academics 19, 65–8, 72–5, 79–81, 85, 88, 104
access
to environmental resources 17, 29–30, 46, 125, 137, 143–4
to funding 80–81, 116, 129, 133
inequality of 25–6, 31
limitations to 25, 121–3, 125
Acid Rain Program 13
action research (AR) 69–70, 76–8
activated carbon (AC) filtration 170, 172, 174
adaptive management 15, 18
advanced oxidation process (AOP) 170, 171–2, 174
aquaculture 173–4
aquifers 176
Argentina 83, 107–9, 112
Arizona 164–5
Arnstein, Sherry R. 78
aspirational scenario 96
atmospheric modelers 94, 96, 98–9, 102, 103, 104
attrition 75, 156
awareness, importance of 16, 76, 79, 82, 123, 160–61, 173, 180
Babbie, Earl 36
Banerjee, Aparajita 140
Baraga County Gift Checks 127–8
basic goods 140–42
behavioral change 152, 156–7, 160–61, 168
behavioral psychologists 165–6
Bickerstaff, Karen 135
Big Spring, Texas 170, 171–2
bioaccumulation 96–7
biodiversity 3, 14–15, 18, 23, 110–12, 137–8
bioenergy 15–16, 83–85, 151
see also BIOPIRE project
Biofuels in Pan-America (college course) 115
biogeochemists 97, 103
biophysical factors 5, 117, 148, 151
BIOPIRE project 83–6, 107–20
advances made by 84–5, 119–20
challenges of 85–6, 115–18
communication, role of 112–114
funding of 108–9, 111
goals and products, role of 114–15
knowledge transfer, role of 115
leadership in 110, 120
literature, contribution to 118–19
local expertise, role of 114
logistics 117
NGOs, role in 107–11, 114, 119
relationship-building role of, 111–12
scope of 109–11
socioeconomic systems and 107–10, 119–20
success strategies of 111–15
team building 107–9
team management structure 110–11
team meetings 108
blending, wastewater 169, 171, 177
Bolton, Gary E. 163
Boserupian theories 29
boundary spanners 51, 53
brackish groundwater desalination 171
Brazil 21, 109, 111, 118
British Petroleum (BP) 134–5
bromate 170
Brown, Rebekah R. 147
“Brundtland Report” (United Nations) 9–10
budgets see funding
bureaucracy, challenges of 23, 25–6, 56, 59, 62, 116, 117, 178
business-as-usual 170, 179
business partners 45–6, 49, 62–3, 125–33, 137–8, 178
California 173–6, 181
California Department of Public Health 181
Canada 79, 83, 84, 94, 107–9, 147
Canadian researchers 79, 83, 84, 107–9, 147
capital 10–12, 14, 16, 133
capital stock 11–12, 14, 16
capitalism 29, 136–8
carbon dioxide
activated carbon (AC) filtration 170, 172, 174
adsorption 172, 174, 177
atmospheric levels of 145
carbon cycles 31
carbon footprint 160, 163, 168
carbon offset 163
carbon trade 165
emissions 145–6, 165
hydrocarbon production 143
sequestration of 17
Castells, Manuel 22
Castillo, Alicia 81
Centre for Sustainable Energy 135
certification programs 15–16
chains of explanation 30
chamber of commerce 127–8
chemical engineers 108, 110
chemistry, environmental 94, 96, 98, 102, 103
Cheruvelil, Kendra S. 87
China 136–7
chlorination 172, 174
citizen participation, ladder of 78
citizen science 65–6, 67–9, 76–7
city government 162, 164–5, 171, 172, 173–9
civil engineers 146–7
Clean Air Act (1990) 13
Clean Water Act (1972) 57–8
climate change 3, 10, 14, 18–19, 84, 96
energy justice and 135, 138, 143
see also Interactions of Food Systems with Water and Energy Systems (FEW)
“Climate Game” (Zhou), 160
climate scenarios 154, 165
climate scientists 152, 165
closed-loop engineered systems 151, 179
cognitive scientists 66, 162–3
cognitive symbols 23
collaboration see interdisciplinary (ID) research; transdisciplinary (TD) research
collective action 27–8
Colorado River Municipal Water District 171–2
comanagement 26
common-pool resource management 29
communication 48, 50, 51–3, 60, 61
assumptions and uncertainties 104
closed loop 178
e-mail, use of 155, 166–7
Interactions of Food Systems with Water and Energy Systems (FEW) and 152, 154–5, 166–7
miscommunication 99, 117
regular meetings, importance of 102, 112–13, 155
see also language
community-based research 65–6, 67–9, 76–7
community engagement, in TD research 64–78, 101, 113, 169, 173
action research (AR) 69–70, 76–7
in BIOPIRE project 114
citizen science 65–6, 67–9, 76–7
commitment and sustainability 73, 75
community-based research 65–6, 67–9, 76–7
community institutions 132
crowdsourcing 66–7, 76–7
decision makers and 70, 74, 157
defining the community 70–71
distributed intelligence 66–7, 76–7
El Paso Water (EPW) and 177–8
indigenous peoples and 46, 52–3, 82, 138, 142
in Interactions of Food Systems with Water and Energy Systems (FEW) 153–4, 156–7
interviews and 38, 110–12, 118, 125–30, 152–4, 162, 177–8
investigator-led research 66–7, 76–7
knowledge mobilization and 67–8, 73, 74
in L’Anse solar study 122, 125–8, 130–33
outreach programs 68, 115, 121, 123, 175–6, 180
in potable reuse of treated wastewater (PRTW) 179–81
power dynamics of 71–2
Pure Water San Diego (PWSD) 175–6
trust and 72, 73, 75, 100, 114, 131–2
types of 65–70, 76–7
see also Managing Impacts of Global Transport of ASEPs project
community solar see L’Anse solar study
Community Solar Applications (college course) 130–31
INDEX 211

