Index

Aaboen, L. 498

acceleration patterns in technology ventures 79
differences in learning paths (sequential and parallel experimentation) 84–6, 92, 93
discussion and implications 92–4
findings 83–92
organizing experimentation process 83–4
prior market knowledge of the venture 87–90, 92
study context and method 79–83
technology maturity of solution 90–92
accelerators 18, 354
Brazil 320–21, 328
comparison with incubators and science parks 22, 23
defining 20, 21–2, 47
evolution of 25–6
future research 33
increase in number of 57, 79
organizational separation 57
projects 75
role in phases of firm development 22, 24
Saudi Arabia 356–7, 358–61
time dimension of 446
venture accelerators 389–90, 393

see also acceleration patterns in technology ventures; business incubation and acceleration, Pakistan; incubators and accelerators, Latin America; mentors in incubation and acceleration, value of (managerial perspective); systematic literature review, co-citation analysis-based (business incubators and accelerators)
advising, see mentoring, advising and coaching
Aerts, K. 55
affordable loss 204–5
agglomeration 100, 144–5; see also clusters
AIM (Atal Innovation Mission) 264, 265, 268–9, 270, 271
Al-Ayyash, S. 20
Albort-Morant, G. 39
alumni networks 113
AmericaMakes 397–8
American Research and Development (ARD) 66
angel investors, Greece 309, 310–11
Anson, Tony 166–7
areas of innovation (AOIs), see entrepreneurship and innovation ecosystems, role of modern urban science parks in developing attitudes and motivations of founders 497–8, 503
Australia, mentoring in 465–6, 468, 473

Babson Incubator Program 119–21
Badir Program 358
Bank, N. 127
Barbero, J.L. 55
Barcelona – 22@Barcelona 141, 145–8, 151–2, 154–6
Barcelona Activa 343
Batavia Industrial Center 17, 111, 386
Bayh–Dole Act 68
behavioral traits of entrepreneurs 498
Beijing Zhongguancun (ZGC) Science Park 246–7
Belgium, see quantitative efficiency assessment model, government incubators (Belgium); science parks in Europe, comparison of characteristics and activities
Ben Franklin Technology Partners of Southeastern Pennsylvania 178
Bergek, A. 52
bibliometric analysis 39–40, 41–5
BioSTL 178
bird-in-hand 207–8
Blank, Steve 390–91
Bocken, N. 488
Brazil, see incubation mechanisms, Brazil; incubators and accelerators, Latin America
Breuer, H. 485–6, 487
Bruneel, J. 324
Bush, Vannevar 65
business-incubating organizations 47
business incubation, Greece 299
business incubators as entrepreneurship support 300–301
conclusion 313
discussion 310–12
entrepreneurial ecosystem 301–4
results 307–10
study methodology 304–7
business incubation, New York State 386–7
changes in investor relations 387–8
changes in policy environment 391–3
conclusion and implications for practice 398
emergence of adjacent mechanisms and implications for incubation 388–91
see also Launch NY (Launch New York Inc.); resource constrained regions (Syracuse), incubators as centers of collaboration and alignment in business incubation and acceleration, Pakistan 280–81
analysis of incubation capacity 286–93, 294–5
conclusion and lessons learned 293, 295–6
framework for assessment 284–6
government support 282–3
history of academic incubators 281–2
international donor agencies and companies 283–4
private sector 283, 290–91, 292, 294
research methodology 286
Business Incubation Centres (BICs), European Space Agency (ESA) 167–74
business incubation ecosystem, India 260
central government bodies supporting 262–4, 265, 267–71
characteristics of incubators 263–7
conclusion 278
data and methods of study 261
demand side perspective 273, 275
development of 262–3, 265
discussion and lessons learned 275–8
government–academia partnership 275–6
overview of incubation 261
policies 267–71, 276, 277
services and activities of incubators 272–3, 274
business incubators
categories of 496
comparison with accelerators and science parks 22, 23
conceptualizing 21
defining 19–20, 47, 48, 352, 479
new business versus small business 393–4
origin and development of 17–19, 39, 111–12
role in phases of firm development 22, 24
strength of concept 31
support provided by 299–301
see also business incubation, Greece; business incubation, New York State; business incubation and acceleration, Pakistan; business incubation ecosystem, India; entrepreneurship and innovation intermediaries (EIIs) (business incubators in Japan); sustainability aspects of new venture support and development (business incubators within entrepreneurial ecosystems); sustainability-oriented business incubation; systematic literature review, co-citation analysis-based (business incubators and accelerators); technological business incubators (TBIs), China
Business Innovation Kit/Values-Based Business Model 487, 489, 490
Business Model Canvas Extended for Infrastructure 487
Butler Launchpad 120–21
Campbell, D.F. 143
Carayannis, E.G. 143
Center for Women's Entrepreneurial Leadership (CWEL) 120–21
Chan, K. 56, 368
chapter summaries 2–13
characteristics of firms and performance, see firm characteristics and performance, differences between incubates and non-incubator new technology-based firms (NTBFs) (Sweden)
Chiappetta Jabbour, C.J. 56–7, 127
Chile, see incubators and accelerators, Latin America
China, see technological business incubators (TBIs), China
cities 140, 143–4
Climate-KIC (CKIC) accelerator, see acceleration patterns in technology ventures
Cloverleaf Business Model Canvas 487, 490
clusters 140, 395–6, 397
22@Barcelona 146–7, 148, 155
agglomeration externalities 100
ESA Business Incubation Centres (BICs) 168
Japan 235
Porto Digital 155
clusters of innovation (COI) 144–5, 155–6
co-citation analysis, see systematic literature review, co-citation analysis-based (business incubators and accelerators)
co-location of business 115
coaching, see mentoring, advising and coaching
cognitive proximity 101
cohort-based model 464
Index

