ETS)
and carbon pricing 213
China 226
economic efficiency model 215–17
equity model 219–21
EU 265–6, 268–75
Endangered Species Act (ESA) 168
energy
ambient 200
biomass 18, 196, 200, 204–5, 208
clean 18, 226
conserved 202, 208
geothermal 18, 196–7, 199–201, 208
nuclear 197
solar 196, 198–9, 203–6
solar photovoltaic 196, 199
thermal 196–7, 204–5
tidal 196
wave 196
wind 200–201, 203
see also renewable energy
energy availability 200, 203
energy conservation 18, 201–2
energy consumption 104, 265
energy costs see cost of energy
energy demand 35
energy efficiency
marginal cost 202–3, 208
performance 268
energy-intensive sectors 269–70, 274
energy policy 206–8
energy prices 154, 202–3, 205, 214
energy production 198, 200, 205–6
energy savings 265
energy sources 196–7, 199–201, 203, 205, 207–8, 265
energy storage 203–6, 208
energy supply 108, 196, 201–3, 205, 207
energy supply models 205
energy transmission 19, 208
energy use 116–17, 196, 202
engineering-based approach 7–8
environment
pressures on 32
protection of 66–7
traditional features of urban 63–4
environmental benefit 270
environmental challenges 106–8
environmental change 139, 145–6
environmental disasters 185–6
environmental drivers 36
environmental externality 156
environmental governance 236
environmental impact of climate change adaptation on land use
and water quality
analysis 27–35
conclusions 35–6
models 36–8
environmental justice 80
environmental law 66–7, 279
environmental loss 141
environmental policies 34, 127, 268
environmental quality 27–8, 92, 275
environmental refugees 6
environmental tax reforms (ETR) 266, 272–3
equimarginal principle 201, 203, 206
Ethiopia
agricultural analysis 44
natural regeneration 125–6
REDD+ in 234–47
Europe
climate projections 60
first measures to mitigate GHGs 265
heat case studies 62–5
urban heat islands 60
European Commission 28, 31–2, 38, 71, 123, 225, 265, 267
European Environment Agency (EEA) 60, 274
European Union (EU)
building climate change strategy 265–6
economic impacts of mitigation policies
carbon leakage effect 270–72, 274–5
distributional effects 271–5
on firm-level competitiveness 268–70, 274
on GDP and welfare 267–8, 274
literature on 266–7
Water Framework Directive 28
experts 78, 111, 238–9, 242, 261
exposure
to air pollution 61, 78, 85–9
as component of vulnerability 4, 82–4, 90–91
to extreme heat 78, 85–9
externality
environmental 156
levies 226
extraction cost 206–7
extreme weather events 7–8, 258
farm income 29, 35, 44, 125
farming
and adaptation options 43
and adaptive capacity 45
in California 167, 173–4
and climate smart agriculture 116–26
households in India 46–55
relationship with water quality 27–38
farming experience 48–9, 52–4
farming practices 43, 52
farmlands 28, 166, 200
Fezzi, C. 28–9, 32, 34–8
field crop 173–4
financial reforms 12
firm-level competitiveness 268–70, 273–4
fiscal policy 223
fish abundance 135–6
fish exports 153–4
fish quota 155, 160
fish stocks 135, 155, 158
fisheries
catch 135, 151, 153–5, 160
commercial 153–4
economic impact of climate change and ocean acidification on Norwegian 136–9
ecosystem approach to (EAF) 155, 158
inland 159
management approaches 155
need for research on ecosystems-based 159
policies 156–7, 159
production 152–3, 155
recreational 153–4
subsidies 17, 160
subsistence 154
see also global fisheries
fishing communities 154
flood control 184
flood damage 5–6, 117, 166, 183–4
flood management 8, 117
flood mitigation 65, 165, 167, 190
flood, natural 8, 117
flood prone areas 46, 65, 125, 164, 183–4, 190
flood risk 164, 170–71, 183, 190
flooding
Dhaka slums vulnerable to 186
potential causes of 107, 125, 185
floodplains 8, 190
Folke, C. 4
Building a climate resilient economy and society