competition, in scientific research 80–81, 85
computer scientists 65–6, 152–3, 162, 164, 165, 166
concentrate management 171
conservation
conservation biologists 18
conservation socioecology 18
strategies for 148, 151
Conservation International Brazil 111, 118
Conserve Lake County Conservation@Home program 157
consumer attitudes 177–180
consumer-based activism 27–8
consumer-producer linkages, 151
consumption 27–8, 151, 177–80
see also Interactions of Food Systems with Water and Energy Systems (FEW)
contamination, fish and mercury see Managing Impacts of Global Transport of ASEPs project
coregulation 67
of data 67
of human actions 17, 56–7
mercury control devices 96
political control 59, 178
pollution control 13, 16
of research process 40, 67–8, 81
of resource access 17, 28–30, 174–5
source control 174
coregulation group 113, 154, 155
convenience sampling 156
conveyance, wastewater 171, 174
Coordinated Research Network (IAI CRN3) grant 109, 111
Co-Principle Investigators (Co-PIs) 72, 99, 103–4, 147, 151–2
coproduction 26
corrective influence 22–3, 30–31
cosmopolitan justice 139, 140
costs and benefits 29, 129, 141–2
coupled human–natural systems field 6, 31, 93–4, 119
see also Managing Impacts of Global Transport of ASEPs project
courtships, team 81
credibility 44, 48, 61, 160
crowdsourcing 66–7, 76–7
Crowley, Stephen J. 51–2
Daly, Herman 12–13
Daly Rules 12–13
data
analysis 43, 66–7, 70, 116, 118–19
generation of 83, 104, 118, 128–9
ownership of 69, 77
tools 151
de facto wastewater reuse 169
Dead Zones 14
decision impacts model 154
decision makers 28, 94, 146, 157
community engagement and 70, 74, 157
governance and 15, 17–18, 100
power and 28
decision-making 19, 25, 26, 127
decision-support tools 161
deep-bed filters 174
deepest water drilling 134–5
Deepwater Horizon oil spill 134–5
demand-side management 152
Department of Health and Human Services 134
Department of Housing and Human Development 124
desalination 171, 176
“developer-owned” structure 130
Di Castri, Francesco 87
diffusion of innovation theory 123
digital activism 27
dilution and retention criteria 174
direct potable reuse (DPR) 169–72, 176–80, 181
discharge of purified water 174
distributed intelligence 66–7, 76–7
distributational justice 139, 140–41
diversity, in TD research 43–54
boundary spanners 51
challenges of 47–9
conflict management 47–8, 50
consilience 52
cultural and language differences 48, 50, 51–3
guided dialogue 51–2, 53
importance of 44–5
motivations and expectations 49
parallel play 49
shared conceptual frameworks 50–51
strategies for 50–53
Division of Drinking Water of the State Water Resources Control Board (California) 174–5
domination 22, 28–9, 30–32, 141
drinking water see potable reuse of treated wastewater (PRTW)
Dutch researchers 147, 152, 155, 160, 163

Kathleen E. Halvorsen, Chelsea Schelly, Robert M. Handler, Erin C. Pischke and Jessie L. Knowlton - 9781788115193
Downloaded from Elgar Online at 08/08/2019 12:19:03AM via free access
Dworkin, Michael H. 135, 139
Dynamics of Coupled Natural and Human
Systems program 6, 93–4
see also Managing Impacts of Global
Transport of ASEPs project