Colombia, see incubators and accelerators, Latin America

Colombo, M. 54

community engagement 200–202, 204
community hubs 208

Compton, Karl 17

COMSATS University 282, 291–2, 293
CONNECT Foundation 179
corporate incubators 46, 57–8, 359
corporate venturing, Brazil 327
coworking 389
crazy quilt 205–6
creative economy 326–7
critical success factors (CSFs) 403, 404

CSG (Space Centre Guiana) 164

DaAn Business Incubator (DABI) 252–3
darr, A. 53
del-Palacio, I. 144
delmastro, M. 54

Denmark, science parks, see science parks in Europe, comparison of characteristics and activities

density 205–6
dilts, D.M. 40, 45, 261
dST (Department of Science and Technology) (India) 262, 264, 265, 268, 269, 270, 271

EAC (European Astronaut Centre) 162, 163
economic development
policy recommendations 121–2
see also regional economic development
economic growth, and incubators 56, 369
ecosystems, see entrepreneurial/entrepreneurship ecosystems

ECSAT (European Centre for Space Applications and Telecommunications) 162, 163, 164
education, entrepreneurship 241–2, 296, 312, 391, 450, 492

Effectuation model 198, 203, 204–8

employment, and government funded incubators 369, 379–82, 383

entrepreneurial/entrepreneurship ecosystems 14, 301; see also business incubation, Greece; business incubation and acceleration, Pakistan; business incubation ecosystem, India; entrepreneurial and innovation ecosystems, role of modern urban science parks in developing; entrepreneurship and innovation intermediaries (EIIs) (business incubators in Japan); entrepreneurship ecosystems, incubators as catalysts in; incubation mechanisms, Saudi Arabia (KSA); incubators and accelerators, Latin America; resource constrained regions (Syracuse), incubators as centers of collaboration and alignment in; sustainability aspects of new venture support and development (business incubators within entrepreneurial ecosystems); university-based entrepreneurship ecosystems

entrepreneurial networks, development of 426–7

conclusion and recommendations 443–4
creation of networks 427–8
hypotheses development 434, 436–7
results from first study (inductive research) 428–34, 435
results from second study (entrepreneurial networks and resource seeking activities, deductive research) 437–42
entrepreneurial orientation (EO) 469–72