Food and Agriculture Organization (FAO) 16, 108, 115–16, 118, 123, 153, 231, 234, 243
food production 120, 137–8, 154, 206
food security “blue economy” concept 103
and CSA 116, 118, 120–21, 123, 126–7
factors undermining 6
growing concern about 16, 116
as issue for SIDS 105, 107, 110
marine fisheries as source of 153
as pillar in climate change action plan 186
potential methods of improving 54
food systems 118, 123, 126–7
forecasting 12, 43, 55, 84, 92
forest carbon market 234
Forest Carbon Partnership Facility (FCPF) 237, 240–43, 247
forest carbon stocks 231–3, 243
forest cooperatives 125, 241
forest degradation 19–20, 231–5, 245
forest owners 234
forest policy 235–7, 239, 241, 243, 244–7
forestry project 125
forests
benefits 34–5
ecosystem services 231
in Ethiopia 125
role in building climate resilient society 231
see also REDD+
fossil fuel cost 198–9, 205–7
fossil fuel extraction cost 206–7
fossil fuel-led growth 11–12, 18
fossil fuel prices 19, 207
fossil fuels
emissions from 99, 127
impact of mitigation policies 100
percentage of global commercial energy mix 98
policy recommendations for change 156
replacements for 208
SIDS’ intensive use of 104
free permits 214, 217, 219–25, 275
freshwater ecosystems 14, 27, 37
freshwater quality 27–8
freshwater resources 106–7
fuel cell efficiency 204
funding agencies 237, 242, 247
Future Cities programme 190–91
future generation 93, 137, 156
gasoline 271
gasoline taxes 218–19
geothermal energy 18, 196–7, 199–201, 208
Ghent, Belgium 69
GHG see greenhouse gas (GHG)
emissions
Global Facility for Disaster Reduction and Recovery (GFDRR) 13
global fisheries
climate change altering 151–2
expected changes and potential impacts 152–4
policy recommendations 156–60
preparedness of response to changes 155–6
global warming
change in marine productivity as result of 139
coral bleaching caused by 140
elevated GHG levels as cause of 133
explaining increased economic value of coral reefs despite reduced area due to 141–2
fish species altering geographic location as result of 136
IPCC report on impacts of 100
sea level rises as result of 135
governance
city 66–9, 71–2, 187–8, 190–93
collaborative 90–93
environmental 236
nature 71–2
urban 192
governance capacity 187–8, 190–92
governance regime 187
government agencies 176, 187, 236–7, 242
government interventions 43, 132, 144–5, 189–90
grassroots projects 69–70
grazing reserve management 259
Great Barrier Reef 144
Green Bonds 13
Green Climate Fund (GCF) 20, 233, 250–51, 260
green corridors 67–8
green economy 103
green infrastructure 15, 61, 63–71, 73–4
green roofs 8, 64, 72
green solutions 7, 64, 72
green space 63–4, 67–9, 73
green walls 64
greenhouse gas (GHG) emissions
adaptation and mitigation applied to 4–5, 120–21
agricultural sector 16, 115, 120–21, 126, 128
California government’s goals for reducing 177
categories of policy instruments for reducing 266
climate pact on reducing 5
consequences for marine ecosystems 133–6, 138–9
ecosystem service as sinks of 231
effects of environmental policies 127
EU reduction policy
carbon leakage effect 270, 271
commitment to 265
cost of 267–8
distributional effects 272–4
impact on firm-level competitiveness 268–70
global rise in 99
international cooperation for mitigating 99
IPCC assessment (AR5) on 101
reducing, in Portland 78
scenarios 99–100
see also carbon dioxide (CO₂)
emissions
greenhouse gas (GHG) induced losses 17, 132–3
gross domestic product (GDP)
carbon tax impacts 216
effect of EU emissions reduction policy 267–8
heat-induced output losses in Germany 60
impacts of climate change 3
marine and coastal activity 108
groundwater extraction 176, 185
groundwater infrastructure 164–8, 175–8
groundwater management 164
groundwater pumping 166–7, 197
groundwater rights 165, 177
groundwater sustainability 176, 178
groundwater withdrawals 17, 172
habitat loss 151, 153, 155
habitats
conservation of 246
provision of 107, 125
restoration of 8–9, 117, 174, 280–81
Haque, I. 18
Harwood, A.R. 38
hazards 4, 78–80, 82, 85–93, 252, 254
health
condition, as factor in determining vulnerability 88–9
heat stress as challenge to 59–61 as important issue for SIDS 105, 110
health benefits of nature
combined green and blue infrastructure 64–5
cooling cities 63
from ecosystem services and institutional responses 62
green roofs and walls 64
mitigating heat stress 61, 73
parks, trees and green spaces 63–4
realising
communities and individuals 69–70
knowledge, local capacity and cooperation 68–9
regulation and legislation 66–7
strategies and plans 67–8
synthesising role of stakeholders, policies and measures 70–74
health impacts
of air pollution and extreme heat 83, 90
of climate change 66, 70
of urban heat islands 68, 73
heat island effect see urban heat island effect (UHI)
heat related risks 60, 90–91
heat stress see urban heat stress
Building a climate resilient economy and society