Earth Day 3, 5
Earth Summit 9
Eastmond, Amarella 83
eco-efficiency 9
ecology 108
applied ecology 81
conservation socioecology 18
emergence of 5
governance and 16
human values shift and 18
political ecology 29–31
sustainability in, concept of 14
see also socioecological systems
economics 165
affluent households 145–6
economic feasibility 126, 129–30, 133
ecosystems impact 14–15
lower-income women of color 156
low-to-moderate income (LMI)
households 121–5, 129–33
RPGs and 163
in the United States 99–100, 145
economists 110, 152, 162, 163, 165–6
ecosystem services 15–17, 23, 99, 100, 137–8
ecosystem stewardship 14–15
eo-villages 28
educational campaigns 19
effluent 170–71, 174, 177
El Paso, Texas 176–9
City Council 178
El Paso Water (EPW) 176–9
advanced water purification facility 177
community engagement and 177–8
funding 178
governance and 178–81
groundwater challenges 176
electrical engineering 129
electrical engineers 129
electric utility 124–5, 127–8
energy
consumption 145–6
independence 131
life-cycle 139–140
policy analysts 152
scholarship 140
system approach 139–40
see also Interactions of Food Systems
with Water and Energy Systems
(FEW); L’Anse solar study

energy justice 134–44
affirmative principle 141, 142
assumptions and principles of 140–41
BP oil spill 134–5
climate change and 135, 138, 143
definition of 135, 139–40
energy-centric approach 140
Energy Justice Network 135
ethics of fossil fuel extraction 136–8
foundational approach to 135–6, 140–44
history of 135–6
prohibitive principle 141–2
role of TD research in 143–4
system approach to 135–6, 138–40,
142–4
see also fossil fuels
“Energy justice and ethical consumption:
comparison, synthesis and lesson
drawing” (Hall) 135
“Energy justice and sustainable
development” (Guruswamy) 135
Energy Justice in a Changing Climate
(Bickerstaff) 135
Energy Justice Network 135
Energy Security, Equality, and Justice
(Sovacool) 140–42
engineered treatment systems 170
engineering 66, 110–111, 165, 170
chemical 108, 110
civil/environmental 38, 40, 146–7
electrical 129
sustainability in, concept of 12–14, 16
see also BIOPIRE project
Environment Canada 94
environmental buffer 174
environmental chemists 94, 96, 98, 102,
103
environmental engineers 38, 40, 146–7
environmental harm 9, 13, 28, 143
Environmental Management (journal) 119
Environmental Protection Agency (EPA)
57, 94, 97
environmental sustainability 14, 107
equity 28, 47–8, 51, 53, 82, 139
eucalyptus 109
evapotranspiration 169
everyday resistance 28–9
extensification 151
extreme citizen science 68–9
ExxonMobil 137–8
Facebook 119, 155
failure-to-govern 96
feasibility 76, 125–31, 164
federal administrators 57
federal regulations 117, 137
FEW Nexus see Interactions of Food Systems with Water and Energy Systems (INFEWS)
fish consumption advisories see Managing Impacts of Global Transport of ASEPs project
Florida 134–5
flow of information 102
food
chains 96, 104–5
consumption 145–6, 159
production 146, 150
water use and production 146
see also Interactions of Food Systems with Water and Energy Systems (FEW); Managing Impacts of Global Transport of ASEPs project
force and manipulation 22
Forest Degradation program 17
forests 17, 109
fossil fuels 121, 134–44, 145
impacts vs. risks 141–2
necessity of 138
oil spills 134–5, 138
resource scarcity 142–3
socioeconomic impact of 138
see also energy justice
Foucault, Michel 22–3
Friends of the Land of the Keweenaw (FOLK) 94, 95
fuel poverty 135
funding
challenges in BIOPIRE project 116
Coordinated Research Network (IAI CRN3) grant 109, 111
grant writing and development 115
Integrative Graduate Research and Education Traineeship (IGERT) grant 108–9
Inter-American Institute for Global Change Research (IAI) 82–5, 109–11
international collaborations 80, 81
International Research Experience for Undergraduates grant 111
local grants, consumer 123
Material Use: Science, Engineering, and Society (MUSES) grant 108–9
Michigan Department of Agriculture and Rural Development grant 133
for non-academic participants 103, 127–8, 156
Texas Legislature 178
Texas Water Development Board 178
for travel 84, 103, 108, 113, 116–17, 128, 147
USAID PEER grant 111
watershed-based 58
Galaxy Zoo 67
game theory 163, 165
gaming experts 167
GEOS-Chem 96
Glänzel, Wolfgang 80
global conservation initiatives 23
gold mining 96
Gordian Knot 135, 141
governance 3–4, 6
chemical pollutants and 93–5, 99–102
El Paso Water (EPW) and 178–81
FEW workshops and 148–51
importance of 16–17
international research and 15, 82
network governance 26
policy makers, roles in 55–63
political power and 21, 26
socioecological systems and 17–20
transdisciplinary research teams and 43–6, 52–4
government agencies 24, 26–7, 30, 59, 114
graduate students 98, 102–3, 113, 115, 118, 119, 153, 155
Grayslake, Illinois 155
Great Lakes
binational virtual elimination strategy 96
Great Lakes Program 94
Indian Fish and Wildlife Commission (GLIFWC) 94
see also Managing Impacts of Global Transport of ASEPs project
greenhouse gas emissions (GHG) 14, 21, 145, 159
see also Interactions of Food Systems with Water and Energy Systems (FEW); role-playing games (RPGs)
groundwater 169, 171, 176–7, 179–81
group cohesion and effectiveness 35
guided dialogue 51–2, 53
Gulf of Mexico 14, 134–5
Gurnee, Illinois 155
Guruswamy, Lakshman 135
Gwinnett County, Georgia 170, 172
Hall, Sarah Marie 135
Halvorsen, Kathleen E. 40
hardwood forests 109
harm
to environment 9, 13, 28, 134–5, 143
to humans 23, 30–31, 134–5, 137, 173
HASS (Humanities and Social Sciences), developing a research agenda 146–151
health risks 94, 97, 134, 170, 174–5, 179, 181
health sciences 66, 75
Heffron, Raphael J. 135, 139–40
heterodox theory 22–3
The History of Sexuality (Foucault) 22–3
homeowners 155–7
household consumption 159–60
see also Interactions of Food Systems with Water and Energy Systems (FEW)
Hueco Bolson aquifer 176
human system, dynamics of 94, 99
human action 16–17, 25
human agency 23
human capital 10–12
human subjects research 117, 156
human values shift 18–19
impact assessment models 153
incentives 13, 17, 19, 56, 80, 86, 125–8, 155–7
indigenous peoples 1, 21, 97
community engagement and 46, 52–3, 82, 138, 142
Indigenous research scholarship 101, 104–5
treaties with federal government 100
see also Managing Impacts of Global Transport of ASEP project
Indigenous Peoples Organizations 46
indirect potable reuse (IPR) 169–72, 175–6, 179–81
individual stocks 11
infiltration basins 176
influent flow equalization 174
Infrastratego 160
infrastructures, locked in 146
injection wells 176
in-situ data 67
Integrative Graduate Research and Education Traineeship (IGERT) program 6
Integrative Graduate Research and Education Traineeship (IGERT) grant 108–9
Interactions of Food Systems with Water and Energy Systems (INFEWS)
background information 145–6
building a team 146–7
challenges of TD team 155–6
communication in 152, 154–5, 166–7
community engagement 153–4, 156–7
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 16
Interim Sustainability Report (PetroChina) 137
International Geosphere-Biosphere Program 82
International Research Experience for Undergraduates (IREU) grant 111
international research teams 7, 8–11, 79–89
advances made by 84–5, 119–20
challenges of 80–81, 85–6, 88–9, 115–18
FEW workshops and 146–7, 151
governance and 15, 82
human action and 16–17
importance of 79–80, 88–9
literature, contribution to 83, 118–19
strategies for managing 87–8
underappreciation of 82–3
wastewater treatment and 171, 176
see also BIOPIRE project
international space station 171
International Trade Commission (ITC) 130
interventions see role-playing games (RPGs)
interviews 38, 110–12, 118, 125–30, 152–4, 162, 177–8
INDEX