‘entrepreneurial readiness’ 407–8, 410, 411
entrepreneurial university 64
case study (Stony Brook University) 67–74

conclusion and policy implications 77
defining incubator model 66–7
future of incubation 74–6
implications of incubator 74
past development of 65–6
entrepreneurs-in-residence (EIRs) 190–91, 192

entrepreneurship
behavioral traits of entrepreneurs 498
education 241–2, 296, 312, 391, 450, 492
importance of 125
Japan 230, 231, 238, 239, 241–2
model of 232, 233
Pakistan 280
social 361
see also entrepreneurial/entrepreneurship ecosystems

entrepreneurship and innovation ecosystems, role of modern urban science parks in developing 140–41
case studies 145–51
conclusion 156–7
discussion 152–6
model and its components 151–2
theoretical framework 141–5

entrepreneurship and innovation intermediaries (EIIs) (business incubators in Japan) 230

conclusion 243–4
discussion 239, 241–3
experience of Japan 234–9, 240–41
theoretical framework 230–34
entrepreneurship ecosystems, incubators as
 catalysts in 111
Babson Incubator Program 119–21
conclusion and policy recommendations
121–2
defining boundary between incubators and
entrepreneurship ecosystems 112–13
ecosystems and incubators as fractals
115–16
elements of entrepreneurship ecosystems
113–14
evolution of business incubator concept
111–12
lowering of transaction costs 115
networks perspective 114–15
Rensselaer Polytechnic Institute (RPI)
Incubator Program 117–18
Worcester Polytechnic Institute (WPI)
Incubator Program 118–19

Ephesus 205
ESAC (European Space Astronomy Centre)
162, 163
ESINET 169, 171
ESOC (European Space Operations Centre)
162, 163
ESRIN (Space Research Institute) 163, 164
ESTEC (European Space Research and
Technology Centre) 163, 164, 168
European Institute of Innovation and
Technology (EIT) 79–80
European Space Agency (ESA) 160–64, 171–2
Business Incubation Centres (BICs) 167–71, 173
lessons and policy recommendations 172, 173–4
procurement as means of technology
transfer and application 171
technology transfer through new venturing
166–7
technology transfer to existing companies
164–6
Evans, S. 487
externalities
network 125
and science and technology parks (STPs)
100
Feld, Brad 198, 203, 204, 302–3
Fetters, M. 113–14
Figlioli, A. 27
finance, see funding and finance
firm characteristics and performance,
differences between incubatees and non-
incubator new technology-based firms
(NTBFs) (Sweden) 496–7
conclusion 505
literature and hypotheses 497–9
managerial implications and further research
505
results 501–5
sample and data 499–501, 509–12
firm formation, and Stony Brook University
71–4
First-Generation ‘configurational’ incubation
models 28
Five-Step Sustainable Business Modeling
Process 487
Flourishing Business Canvas 487, 489, 490
Fonseca, S.A. 56–7, 127
Foxon, T.J. 487
Fukugawa, N. 233–4
funding and finance
Brazil 327, 329
ESA Business Incubation Centres (BICs)
169–70
Greece 303, 305, 308, 309–10
India 262–3, 269, 272, 276
Japan 235
new technology-based firms (NTBFs) 498–9, 503, 504
New York State 387
Pakistan 287–8
sources of 394
technological business incubators (TBIs),
China 251, 252, 254, 255, 256, 257
US 392, 393
venture accelerators 389–90, 393
see also quantitative efficiency assessment
model, government incubators
(Belgium); venture capitalists (VCs);
Venture Development Organizations
(VDOs) (US)
Geissdoerfer, M. 485, 488
Gerlach, R. 487
Global Accelerator Report 2016 26
global hubs and networks 343–5
governance structure, science parks 218–19
government
intervention in incubators and accelerators,
Latin America 336–7, 338–42
support for business incubation and
acceleration, Pakistan 282–3
triple helix (TH) model 140–43, 145, 152
and urban science parks 152–4
see also business incubation ecosystem,
India; quantitative efficiency assessment
Index 517