- heatwaves 8, 59–60, 63, 65, 68–9, 73, 82–3
- Hesse, C. 250
- Ho Chi Minh City (HCMC)
 - adaptation at national level 189–90, 192–3
 - adaptation at urban scale 190–93
 - climate change vulnerabilities 188–9, 192
 - flood loss rankings 183
- hotspots
 - biodiversity 64, 234–5
 - mapping 43, 90–91
 - neighbourhoods 84
- household income 44, 47–50, 53–4, 82–3, 102, 217–21, 272–4
- households
 - amount of adaptive capacity 41–2, 52–5
 - carbon revenue recycling 213–15, 226
 - distributional effects of EU climate policy 272–4
 - engaging in adaptation options
 - drivers of differential propensity 43–4
 - methods 45–7
 - results 47–52
 - studying generic factors 44–5
- Isiolo County 259
- lump-sum rebates 217–21, 223–5
- registration systems 189–90
- Human Development Index (HDI)
 - 102, 105
- human well-being 62, 92, 133, 155, 279
- Hurricane Katrina 102
- hybrid approach 7–8
- hydrofluorocarbons (HFCs) 12
- hydrogen storage 204
- hydrogen technology 204
- hydropower 196, 200–205, 208
- hydropower development 18, 196
- impacts of climate change
 - economic 3–4, 136–9
 - health 66, 70
 - on marine ecosystem biophysics and ecology 151–2, 155–7
- income
 - carbon pricing policy and revenue management 213–27
 - as determinant of vulnerability 60, 83, 91
 - farm 29, 32–5, 44–5, 48–50, 53, 115, 125
 - global 154
 - household 44, 47–50, 53–4, 82–3, 102, 217–21, 272–4
 - income distribution 217–20, 272
- India
 - Orissa 46–55
 - Southern 154
 - water subsidies 126
 - world incomes 154
- indicators
 - adaptive capacity 42–5, 49–52, 54
 - environmental 80–81
 - social 80–81, 105
 - vulnerability 42–3, 82, 90
 - indigenous people 4, 105, 237, 240–41, 246
 - inequality 6, 261–2
- infrastructure
 - blue 63–5
 - green 15, 61, 63–71, 73–4
 - groundwater 164–8, 175–8
 - renewable energy 196–7
 - urban 63–5, 67, 283
 - water 64, 164–8, 257–8
 - water management 164, 168–9, 172–8
 - infrastructure investment 166, 176, 183, 191
- inland and coastal flooding 18
- innovation
 - institutional 164, 172, 175–6
 - technological 268
- Inoue, M. 19, 234–7, 243–4
- input subsidies 126
- institution-based adaptation 79
- institutional arrangement 16, 164, 233
- institutional barriers 159
- institutional innovation 164, 172
- institutional outcomes (REDD+)
 - 244–5
- institutions
 - Boran traditional resource management 259
climate smart agriculture (CSA) 126–7
need for development 156, 159
role in human well-being 62
instruments
climate resilience through
 governance 66–73
 for human well-being 61–2
 policy 127, 266
insurance
crop 15, 48–9, 51–3
 markets 145
 premiums 145
integrated assessment model (IAM) 266–7
intended nationally determined contribution (INDC) 11
interest rates 198–9, 202
Intergovernmental Panel on Climate Change (IPCC)
assessment reports 1–4, 14, 97–102, 107–11, 183, 191
climate resilient pathways 5, 266
definition of resilience 4
on fossil-fuel use 198
on GHG emissions 6, 16, 18, 115, 120, 231
provision of knowledge 71
and REDD+ 238–9
on risks of heat stress 18, 60
on water reductions 6
Intergovernmental Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES) 71, 111, 155–6
international agreements 12
international trade 12, 104, 266, 272
interventions
 adaptive 80, 92
 climate smart agriculture (CSA) 116, 118, 126
government 43, 132, 144–5, 189–90
investment
climate resilience through
 governance 71–2
 community-prioritized 20, 283
 fisheries requiring 159
 infrastructure 166, 172, 176, 183, 191
 in nature 66–73
 private sector 124, 240
public goods investment 251–7
 in renewable energy 199
 by smallholders 122
Isiolo County Climate Change Fund (ICCCF)
 community-led adaptation initiative 257–60
 continued success of 262
 lessons learned 261
Johnson, C. 18, 183–4, 192
Jorgenson, D.W. 216
Kenya
 agricultural carbon for smallholder farmers 124
 devolved government 251
 integrated approach to democratized climate finance 251–7
see also Isiolo County Climate Change Fund (ICCCF)
Kenya Agriculture Carbon Project (KACP) 124
knowledge
 in climate resilience through nature governance 71–2
 for coping with excess heat 68–9, 73, 80
coproduction 81, 84–5, 92
ecological 138–9, 147
local traditional 10, 13
in Portland 80
scientific 13, 158–9, 238–9
Kyoto Protocol 97, 189, 232, 265, 268
land price 191
land use change 28–36, 115
land use model 36–8
land use planning 67, 184, 187–8
land use projection 30, 38
landscape model 80–81
Laplace’s principle 137
LEDs (light emitting diodes) 202
legal frameworks 73, 257, 280
legislation 66–7, 71–2, 172–3, 176
legislative frameworks 186–7, 189–90
levees 8, 167–8
levelized cost of energy (LCOE) 197–9, 203, 205
livelihood security 120
livestock intensity 31–3, 37
management 43, 116–17, 257–60
products 16, 29, 36, 116
local action 66, 73
local communities adaptability 55
among co-benefits 9–10
channelling finance to 250
grassroots projects 69–70
in implementation of REDD+ pilot project 240–42
build adaptive capacity for 156
strengthening role of 73
local government 66–8, 70, 73, 253, 262
local scientific knowledge 10, 13
losses economic 17–18, 139
estimated GDP 3
GHG-induced 17, 132–3
heat-induced output 60
in potential fish catch 153
welfare 267–8
Lovett, A.A. 38
low carbon economy 11, 20
Lyon, France 65