Iroquois Nation 11
irrigation 150, 171, 176

Jacoby, Barbara 29
jatropha plantations 84
Jensen, Mary Ann C. 35
Jones, Benjamin 135, 140–42
justice theories 138–44
see also energy justice; social activism

Kenya 21
Keweenaw Bay
Indian Community 100
Natural Resources Department (KBIC NRD) 94, 95
Ojibwa Community College (KBOCC) 94, 95, 103
see also Managing Impacts of Global Transport of ASEPs project
Keweenaw Research Center (at MTU) 129
knowledge
co-creation of 167–8
co-production of 159–60
knowledge brokers 51
knowledge mobilization 67–8, 73, 74
synthesizing of 68, 70
Kuit, Martijn 160

Lake Superior 7, 94, 96–7, 100, 124
land use intensification 151
landowners 17, 23, 43, 45–6, 48
language
community-based vs. citizen science 65–6
cross-cultural dialogue 80, 87–8, 95
cultural differences in TD research 48, 50, 51–53, 85, 113–14
translation 113, 119
see also communication
L’Anse solar study 62–3, 123–33
challenges to residential solar adoption 123
community partners 122, 125–8, 130–33
community solar programs 121–2
economic feasibility 129–30, 133
research methods 126–8
social feasibility 130–32
sociotechnical challenges 128–30
team building 125
Latin American scientists 80–81
law 24, 130, 137, 138–40
legal pluralism 24
legal realism 24
legislators 57, 59
legitimation 23
Leiter, Brian 24