model, government incubators (Belgium)
Grandi, A. 49, 482, 483, 496
Greece, see business incubation, Greece
Grimaldi, R. 49, 482, 483, 496
growth orientation 498, 503, 504
guidance, see mentoring, advising and coaching
‘hackathons’ 362
Hackett, S.M. 40, 45, 261
Hampson, Chedy 207
Harper-Anderson, E. 30
Hausberg, J.P. 479, 482
heuristics and biases, incubator client selection 403, 405–6, 407–10
Hochberg, Y. 20
Horne, J. 487
Hoy, Frank 119
human capital (HC) theory 447, 449–51, 457, 459
I-Corps 390–91
i2E Inc. 180
illusory correlation bias 408–10
Imam Muhammad Ibn Saud Islamic University (IMSIU) 356, 357
iMinds 378–9, 380–81
incubation
 function, conceptualizing 21
 no commonly accepted definition of 352
 overview of 261
 see also business incubation headings
incubation mechanisms
 categorization of 26–7
 continued interest in 1
 defining 19–22
 evolution of 22, 24–7
 future direction 31–3
 literature review 352–4
 policy tools 31–2
 roles in phases of firm development 22, 24
typology of 353–4
incubation mechanisms, Brazil
 background 316–18
 corporate venturing 327
 creative economy 326–7
 future of 328–9
 growth of 318–21
 impact business strategy 327–8
 improving outcomes 324–5
 internationalization 325–6
 mapping landscape 321–4
 policy recommendations 329–31
 strategies 324–8
university incubators 74
 see also incubators and accelerators, Latin America
incubation mechanisms, Saudi Arabia (KSA) 351–2
 conclusion 362
 context 354–5
 literature review 352–4
 mapping 355–62, 363
incubation models
 challenges to address 31
 and entrepreneurial university 66–7
 evolution of 22, 24–7
 five Ps 284–6, 288–93, 294–5
 Latin America 336–8
 new 388–91
 overview of 261
 Third-Generation 28
incubation process 27–9, 49, 51–3, 353; see also selection strategy and incubation process, impact on nonprofit incubator performance
incubator programs, evaluation and spatial context 30–31
incubators
 definitions and typologies of 46–9, 50, 66–7
 performance and potential impacts 53–7, 388
 support provided by 52–3, 125–6, 133–5, 168–9
 see also business incubators
incubators and accelerators, Latin America 335
 antecedents and determinants 336–7
 background 338–45
 challenges and implications 346–7
 conclusion 347–8
 government intervention 336–7, 338–42
 methodology 338, 339
 models 336–8, 342–6
 research agenda 345–7
 see also incubation mechanisms, Brazil
index of sustainability engagement 135–6
India, see business incubation ecosystem, India
‘indies’ versus VC-funded startups 394–5, 397
industrial policies, Japan 235, 243
Industrial Technology Enhancement Act (2000) (Japan) 242
industry
 and inception and development of urban science parks 152–4
 triple helix (TH) model 140–43, 145, 152
infrastructure 300
 organizational 113–14, 116