macroeconomic cost 266
mainstreaming climate resilient policies 6, 62, 184, 191, 256–7, 261
Malawi 122–3
managed landscapes 17, 172
management
disaster 186–7
disaster risk 6–7, 12–13, 68, 189–90
fisheries 155–60
flood 8, 117
grazing reserve 259
groundwater 164
livestock 43, 116–17, 257–60
ocean 155–7
revenue 214–27
risk 6–7, 12–13, 68, 189–90, 255, 262
soil 116–17
waste 106, 110
Manchester, UK 70
mangroves 8–9, 11–12, 133–5
marginal abatement cost 216–17
marginal cost of conservation 201
curve 201
of energy efficiency 202–3, 208
of public funds (MCF) 214–15
of renewable energy 18–19, 200–201, 208
spatial considerations 205–6
temporal considerations 203–5
social, of fossil fuel 207
mariculture 135–6, 145
marine areas 132
marine ecoservices 17, 132–3
marine ecosystems
abiotic changes due to elevated GHG levels 133–6
climate change
altering biophysics and ecology 151–2
coral reefs and 139–43
economic impact on Norwegian fisheries 136–9
and economic policies 143–5
impacts on fisheries and human beings 152–4
resilience and alterations caused by 146–7
responses to changes 155–6
climate resilient 17, 160
major challenges confronting 17
policy recommendations 156–60
in SIDS 16, 108
and value of marine ecoservices 132–3
marine environments 132–4, 147
marine fisheries see fisheries; global fisheries
marine pollution 106, 151, 153, 155
marine productivity 138–9
marine protected areas 17, 155, 160
marine resources 132–3, 147, 153, 157, 159
marine species 17, 108, 134–7, 151–2
marine tourism 132
market-based instruments 127, 266
market goods 11–12, 214–15, 218, 226
May, K. 18
Mendelsohn, R. 43, 47
Metcalf, G.E. 217–18, 220
methane 99, 117, 196
migrants 185, 188–90, 192
Index

migration
 of people 49–50, 106, 147, 188, 190, 192
 of species 152, 154, 157
Miller, K.A. 17, 135, 159, 172
mitigation
 climate change 79, 99–102, 107, 115, 156, 231, 238, 266–74
 flood 65, 165, 167, 190, 192
 mitigation policy 100, 266–74
 mitigation projects 116–26, 231–47
 mitigation strategies 78–9, 99–102, 127–8, 143, 155, 159, 189–90, 232
 mitigative capacity 102
Mohammed, A.J. 19, 234–5, 237, 243–4
mollusc production 137–8, 146
monitoring
 of adaptation 92, 255–7
 forest systems 233, 243
 of water use 29, 37, 177–8
Moran, D. 16–17, 115
mortality rates 60
multilateral negotiations 100, 107
municipal government 18, 183, 187–8, 190–91
municipal planning 78–9, 84–92
Mutafoglu, K. 15