Leydesdorff, Loet 80
Liberty Prairie Foundation 157
life cycle assessment (LCA) models 17, 110, 139–40, 148, 152, 154, 165
Lipsky, Michael 26, 59
Louisiana 134–5
Louisiana Department of Health 134
low-impact development 155
Low Income Limit (US Dept of Housing) 124
low-to-moderate income (LMI) households 121–5, 129–33
Lukes, Steven 23

Macondo Prospect 134–5
Malthusian theories 29
Managing Impacts of Global Transport of Atmosphere-Surface Exchangeable Pollutants (ASEPs) in the Context of Global Change project 93–106
atmospheric mercury and fish tissue concentrations 96–7
challenges at proposal stage 98–100
challenges during execution 100–105
Community and Partner Workshop 94, 101
community partners 94–5, 100–105
findings 97, 104–5
fish mercury concentrations and health risks, 97
insights from 104–6
research questions and team development 93–5
scenarios of future mercury emissions 96, 99
market acceptance 126
material capital 11–12
Material Use: Science, Engineering, and Society (MUSES) grant 108–9
Max-Neef, Manfred A. 49
Mayan community 84
Mayan language 119
Mayer, Igor S. 161
McCauley, Darren 135, 139–40
Mead, George Herbert 161
meetings, importance of 102, 108, 112–13, 128, 155, 166–7
mercury 96, 99–100
see also Managing Impacts of Global Transport of ASEPs project
Mercury and Air Toxic Standards rule (2011) 96
Mesilla Bolson aquifer 176
methylation 96–7, 105
Metro Biosolids Center 174
Mexican researchers 79, 83, 107–9, 112, 119
Mexican UADY Press 119
Mexico 79, 83, 107–9, 112, 119, 176
Michigan 62–3, 102, 107–9, 129, 130–33, 147
see also L’Anse solar study; Managing Impacts of Global Transport of ASEPs project
Michigan Department of Agriculture and Rural Development 133
Michigan Technological University (Michigan Tech/MTU) 62–3, 102, 107–9, 129, 130–32, 147
microfiltration (MF) 170, 171–172, 174, 177
Millennium Development Goals (MDGs) 10
Millennium Ecosystem Assessment (MEA) 14
Minamata Convention on Mercury 96, 99–100
Miramar Drinking Water Facility 173–6
Miramar reservoir 173–6
mixed methodology social science approach 152
modeling, systems 148–50, 162, 165, 167–8
Montrie, Chad 29
multiple barrier concept 174
Namibia 171, 172
National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling 134–5
National Energy Action 135
National Institute for Occupational Safety and Health 134
National Renewable Energy Laboratory 124
National Science Foundation (United States) 81–4, 93–4, 107–9
Dynamics of Coupled Natural and Human Systems program 6, 93–4
Integrative Graduate Research and Education Traineeship (IGERT) program 6
Integrative Graduate Research and Education Traineeship (IGERT) grant 108–9
International Research Experience for Undergraduates (IREU) grant 111
Material Use: Science, Engineering, and Society (MUSES) grant 108–9
Partnerships in International Research and Education (PIRE) 83, 109, 119, 146
Research Coordination Network (RCN) program 83, 108–9, 112–13, 119 see also Interactions of Food Systems with Water and Energy Systems (INFEWS)
National Socio-Environmental Synthesis Center 40
National Water Research Institute 177
natural capital 10–12, 14, 16
natural law theory 24
natural resource economics 152
natural resource injuries 134
natural sciences, role in TD research 8, 11–12, 14–15, 66, 98, 103, 115–16, 153
natural system, dynamics of 94
nature-society dichotomy 29
NDMA (N-Nitrosodimethylamine) 170
neoliberalization philosophy 25, 85
Netherlands 147, 152, 155, 160, 163
NEWater treatment plant 171, 172
New Goreangab plant 171, 172
nitrification/denitrification 174
non-action 23
non-governmental organizations (NGOs), 26–7, 35
BIOPIRE project, role in 107–11, 114, 119
energy justice, role in 135, 147
TD research, role in 45–6, 48, 135, 147
non-point source pollution (NPSP) 57–8
non-random sampling 177
nonviolent coercion 23
norming 154
North City Pure Water Facility (NCPWF) 174
Oakes, J. Michael 156
ogaa (walleye) fish 97
oil companies 134–5, 136–8
oil palm 109
oil spill 134–5, 138
Ojibwa 78, 94, 95, 100
Old Goreangab water treatment plant 171, 172
on-bill financing 129
Openlands 157
opportunistic sampling 177
Orange County Water District in California 181
O’Rourke, Michael 51–52
outreach programs 68, 115, 121, 123, 130–31, 175–6, 180
ozonation 170, 172, 174
Paris Agreement (2015) 21
participatory action research 69–70
Partnerships in International Research and Education (PIRE) 83, 109, 119, 146