Sarfraz A. Mian, Magnus Klofsten and Wadid Lamine - 9781788974783
Downloaded from Elgar Online at 03/15/2022 04:20:36PM
via free access
innovation
clusters of innovation (COI) 144–5, 155–6
models 102–3, 164–5
open 28, 327
see also entrepreneurship and innovation ecosystems, role of modern urban science parks in developing; entrepreneurship and innovation intermediaries (EIIs) (business incubators in Japan)
Innovation Works 180
innovative startups/small firms 18, 19
input–output model of business incubation 112–13
Institute of Business Administration (IBA), Karachi 281, 282, 283, 291–2, 293
institutional failure 232–4, 239
institutional framework, and sustainability 482
institutional proximity 101
intellectual property (IP) applications granted within technological business incubators (TBIs), China 251, 254
patents 251, 254, 498–9
interdisciplinary organizations (IDOs) 75–6
intermediaries, see entrepreneurship and innovation intermediaries (EIIs) (business incubators in Japan)
International Association of Science Parks (IASP) 20–21, 97
International Business Innovation Association (INBIA) 20, 112
Internet-based virtual incubation model 25
Invest Nebraska Corporation 181
Investor Network (Launch NY) 192–3
investment readiness 83, 86
IQbility 304, 306, 307, 308, 309, 310
ISI-WoS database 40–41, 58
Japan, see entrepreneurship and innovation intermediaries (EIIs) (business incubators in Japan)
Jonker, J. 487
Joyce, A. 488
JumpStart Inc. 179, 186
KACST Science and Technology City 358
Kahman, D. 405
Kauffman Foundation 177, 388, 394
King Abdullah University of Science and Technology (KAUST) 356, 357
King Fahd University of Petroleum and Minerals (KFUPM) 357
Klofsten, M. 481, 483
knowledge-based urban development (KBUD) 143–4, 156
knowledge-intensive business services (KIBS) 232, 233
knowledge spillover theory of entrepreneurship (KSTE) 230, 232
Korreck, S. 479, 482
Lahore University of Management Sciences (LUMS) 281–2, 283
Lamine, W. 32
Lasrado, V. 55
Latin America, see incubation mechanisms, Brazil; incubators and accelerators, Latin America
Lau, T. 56, 368
Launch NY (Launch New York Inc.) 181, 185–9
capital 192–3
mentorship 190–91
process, outcomes and impact measures 196
securing funding, partnerships and vendor relationships 193–4
Law for the Promotion of High-tech Agglomerations (Technopolis Act, 1983) (Japan) 235, 238
Law on the Location of Industrial R&D (1988) (Japan) 235
Le Moyne College 201
leaders and feeders 203–4, 205
Lean Impact Measurement 487, 490
lean startup method/model 79, 83, 86–7, 90, 93–4, 390–91, 396
learning 450, 451
lemonade principle 206
Lewis, D. 30
Lewis Institute 121
liability of newness 114
lifecycle perspective, new ventures and ecosystems 145, 152–3
lifestyle businesses 395
Lindelöf, P. 496, 497, 498, 499
Linguistic Inquiry and Word Count (LIWC) software 468–9
Lisbon Promise 167
literature review, co-citation analysis-based, see systematic literature review, co-citation analysis-based (business incubators and accelerators)
Löfsten, H. 496, 497, 498, 499
Long Island High Technology Incubator 70–71
Long Island Research Institute (LIRI) 68
Low, George 117
Lüdeke-Freund, F. 487, 488
Index

macroeconomic impact of incubators 56
management of incubators, India 277
of incubators, Japan 238–9
and new technology-based firms (NTBFs) 496, 505
of science parks/science and technology parks (STPs) 98–100, 104, 223–4, 225–6
and sustainability 483
see also mentors in incubation and acceleration, value of (managerial perspective)
Mancuso, Joseph 17
Manual for the Sustainability Assessment of Start-Ups 487, 490
MapInfo 113
market-pull innovation model 102–3, 164–5
Maryland Technology Development Corporation (TEDCO) 183
Mas-Verdu, F. 55
McAdam, M. 52–3
McAdam, R. 52–3
mediation 53
MEITY (Ministry of Electronics and Information Technology) (India) 265, 268, 269, 270, 271
mentoring, advising and coaching 115, 209, 300
Greece 308, 309
investors as mentors 467
mentoring versus coaching 466, 474
science parks 220, 222
Tech Advisors Network (TAN) 119
Tech Garden 201
training in 474
university student venture (SV) incubators 447–9, 451, 454, 457, 458–9, 460–61
see also Venture Development Organizations (VDOs) (US)
mentors in incubation and acceleration, value of (managerial perspective) 464–6
conclusion 474
findings and discussion 469, 471–4
literature review 466–8
methods 468–9, 470
Methods for Sustainable Product & Business Model Innovation 487, 490
Mexico, see incubators and accelerators, Latin America
Mian, S. 22, 56, 261, 353
MIT (Massachusetts Institute of Technology) 17, 65, 66
Morioka, S.N. 488
MSME (Ministry of Micro, Small and Medium Enterprises) (India) 265, 267–8, 269, 270, 271
multi-dimensional frameworks, incubator performance evaluation 56–7
NASA 160
National Bank for Agriculture and Rural Development (NABARD) (India) 262
National Incubation Centers (NICs) (Pakistan) 281, 283, 284, 286–8, 289, 292, 295
National Science and Technology Entrepreneurship Development (NSTED) Board 262–3, 268
National Small Industries Corporation (NSIC) 262, 267–8
National University of Science and Technology (NUST) (Pakistan) 282, 289–2, 293
net benefit, government funded incubators 369–71, 372–6, 379, 380–83
network density 437–40
network externalities 125
networks of accelerators 87
alumni 113
in cities 143
development of 32
entrepreneurial opportunities 114–15
and financing 499
global 155–6, 344–5
Greece 302, 308, 309
and incubation process 416
informal 53
Latin America 345, 347
lowering of transaction costs 115
new technology-based firms (NTBFs) 499, 503, 504
and performance of incubators 55
role of incubators in 112, 113, 114, 300
Saudi Arabia 358
and specialization of incubators 417
and technological business incubators (TBIs), China 255
and university student venture (SV) incubators 449
see also entrepreneurial networks, development of
New Business Creation Act (1998) (Japan) 238, 239
new business versus small business, business incubators 393–4
new firms
impact of incubators 54–5
and science and technology parks (STPs) 99–100
new technology-based firms (NTBFs), characteristics and performance. See firm characteristics and performance, differences between incubatees and non-incubator new technology-based firms (NTBFs) (Sweden)