National Drought Management Authority (NDMA) 251, 255–9, 262
national governments 66, 68, 186–7, 189–90, 192, 280
National Oceanic and Atmospheric Administration (NOAA) 1, 171
natural capital 62, 279
Natural Capital Committee 35
natural ecosystems 17, 142, 172
natural flood 8, 117
natural regeneration 124–6
natural resources
 coral reefs as 135
 government collecting damages 280 held in trust 279
 management meetings 259
 overexploitation 106, 108
 scarcity 16, 106, 116
nature
 future directions for 73–4
realizing public health benefits through investing in 66–73
role
 in improving micro-climatic conditions in cities 59
 for mitigating heat stress 61
 in reducing heat island effect in cities 61–5
nature’s law 281
nature’s trust 279–81
NGOs see non-governmental organisations (NGOs)
Niger 124–6
Ninan, K.N. 12, 14–15
nitrous oxide 99, 115
non-governmental organisations (NGOs) 118, 157, 160, 232, 235, 239, 246, 255, 281
non-market goods 141–2
non-native species 152
non-timber forest products 231
Norgaard, R. 167–8
Norway
 carbon pricing revenue usage in policy practice 224
 Norwegian fisheries 135–9
 supporting REDD+ readiness in Ethiopia 237, 242–3
 technical potential 196
nuclear energy 197
ocean acidification
 adverse consequences to marine species 134, 146, 152
 climate change tending to accelerate 106
economic impacts
 allowing for uncertainty and discounting of economic values 137–8
 modelling 136–7
validity of ecological assumptions 138–9
impact on coral reef ecosystems 154
implementing adaptation to and mitigation of 157
increase in Arctic 151
likely to further reduce fish catch 153
ocean management 155–7
ocean resources 103, 108, 110
ocean temperature 135
oil prices 154, 222, 272
open access resource 20, 279
operating costs 198, 202–3
opportunities
for building climate resilience 11–13, 93
in building resilient water economy 166–8, 172–7
for counties to access shared resources 259–60
for small island developing states 108–10
opportunity cost 8, 122–3, 232
Orindi, V. 20, 43
Orissa
adaptation option results 47–50
adaptive capacity in agricultural sector 52–5
geography and climate 46–7
overexploitation 106, 108, 153, 155, 157
Panda, A. 4, 14–15
Paris Climate Agreement/Summit 5, 11, 16, 96, 100, 109–11, 226, 265, 275
parks 63, 65, 69, 71
pastoralism 254, 258
Patt, A. G. 14–15, 41–5, 52, 54–5
per capita CO2 emissions 1–2
perennial crop 174
photovoltaic cells 197–202, 205
Pichs-Madruga, R. 16
policies
for achieving climate smart agriculture 126–7
California’s water 165, 172
carbon pricing 213–14, 223–7
economic 143–5, 147
economic impacts of EU mitigation 266–75
land use, Bangladesh 187–8
national adaptation, Bangladesh 186–7
national, Vietnam 191
REDD+ project 231–2, 235–7, 239, 241, 243–7
renewable energy 206–7
synthesizing role of 70–73
policy design 27, 213–27, 268–9, 274
policy instruments 127, 266
policy recommendations 156–60
policy responses
for addressing urban heat stress 68
to climate change 27
to climate-induced change in marine ecosystems 143–5, 147
potential, to adaptation-induced deterioration of river water quality 34–5
policy revenue 215, 221
political economy 90, 116, 214, 226
political feasibility 213, 221–3, 227
population
global 12, 16, 154
growth 1, 6, 104, 165
SIDS 104–6
urban 15, 18, 59–60, 183
vulnerable 86–7, 89, 105
Porter hypothesis 268
Portland, Oregon 15, 78–9
Bureau of Planning and Sustainability 79, 85, 93
case study
coproducing vulnerability assessments 89–92
operationalizing vulnerability 84–9
characterizing vulnerability in 82–3
climate vulnerability in 79–81
study conclusions 92–3
potential fisheries catch 135, 153
poverty
in Dhaka 185
eradication 101, 109
in Ethiopia, below poverty line 235
in Ho Chi Minh City 185
in Kenya 261
in Orissa, India 46
below poverty line 48–50, 53
in Portland
below poverty line 86–7
city’s history of 88
reduction 6, 118, 160
power generation 104, 200
precautionary approach 155
precipitation 2, 18, 29–32, 44, 169–72, 188
predators 10, 152, 155
predicted changes 17, 133
Index