see also BIOPIRE project

pathogens 173, 177, 181

“pay as you go” financing 129

payoffs 163, 165, 168

perspective-taking 161

persuasive games 161

persuasive influence 22–3, 30–31

Perth, Australia 181

Perz, Stephen J. 81

PetroChina 136–7

Phoenix, Arizona 164–5

Pischke, Erin C. 83

Pittman, Jeremy 82

place-based research 85–6

plant community biomes 108

policy

federal 130

policy-in-action 96, 97

tools 17, 56–8

policy makers, in scientific research 19, 55–63

barriers to 58–60, 61–2

benefits 60–61

L’Anse, Michigan solar project example 62–3

lessons from 55, 63

role of 57–8

types of 56–7

political ecology 29–31

politics

governance and 21, 26, 59

political ecology 29–31

political mobilization, 27–8

pollution 3, 5, 13, 16, 57–8

polychlorinated biphenyls (PCBs) 93

population growth 18, 23, 149, 169

portfolio-based management approaches 169

potable reuse of treated wastewater (PRTW) 169–81

community engagement and 179–81

cost of 171

direct potable reuse (DPR) 169–72, 176–80, 181

energy requirement 171

implementation of 173–9

indirect potable reuse (IPR) 169–72, 175–6, 179–81

lessons and benefits of 179–81

overview of 170–73

see also El Paso Water (EPW); Pure Water San Diego (PWSD)

power 21–32

definitions and terms 22–3

dynamics in community engagement 71–2, 78

dynamics in TD research 26–7, 31–2, 39, 48, 53, 101

governance and 12, 26

of individuals 27–9

inequality and state action 24–7

law and state power 23–4

minority social groups and 46, 69

political ecology and 29–31

power struggles 25–6, 30

sharing of 26, 87

power plants 96

Prairie Crossing 155, 157

preservation of open land 155

Principle Investigator (PI) 72, 94–5, 98–9, 102–4, 151–2

private actors 25, 45–6

procedural justice 139, 140

production, decentralization of 151

professional development 40, 87, 115

Professional Development Seminars 40

profit 136–8

prohibitive principle 141–2

psychology 152, 162, 163, 165–6

publications 73–4, 80–81, 84, 103, 108, 114–15, 118–19

public health 174–5, 179, 181

public information see community engagement, in TD research

public management movement 58

Public Service Board (El Paso) 178–9

public transcripts 28, 31–2

public trust 133, 173, 176, 179–81

Pure Water Day Open House 175

Pure Water San Diego (PWSD) 174–7

community engagement 176–7

elements of water recycling program 174–5

PV (photovoltaic) systems 121–4, 129

see also L’Anse solar study

PVWatts Solar Calculator 124

pyrolysis 108

qualitative methods 38, 113–14, 125–6, 152, 177–8

quantitative methods 65, 81, 99, 113–14

random sampling 155–6, 177

rate-neutral credit value 128, 131

real estate development 178–9

reclamation treatment systems 170–72

recognition justice 139–40
A RESEARCH AGENDA FOR ENVIRONMENTAL MANAGEMENT

recruitment 153–4, 155, 156–7

see also community engagement, in TD research

Reducing Emissions from Deforestation and Forest Degradation (REDD) program 17

redundancy 170

Regional Water Quality Control Board 174–5

regulations 13, 28, 56, 57–8, 85, 117, 174–5

relationship-building 87, 104

renewable energy 28, 126, 129, 130

see also Interactions of Food Systems with Water and Energy Systems (INFEWS); L’Anse solar study

“Report of the World Commission on Environment and Development” (United Nations) 9

Research Coordination Network (RCN) program 83, 108–9, 112–13, 119

research exhaustion 75

residuals management 171

resilience 113, 170

resistance 23, 28–31, 29, 173

see also social activism

resource scarcity 142–3

restorative justice 139, 140

reverse osmosis (RO) 170–72, 174, 177

“Río Declaration on Environment and Development” (United Nations) 9, 14

Rio Grande River 176

river drought 176

Roberto Bustamante Wastewater Treatment Plant 177

robustness 170

role-playing games (RPGs) 7, 146, 153–5, 157, 159–68

background information on FEW consumption 159–60

behavioral change and games 160–61

challenges and benefits of TD approach 165–8

city government and 164–5

cognitive science and 163

computer science and 164

economics and 163

as persuasion tools 161

play-testing 165, 167

RPGs as specific game type 161

systems engineering and 162

task prioritization 166–7

TD research use of 162

utility companies and 164

see also Interactions of Food Systems with Water and Energy Systems (INFEWS)