New York City, importance of clusters 396, 397

New York State, see business incubation, New York State; Launch NY (Launch New York Inc.); resource constrained regions (Syracuse), incubators as centers of collaboration and alignment in newness, liability of 114

Nexos Program 327
Norman, C. 52
North, D. 255, 256
Nucleo Gestor do Porto Digital (NGPD) 150
NXTP Labs 344, 345

open innovation 28, 327
options theory 404
organizational design framework, see science parks in Europe, comparison of characteristics and activities
organizational infrastructure 113–14, 116
organizational proximity 101
organizational purpose 213–14, 215–17, 225, 226
ownership structure
science parks, Belgium, Denmark and Spain 217–18, 225
technological business incubators (TBIs), China 249–51, 253–4, 257

Pakistan, see business incubation and acceleration, Pakistan
patents 251, 254, 498–9
patience 209
Pennebaker, J. 468–9
Peters, L. 55
Petrucci, F. 28
pilot of the plane 206–7
Pittsburgh Life Sciences Greenhouse 182
pooled resources 209
Porter, P.M.E. 395
Porto Digital 141, 146, 148–52, 154–6
Potts, T. 127
Private Initiatives Law (1986) (Japan) 235
private rate of return on entrepreneurship 242
procurement, as means of technology transfer and application 171
‘proof-of-concept centers’ 391, 393

property-related services, provided by science parks 220, 221
proximity 100–101, 105

quadruple helix model 143, 152
quantitative efficiency assessment model, government incubators (Belgium) 367
conclusion 382–3
implications 383–4
literature review 367–9
methodology 369–79
results 379–82, 383
quintuple helix model 143, 152
R&D
China 254, 256
commercialization of research 287, 288, 390–91
expenditure, Belgium, Denmark and Spain 214
Japan 235, 236–7
real options theory 404
recruitment, see selection and recruitment of incubator tenants; tenant recruitment at university incubators
regional economic development as aim of incubators 131
and clusters 395, 396
and ESA Business Incubation Centres (BICs) 168, 169, 170
and fast-growing startups 395
and incubators 396–7
New York State 393
policy recommendations 121–2
and Rensselaer Polytechnic Institute (RPI) 117–18
and Stony Brook University 67–8, 69–70
and Worcester Polytechnic Institute (WPI) 118–19
relational dimension, networks 438–42
Rensselaer Polytechnic Institute (RPI) 18, 65, 113, 117–18
resource constrained regions (Syracuse), incubators as centers of collaboration and alignment in 198–9
background 199
conclusion 210
incubator development 200–203
lessons for other communities 208–9
reasons for transformation (Sarasvathy and Feld frameworks) 203–8
see also business incubation, New York State; Launch NY (Launch New York Inc.)
Revl Ventures 182
reward focus, and mentoring 472–3
Ribeiro-Soriano, D. 39
Rice, M.P. 52, 113–14
Ries, Eric 390
risk 204
Rothaermel, F. 55
Rothschild, L. 53
Rothwell, R. 102–3
Route 128 119, 120
Rubin, Jeff 206, 207
Runyan, R. 498
Rydehell, H. 499, 503