present value 198
prey 10, 152
primary productivity 152–3
private sector 72, 187–8, 191, 240, 242, 246
productivity
 marine 138–9
 primary 152–3
property rights 21, 44, 62, 245, 279
protected areas
 marine 17, 155, 160
 urban 61, 63, 73
provisioning services 27, 136–7
public finance models 19, 213
public funds
 County Climate Change Fund as 252, 260
 marginal cost of 214–15
 policies raising substantial amounts of 213
 prioritising, for development 252
public health
 heat stress as challenge to 59–61
 realizing benefits through investing in nature 66–73
public policy 208, 236
public trust doctrine 21, 279–80, 283
quality of life 5, 81, 93, 154
Rao, M. 15, 85
recreational fishing 153–4
recreational services 9, 35, 132, 165
Red Rose Forest initiative 70
REDD+ (reducing emissions from deforestation and forest degradation plus)
 actors
 certifying agents 238
 experts and scientific community 238–9
 funding agencies 237
 government agencies 236–7
 local communities and indigenous people 240–41
 NGOs 239
 private sector 240
in Ethiopia 234–6
 evolution of 19–20, 232–3
 global interest in 234
impacts 246–7
implementation process 241–3
outcomes
ecological 245–6
emphasis on Ethiopia 243–4
institutional 244–5
socio-economic 245
purpose of 232
regulation
 command and control 266
 for investing in nature 66–7
 micro-climatic 61–2, 67–8, 73
 prescriptive 266
 and river water quality 27–8, 31
regulation services 73
renewable electricity 196, 199
renewable energy
 choices 200–201
 costs
 and capital intensity 199
 and cost factors 197–200
 minimisation of 18–19, 200–202
 energy efficiency 202–3
 spatial considerations of
 marginal cost 205–6
 temporal considerations of
 marginal cost 203–5
 site sensitivity 200
economics 196–208
infrastructure 196–7
marginal cost 18–19, 200–201, 203–6, 208
 policies 206–7
sources 18, 196–7
technology 197, 200, 202, 204–5, 207
total cost 18, 201, 205
transition 18–19, 199, 206–8, 281
rent transfer 217, 221
resilience see climate resilience; co-producing resilience; urban resilience
resilient cities 184
resilient societies 231, 234, 246–7
restoration projects 280–81
revenue
 carbon pricing 213–15, 217, 219, 224–6
 carbon taxes
 as direct way of raising 213
 as equivalence of 217
K. N. Ninan and Makoto Inoue - 9781785368455
Downloaded from Elgar Online at 08/27/2019 11:11:43PM
via free access
climate policy 215
crop 174
management 214–27
policy 215, 221
recycling 213–23, 227, 275
Rio Earth Summit 103, 236
riparian surface water rights 17, 172, 176
risk factors
socio-ecological 81, 90
vulnerability 82, 91
risk management 6–7, 12–13, 68, 189–90, 255, 262
risk reduction 16, 54, 98, 110, 184, 186, 192, 266
risks
of asthma attacks 82–3
carbon leakage 269
climate change 32, 90, 98, 101, 109, 145, 190
flood 164, 170–71, 183, 190
hazard 90–91
of heat stress 60, 65
from technologies 103
water-related 178
river basin 166, 170
river catchment 31–2
river flow regime 171
river water quality 27–9, 34–5
Royal Society 6–8, 12
safety nets 231
sanitation 105, 110, 184, 186, 192
scales 93, 160
scenario analysis 156–9
scenarios
building 101, 157–9
fish 137, 156
mitigation 100
no trade vs EU ETS 269–70
reference 99
revenue recycling 215–16, 218
sea-level rise 190
see also business as usual (BAU) scenarios; climate scenarios; emission scenarios
Schweitzer, J.-P. 15
scientific community 238–9, 242
scientific knowledge 13, 158–9, 238–9
sea food see fisheries; mollusc production
sea level rise
caused by global warming 135, 168
mangrove conservation 11
responding to 7–9, 145
scenarios 190
and SIDS 107, 109, 111
sea walls 7
seaweed resources 135, 154
sectoral perspectives 16–19
sediment loads 171
sensitivity
as component of vulnerability 4, 82, 84–5, 88–91
socio-economic 185
Shandas, V. 15
Sharma, U. 14–15, 43
SIDS (small island developing states)
areas for future consideration 111
challenges for
economic vulnerability 104
environmental 106–8
recognition of 102–3, 110
social 105–6
favouring substantial GHG emission reductions 98
high vulnerability to multiple stressors 101
as most vulnerable to climate change 16
opportunities for 108–10
relevant IPCC findings 109–10
restrictions on assessments of 97
sustainable framework considerations 110
temperature goals 100
smallholder farmers 115, 118–26, 128
snowpacks 167, 169–72
social adjustment 143–5
social approach 7
social benefits 74
social capacity 15, 78
social challenges 105–6
social networks 7
social power 81
social resilience 93, 146
social vulnerability 42–3
social welfare 205, 267–8
socio-ecological landscapes 79–83, 88–93
socio-ecological risk factors 81, 90
socio-ecological scenarios 158–9
socio-ecological systems 4, 19–20, 82, 90
socio-economic outcomes (REDD+) 245
socio-economic sensitivity 185
socio-economic vulnerability 97, 100, 109, 191–2
soil carbon 9–10, 115, 121
soil management 116–17
solar energy 196, 198–9, 203–5
solar photovoltaic energy 196, 199
solar plants 197
species
 bird 107
 distribution 152
 mangrove-dependent 9, 11
 marine 17, 108, 134–7, 151–2
 plant 8, 107, 246
 at risk of extinction 2–3, 246
 tree 125
stakeholders 62, 69–71, 84–5, 88–9, 92, 158–9, 240, 244
Stern, N. 3
Stern Review xv, 3
storm frequency and severity 135
storm runoffs 168–9
storm surges 7, 9, 11, 18, 184
stormwater capture 175, 178
stream temperature 171
Su, Y. 18
Sumaila, U.R. 17, 135, 153, 155–6, 159–60
supply chains 116, 118–19, 128
supply curve 201
sustainability
 of climate smart investments 122
 debates 96, 116
 goals, groundwater 176, 178
 pillars of 96
 references to, in IPCC report 100–101
 and resilience 146
 water supply 168
sustainable development
 main dimensions of 96
 perspective in IPCC assessment report 97–102
 and SIDS 103, 108–11
sustainable development goals (SDGs) 6, 71, 96, 110
sustainable yield 155, 158
Tai, T. 17
tax payment neutrality 221–2
tax rates 213, 215–16, 224
technological change 32, 199, 202
technological innovation 268
technology
 biomass 204–5
 capacity factor 200
 green 224
 hydrogen 204
 investment in development of 283
 lighting 202
 new 207
 refrigeration 197
 renewable energy 226
 risky 103
temperature
 agreement to limit increase 5, 11, 109, 233
 and agricultural production 32–3
 cooling benefits of nature 61
 as driver of agricultural land use 36
 economic losses for additional increases 4
 for energy utilization 197, 202
 green spaces 63–4, 70
 of human body 60
 impact on land use shares and beef cattle rates 29–30
 impact on snow 171
 impact on soil moisture 172
 ocean 135, 151–2
 in Orissa, India 46
 projected increase 32, 60, 63, 70
 reduction in GHG required 100
 rising global xv, 3
SIDS mitigation goal 100
surface 2, 64, 99
urban 60, 65, 69–70
thermal energy 196–7, 204–5
tidal energy 196
tidal marshes 133
Building a climate resilient economy and society