role-taking 161

Roux, Dirk 55

Royal Dutch Shell, 137

Russel, Bertrand, 22

Salazar, Ken 134–5

San Diego, California 173–6

San Diego Union-Tribune (newspaper) 175

San Pasqual, California 174

sanctions 22, 30

sanitary engineering 12

Schelly, Chelsea L. 135

Schiemer, Friedrich 82

Schubert, András 80

Science of Team Science 88

scientists, role in TD research 27, 43–4, 49, 55, 58–63, 162

Scott, John 22–3, 28, 31–2

seawater desalination 171

second stream theory 22–3

secondary treatment 174

seven generations perspective 101, 104

Shell 137

Shove, Elizabeth 19

Sidortsov, Roman 140

signification 23

Simon, David 82

Singapore 171, 172, 181

social activism, 23, 27, 28–31, 138–44, 173

see also energy justice; fossil fuels

social actors 43–4, 49, 162

social feasibility studies 126

social marketing 123, 177

social media 119, 155, 175

social network theory 123

social psychologists 152

social responsibility 137–8

social sciences, role in TD research, 19, 36, 126–8, 146, 152–3, 165

societal norms and values 18–19

socioecological systems 100

BIOPIRE project and 83–4, 107–10, 119–20

change in 65, 69, 73–6

governance and 17–20

sustainability and 14, 16–17

socioeconomic issues 10, 16–18, 110, 112, 136–8, 152–5, 180–81

socioenvironmental issues, 24–5, 28, 30, 53, 79, 84, 88–9

sociotechnical systems, 28, 128–30, 133

solar energy see L’Anse solar study
solar radiation 124
solution-oriented strategy 167
source control 174
Southern University 108
Sovacool, Benjamin 135, 139, 140–42
Spanish language 85, 113, 119
speakers bureau 175
Sri Lankan fisheries 82
stakeholder analysis 44, 126
stakeholder groups, role in TD research 26, 94, 122, 161–2, 175
Standards of Business Conduct (ExxonMobil) 137
“the state” 24–5
STEM (Science, Technology, Engineering, and Mathematics) 39
Stockholm Convention on POPs 94
Stockholm Declaration 5
stocks 11–12, 14, 16
Stockholm, Sweden 145
stranded costs 131–2
street-level bureaucrats 26, 59, 62
sulfur dioxide emissions 13
supply-oriented management 152, 179
see also community engagement, in TD research
sustainability
city sustainability officers 164–5
as concept in ecology 14
as concept in engineering sciences 12–14, 16
as concept in natural sciences 14–15
definition of 5, 9–10
environmental sustainability 14, 107
history of 8–20
holistic sustainability 16
inclusive sustainability 17
Interim Sustainability Report (PetroChina) 137
socioecological systems and 14, 16–17
strategic planning 164–5
Sustainability Graduate Certificate 108
sustainability scientists 162
in the United States 8, 12–13
weak vs. strong 11–12
see also BIOPRE project
Sustainability Graduate Certificate 108
sustainable development 5, 9–11, 14, 135, 151
Sustainable Development Goals (SDGs) 10
Sustainable Futures Institute (SFI) 108–9
systems engineering 94, 162, 165
systems of provision 146
Talking Circle 97, 102–3
target audiences 61–2, 67, 73
tax credits 123, 129, 130
Teamwork for Effective Research: Outcomes in the Americas (TERRA) 83, 84, 86, 88
technical feasibility 126
technological lock-in 151
tertiary treatment 174
Texas 170–72, 176–9, 181
Texas Commission on Environmental Quality 171–2
Texas Legislature 178
Texas Water Development Board 178
time constraints 61, 81, 117–18, 151–2, 167
toilet-to-tap 175, 176
tokenized participation 86
Toledo, Victor M. 81
tradeoffs 7, 14, 17–18, 19, 84–5, 180
transdisciplinary (TD) research 3–4, 6–7, 35–42
academics, role in 19, 65–8, 72–5, 79–81, 85, 88, 104
atmospheric modelers, role in 94, 96, 98–9, 102, 103, 104
benefits of 21, 53
biogeochemists, role in 97, 103
boundary spanners, role in 51, 53
business partners, role in 45–6, 49, 62–3, 125–33, 137–8, 178
challenges and strategies within 39–42, 47–53
chemical engineers, role of 108, 110
city government, role in 162, 164–5, 171, 172, 173–6, 176–9
climat scientists, role in 152, 165
cognitive scientists, role in 66, 162–3
computer scientists, role in 65–6, 152–3, 162, 164, 165, 166
conflict within 41–2, 47–8
credibility, role of 44, 48, 61, 160
definition of 6, 18, 35
dissemination of research findings 61
economists, role in 110, 152, 162, 163, 165–6
energy policy analysts, role in 152