Samsung 326–7
Sarasvathy, S.D. 198, 203, 204
Saudi Arabia, see incubation mechanisms, Saudi Arabia (KSA)
Schaltegger, S. 485
Schwartz, M. 30–31, 54

science and technology parks (STPs) 97
concept of 97–8
conclusion and recommendations for future research 105
and innovation models 102–3
location of, benefits for firms 98–100
as policy tool 103–4
suggestions for managers and policymakers 104–5
technology parks, Brazil 317, 318, 319, 320
and types of proximity 100–101
see also entrepreneurship and innovation ecosystems, role of modern urban science parks in developing; science parks in Europe, comparison of characteristics and activities

science parks
benefits of 497, 498
China 246–7
comparison with accelerators and incubators 22, 23
defining 20–22, 212
evolution of 22, 25
Japan 235–8
role in phases of firm development 22, 24
Sweden 496
systematic literature review 44
see also entrepreneurship and innovation ecosystems, role of modern urban science parks in developing

science parks in Europe, comparison of characteristics and activities 212–13
activities 220–23, 225
discussion 224–7
findings 215–24
methodology 214–15
organizational design framework 213–14
organizational purpose 215–17, 225, 226
people 223–4, 225–6
structure 217–20, 225
screening indices 403
sectoral focus, business incubators, India 266–7
sectoral incubation and acceleration mechanisms, Saudi Arabia 358–9
sectoral systems of innovation, Japan 242–3
Seed Capital Fund of CNY 201, 202, 203, 204–5, 208
seed-venture accelerators 389–90, 393
selection and recruitment of incubator tenants 49, 52, 54, 55
ESA Business Incubation Centres (BICs) 308
Greece 307, 308
and sustainability 126–7, 128, 132–3, 134, 137, 482–3
see also tenant recruitment at university incubators
selection strategy and incubation process, impact on nonprofit incubator performance 414–15
conclusion 421–2
literature review 415–17
method 417–19
results 420–21
selflessness 209
SideArm Sports 206, 207
'skunkworks' 18, 57, 65
small business versus new business, business incubators 393–4
Small Industries Development Bank of India (SIDBI) 262
SMEs (small and medium-sized enterprises) 402
innovative startups/small firms 18, 19
Japan 235, 238, 239
new business versus small business, business incubators 393–4
Pakistan 280
Saudi Arabia 355
social entrepreneurship 361
social proximity 101
social rate of return on entrepreneurship 242
social security contributions, Belgium 374, 376, 378
SocialLab 344–5
society, as addition to triple helix (TH) model 142, 143
South Carolina Research Authority 183
Spain, science parks, see science parks in Europe, comparison of characteristics and activities
spatial proximity 100, 101
specialization, incubators 416–17
spin-offs 17
Stanford Research Park 17
Stanford University 75
Start-up Chile 342–3, 344, 345
StartFast Venture Accelerator 202, 203, 204
Stony Brook University (entrepreneurial university case study) 67–74
strategic intent 404–5
structural dimension, networks 437–42
structure, science parks 217–20, 225
student venture (SV) incubators, see university student venture (SV) incubators, importance of time spent in subsidies (government funded incubators) 369–70, 371–2
sustainability aspects of new venture support and development (business incubators within entrepreneurial ecosystems) 124
conclusion and implications 136–7
method and data 127–9
results and discussion 131–6
sample characteristics 129–31
theoretical framework 125–7
sustainability-oriented business incubation 478–80
analysis and discussion 489–91
conceptual model 482–4
conclusion 492–3
defining 480–81
method and data 488
as part of entrepreneurial ecosystems 481
role of sustainability 481
sustainable entrepreneurship 480–81
tools and methods for model development 483, 484–91
Sustainable Business Canvas 487, 489, 490
Sustainable Business Model Taxonomy 488, 489, 490
sustainable development, quintuple helix model 143, 152
Sustainable Development Goals (SDGs) 478, 480
sustainable entrepreneurial ecosystems (SEE) 481
Sustainable Value Analysis Tool 488, 490
Sustainable Value Exchange Matrix 488, 490
Sweden, see firm characteristics and performance, differences between incubatees and non-incubator new technology-based firms (NTBFs) (Sweden)