Timmons, D. 18, 202
Tisdell, C.A. 17, 141–3, 146–7

total cost of renewable energy 18, 201, 205

trade
 cement 272
 economic dependency associated with 43
 international 12, 104, 266, 272
 trade-offs
 between CSA objectives 118, 121, 127
 economic 144
 between efficiency, equity, and political feasibility 223
 between mitigation and adaptation 98–9, 126–7
 between two ecosystem services 14, 27, 34–6
tropical countries 43, 147, 153–4, 234–5
tropical forest 246
tsunami 12

uncertainty/ies 7, 92, 115, 119, 122, 126, 134, 137–8, 158, 190, 215, 227, 254

United Kingdom Climate Impacts Programme (UKCIP) 32–4, 38
United Nations Environment Programme (UNEP) 11
United Nations Framework Convention on Climate Change (UNFCCC) 5, 11, 13, 71, 97, 109, 125–7, 189, 232–3, 236–9, 243, 250, 262, 265, 275
urban aquifers 175
urban areas 18, 60, 73, 183, 187–90
urban assets 183, 193
urban climate resilience 93, 183–93
urban ecosystems 80
urban encroachment 185
urban governance 192
urban heat island effect (UHI)
 in Ho Chi Minh City 188
 in Portland 89
 role of nature in reducing 61–5, 73–4
 urban populations exposed to 59
urban heat islands
 and heat stress 60
 initiatives to mitigate health impacts 66–73
 in Portland 80, 88–9
 as widespread in built-up areas 59
urban heat stress
 assessing human vulnerability to 84
 in Ghent 69
 policy responses for addressing 68
 as public health challenge 59–60
 role of nature for mitigating 61
 strategies and plans for 70
 urban infrastructure 61–5, 67–71, 283
 urban planning 184–5, 187–8, 190–92
 urban population 15, 18, 59–60, 183, 185–6
urban regeneration 61
urban resilience
 building
 challenges of 192–3
 as global priority 183
coproduction as model for 79
Dhaka lacking strategy for 188
impact of climate change 60
nature helping to improve 59
realizing public health benefits through investing in nature 66–74
role of nature
 for mitigating heat stress 61
 in reducing heat island effect in cities 61–5
urban heat islands and heat stress 60
see also climate resilience; coproducing resilience
urban services 183, 192
urbanization 183, 188, 190–91, 193
US Clean Water Act 28