environmental chemists, role of 94, 96, 98, 102, 103
federal administrators, role in 57
in fossil fuel energy policy 143–4
gaming experts, role in 167
governance and 43–6, 52–4
government agencies, role in 24, 26–7, 30, 59
graduate students, role in 98, 102–3, 113, 115, 118
group dynamics within 35–9
history of 5–6
leadership in 36–7, 39, 40, 41–2, 51, 87
legislators, role in 57, 59
natural sciences, role in 8, 11–12, 14–15, 66, 98, 103, 115–16, 153
NGOs, role in 45–6, 48
policy makers, role in 57–63
power dynamics within 26–7, 31–2, 39, 48, 53
psychologists, role in 152, 162, 163, 165–6
relationship building, role in 104
scientists, role in 27, 43–4, 49, 55, 58–63, 162
social actors, role in 43–4, 49, 162
social sciences, role in 19, 36, 126–8, 146, 152–3, 165
stakeholder groups, role in 26, 94, 122, 161–2, 175
trust, role 40, 51–3, 55, 59, 61–3, 87, 111–12
undergraduate students, role in 5, 38, 103, 111, 113, 119
work culture within 46–7
see also BIOPRE project; community engagement, in TD research;
diversity, in TD research;
Interactions of Food Systems with Water and Energy Systems (INFEWS); international research teams; L’Anse solar study;
Managing Impacts of Global Transport of ASEPs project; potable reuse of treated wastewater (PRTW); role-playing games (RPGs)
transportation optimization 108
teach 84, 103, 108, 113, 116–17, 128, 147
triurnvirate of tenets 139
Trout Unlimited 94
trust
community engagement and 72, 73, 75, 100, 114, 131–32
public trust in authorities and science 133, 173, 176, 179–81
role in TD research 40, 51–3, 55, 59, 61–3, 87, 111–12
Tuckman, Bruce 35
Twitter 155
ultrafiltration (UF) 170, 172, 177
ultraviolet (UV) irradiation 170, 171–172, 177
uncertainty 15, 51, 104–5, 148, 169, 180–81
undergraduate students 5, 38, 103, 111, 113, 119
United Kingdom 135
United Nations 9–10
Conference on Environment and Development 9
Conference on the Human Environment 9
Environmental Program (UNEP) 5
Global Compact 137
“UN Millennium Declaration” 10
United States
Department of Health and Human Services 134–5
Department of Housing and Human Development 124
economics in the 99–100, 145
energy justice in the 135
Environmental Protection Agency (EPA) 57, 94, 97
federal regulations 117, 137
Global Change Research Program 82
governance in the 21, 26, 58, 117
household conservation in the 147, 155, 159
International Trade Commission (ITC) 130
Mercury and Air Toxic Standards rule (2011) 96
Northern hardwood forests in 109
sustainability in the 8, 12–13
see also Interactions of Food Systems with Water and Energy Systems (INFEWS); L’Anse solar study;
Managing Impacts of Global Transport of ASEPs project; National Science Foundation (United States); potable reuse of treated wastewater (PRTW)
University of Groningen 163
University of Texas at El Paso (UTEP) 178, 181
Upper Peninsula Solar Technical Assistance & Resource Team (UPSTART) 125, 128–33
urban renewal 161
urine processor assembly 171
USAID PEER grant 111
utility companies 124–5, 127–8, 164, 178
value commitments 23
Village Manager 62–3
violence 21, 24, 30
vital interests 142

Wagner, Caroline S. 80
“warm-glow” phenomenon 163
wastewater management 12–13, 150
conventional wastewater treatment processes 170, 181
defacto wastewater reuse 169
international research and 171, 176
L’Anse, use of solar in 131–2
passive vs. active 13
in the United States 169–81
zero-discharge water resource recovery systems 151

see also potable reuse of treated wastewater (PRTW)

water see Interactions of Food Systems with Water and Energy Systems (FEW); potable reuse of treated wastewater (PRTW)

Water Reuse Study (City of San Diego) 174
watershed-based planning 57–8
Weber, Maz 23, 24
Western Upper Peninsula Planning and Development Region 63, 125
Whetsell, Travis A. 80
Wichita Falls, Texas 170, 171–2
wicked problems 103, 146, 157
Wilson, Woodrow 58, 60
Windhoek, Namibia 171, 172
Winkler, Richelle L. 66, 71–2
workplace culture 46–7, 156
The World Climate Research Program 82
WPPI Energy 124–5, 128, 131–2
Wüstenhagen, Rolf 126

Yucatecan community 119

zero-discharge water resource recovery systems 151
Zhou, Qiqi 160
zoning 28, 124, 128