Syracuse, New York, see resource constrained regions (Syracuse), incubators as centers of collaboration and alignment in Syracuse University 201, 202, 203, 205, 206, 207
systematic literature review, co-citation analysis-based (business incubators and accelerators) 39–40
limitations and conclusion 58–9
overview of bibliometric and co-citation analysis results 41–5
research design 40–41
research gaps and agenda 57–8
review and summary of research topics 46–57
talent, competition for 209
Tausczik, Y. 468–9
tax, Belgium 372, 373–4, 376, 377–8, 380–83
tax benefits and exemptions, Belgium 375
TCG Player 207
Tech Advisors Network (TAN) 119
Tech Garden 200–203, 205, 207–8
technological business incubators (TBIs), China 246–7
DaAn Business Incubator (DABI) 252–3
discussion and conclusion 256–8
growth of 247–52
Guangdong 253–4
roles of 254–6
technology maturity 90–92
readiness 88–9, 90
technology incubators defining 20
origin and development of technology-based business incubation 17–19
Saudi Arabia 358
see also firm characteristics and performance, differences between incubatees and non-incubator new technology-based firms (NTBFs) (Sweden); technological business incubators (TBIs), China
Technology Licensing Organization (TLO) Act (1998) (Japan) 242
technology parks, Brazil 317, 318, 319, 320
technology-push innovation model 102–3, 164–5
technology transfer
European Space Agency (ESA) 160, 164–7, 171, 173–4
Japan 239, 242
Stony Brook University 67–70, 71
and universities 73, 74–5
technology transfer offices 68, 69, 75
technology ventures, acceleration patterns in, see acceleration patterns in technology ventures
Technopolis Act (1983) (Japan) 235, 238
Teece, D.J. 485
tenant recruitment at university incubators 402–3
collection and policy directions 410–11
research findings 407–10
research methodology 406–7
theoretical background 403–6
text analysis, mentoring 468–74
THEA 304, 306, 307, 308, 309, 310
Third-Generation incubation models 28
Thursby, M. 55
Tiemann, I. 487
time aspect of mentorship 466
time spent in incubators, see university student venture (SV) incubators, importance of time spent in
torun, M. 30
total factor productivity (TFP) growth 230
transaction costs, lowering via ecosystems and incubators 115
Trautwein, C. 487
triple helix (TH) model 140–43, 145, 152
see also entrepreneurial university; tenant recruitment at university incubators; university incubators; university student venture (SV) incubators, importance of time spent in
university-based entrepreneurship ecosystems 113–14, 115–16
Babson Incubator Program 119–21
Rensselaer Polytechnic Institute (RPI) 117–18
Worcester Polytechnic Institute (WPI) 118–19
University City Science Center (UCSC) 17
university incubators 116, 353, 391
development of 32
and firm performance 55
nature of 49
New York State 387
university-based incubators (UBIs), Pakistan 280–83, 288–92, 293
see also entrepreneurial university; tenant recruitment at university incubators
university student venture (SV) incubators, importance of time spent in 446–7
conclusion 459–61
discussion 457, 459
measures 452–4, 455
method 451–2
research context 447–9
results 454, 456–7, 458–9
theoretical insight and hypotheses development 449–51
Upward, A. 487
urban development, knowledge-based 143–4
urban science parks, see entrepreneurship and innovation ecosystems, role of modern urban science parks in developing
U.S. Economic Development Administration (EDA) 392
U.S. Small Business Administration 392, 394
value ideation 488, 490
Value Mapping Tool 488, 489, 490
van Rijnsoever, F.J. 32
venture accelerators 389–90, 393
venture capitalists (VCs) 387–8
China 249, 252
Saudi Arabia 360
VC-funded startups versus ‘indies’ 394–5, 397
Venture Development Organizations (VDOs) (US) 18, 176, 388
capital 191–3
case study (Launch NY) 185–96
conclusion and learning 196–7
growth and features of 177–85
mentorship 189–91
process, outcomes and impact measures 194–6
securing funding, partnerships and vendor relationships 193–4
Vermont Sustainable Jobs Fund 184
VertueLab 184
virtual incubators 118, 119, 292, 295
Wayra 344
Weintraub, Walter 468–9
Weissman Foundry 121
Whaley, Randall 17
Wilson, Fred 395
women, Saudi Arabia 360–61
Worcester Polytechnic Institute (WPI) 118–19
Wuhan Eastlake Pioneers Centre (WEPC) 247–8
Xiao, L. 255, 256
Y-Combinator 18, 26, 79, 342–3
Yang, M. 488