value
 of biodiversity 245–6
economic
 of coral reefs 139–42, 144
discounting 137–8
 of ecosystem services 132–3
 of nature 73
van Diepen, A. 15
variables
 climatic 1–2, 38
 for geothermal energy utilization 197
Index

independent, in agricultural productivity study 44–54
socio-ecological 80–81, 85–8
Verified Carbon Standard (VCS) 238
Vietnam
historical legacy of central state planning 192
household registration system 189
legislative framework on climate change 189–90
as low elevation coastal zone 184
urban planning in 184
see also Ho Chi Minh City (HCMC)
Vietnam Climate Adaptation Partnership (VCAPS) 190–91, 193
Voelkel, J. 15
vulnerability
assessment 71, 78, 81–93, 256
characterizing 82–3
climatic 45, 79–81, 187, 251
to climate change
areas addressing underlying causes of 257–8
characterizing 82–3
components, strategies, approaches 4–5
in Dhaka 185–6, 192
in Ho Chi Minh City 188–9, 192
indicator of 43
of Portland 82, 92
of SIDS 98, 100
small farmers, reducing 124
co-producing assessments 89–92
definition 80–81, 83, 85
differential 17–18, 165–8
dimensions 82–5, 90, 92
ecological 192
economic 104
hazard-specific 82, 85, 88
human 81, 83, 91
indicators 42–3, 82, 90
operationalizing 84–9
scoping diagram 83
social 42–3
socio-economic 97, 100, 109, 191–2
vulnerability index 42–3
vulnerable coastal cities see Dhaka; Ho Chi Minh City (HCMC)
vulnerable communities 41–2, 80–81, 100, 251–2
vulnerable populations 86–7, 89, 105
vulnerable social groups 255–6
ward adaptation planning committees (WAPCs) 252–5, 257
warning systems 6–7, 12, 68, 255, 258
waste management 106, 110
waste water recycling 8
water allocations 165, 174
water bank 172–4
water bodies 28, 178, 184, 186–8, 190–92, 279–80
water conservation 47, 49–50, 53–4, 172, 175–7, 231
water deliveries 174–5
water development options 169
water districts 167, 174–6
water economy 166–78
water ecosystems 27–8, 37
water infrastructure 64, 164–8, 257–8
water intensive crops 52, 174
water management challenges 165–9
water management infrastructure 164–8
water management practices 166–8, 170–72
future 177–8
water management strategies 18, 172–7
water market/ing 173–4
water planning/policy 165–6, 172, 176–8
water power 18
water projects 166–8
water providers 164–5, 175
water purchasers 173
water quality 27–9, 32–5, 107, 168, 171, 176–7
water quality model 31, 37–8
water rights 165, 172, 176–7
water-saving irrigation techniques 17, 166–7, 171, 174, 190
water scarcity 18, 65, 107
water stress 17
water sector 175
water subsidies 126
water supply/ies 164, 166–70, 172, 175, 178

K. N. Ninan and Makoto Inoue - 9781785368455
Downloaded from Elgar Online at 08/27/2019 11:11:43PM
via free access
Building a climate resilient economy and society

water transfer 8, 174–5, 177
water use 49, 166, 173–5, 177–8
water use efficiency 178
water users 17, 165, 172, 177–8
watersheds 171, 176
Watson, R.T. xiii–xiv
wave energy 196
weather 42, 45, 122, 254, 258
weather variability 115, 261
welfare losses 267–8
wetlands 8–9, 108, 135, 184–92, 283
wind energy 200–201, 203
wind velocity 197, 200
woodland 32, 35, 117, 234, 245
Woollard, J. 15
World Bank 6–7, 13, 41–2, 54–5, 118,
124–5, 184, 223, 237, 241
Wreford, A. 16–17
yields
agriculture 31, 47–8, 52–4
crop 122–5, 200
Zambia 122–3