Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>adoption</td>
<td>73, 88</td>
</tr>
<tr>
<td>patterns</td>
<td>88</td>
</tr>
<tr>
<td>of systems</td>
<td>24</td>
</tr>
<tr>
<td>affiliation</td>
<td>80–81</td>
</tr>
<tr>
<td>AI see artificial intelligence (AI)</td>
<td></td>
</tr>
<tr>
<td>Airbnb</td>
<td>26, 102</td>
</tr>
<tr>
<td>Alexa</td>
<td>108, 115–16</td>
</tr>
<tr>
<td>algorithmic/algorithms</td>
<td>115</td>
</tr>
<tr>
<td>assessment, proposals for</td>
<td>155–8</td>
</tr>
<tr>
<td>auditing</td>
<td>155</td>
</tr>
<tr>
<td>black box problem</td>
<td>131</td>
</tr>
<tr>
<td>diffusion</td>
<td>111</td>
</tr>
<tr>
<td>discrimination effects of</td>
<td>106</td>
</tr>
<tr>
<td>ethical risks of</td>
<td>115–16</td>
</tr>
<tr>
<td>in finance</td>
<td>158</td>
</tr>
<tr>
<td>governance</td>
<td>115</td>
</tr>
<tr>
<td>lines of codes</td>
<td>110</td>
</tr>
<tr>
<td>nondiscrimination and fairness of</td>
<td>113</td>
</tr>
<tr>
<td>opinions in</td>
<td>110</td>
</tr>
<tr>
<td>of proposed method</td>
<td>133–4</td>
</tr>
<tr>
<td>of recommendation systems</td>
<td>109</td>
</tr>
<tr>
<td>reliability</td>
<td>105</td>
</tr>
<tr>
<td>systems, negative impacts of</td>
<td>102</td>
</tr>
<tr>
<td>transparency</td>
<td>114, 146</td>
</tr>
<tr>
<td>algorithmic-decision-making systems (ADM)</td>
<td>122, 156</td>
</tr>
<tr>
<td>Alibaba</td>
<td>26, 60</td>
</tr>
<tr>
<td>Amazon</td>
<td>26, 60, 108, 123</td>
</tr>
<tr>
<td>recruitment system</td>
<td>131</td>
</tr>
<tr>
<td>Android Marketplace</td>
<td>58</td>
</tr>
<tr>
<td>application programming interfaces (APIs)</td>
<td>44, 58, 145</td>
</tr>
<tr>
<td>App Store</td>
<td>57–8</td>
</tr>
<tr>
<td>artificial illumination</td>
<td>39</td>
</tr>
<tr>
<td>artificial intelligence (AI)</td>
<td>1–2, 59–60, 99–100, 122–4</td>
</tr>
<tr>
<td>adoption</td>
<td>24, 88</td>
</tr>
<tr>
<td>agents, purpose and roles of</td>
<td>50</td>
</tr>
<tr>
<td>algorithms</td>
<td>115, 146, 158</td>
</tr>
<tr>
<td>automation process</td>
<td>75</td>
</tr>
<tr>
<td>business benefits of</td>
<td>23</td>
</tr>
<tr>
<td>certification schemes for</td>
<td>152</td>
</tr>
<tr>
<td>characteristics of</td>
<td>104</td>
</tr>
<tr>
<td>check procedures</td>
<td>16</td>
</tr>
<tr>
<td>corrective maintenance of</td>
<td>158</td>
</tr>
<tr>
<td>decision-making</td>
<td>11</td>
</tr>
<tr>
<td>definition of</td>
<td>2–3</td>
</tr>
<tr>
<td>deployment</td>
<td>113</td>
</tr>
<tr>
<td>digital transformation</td>
<td>100–103</td>
</tr>
<tr>
<td>discussions and future trends</td>
<td>143–4</td>
</tr>
<tr>
<td>dynamic nature of</td>
<td>152</td>
</tr>
<tr>
<td>empirical testing see</td>
<td>empirical testing, AI</td>
</tr>
<tr>
<td>ethical maintenance</td>
<td>157</td>
</tr>
<tr>
<td>ethics/ethical see</td>
<td>ethics/ethical</td>
</tr>
<tr>
<td>‘Experience Vision’ of</td>
<td>51</td>
</tr>
<tr>
<td>fair dataset to ensure decisions</td>
<td>144–5</td>
</tr>
<tr>
<td>human-centric intelligent computing</td>
<td>146–7</td>
</tr>
<tr>
<td>interactions</td>
<td>12</td>
</tr>
<tr>
<td>managerial implications</td>
<td>117–18</td>
</tr>
<tr>
<td>maturity model</td>
<td>75</td>
</tr>
<tr>
<td>modern notion of</td>
<td>32</td>
</tr>
<tr>
<td>mythical version of</td>
<td>32</td>
</tr>
<tr>
<td>perception</td>
<td>11</td>
</tr>
<tr>
<td>potential of</td>
<td>172</td>
</tr>
<tr>
<td>principles and requirements</td>
<td>153</td>
</tr>
<tr>
<td>proposed method see</td>
<td>proposed method</td>
</tr>
<tr>
<td>recruiting algorithm</td>
<td>122–3</td>
</tr>
<tr>
<td>Regulation proposal</td>
<td>151–2</td>
</tr>
</tbody>
</table>

Source: Margherita Pagani and Renaud Champion - 9781839104398
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>situation and problems 124</td>
</tr>
<tr>
<td>bias in learning algorithms 130–32</td>
</tr>
<tr>
<td>bias problems in training dataset 128–30</td>
</tr>
<tr>
<td>in current systems 128</td>
</tr>
<tr>
<td>using learning to generate intelligence 125–8</td>
</tr>
<tr>
<td>socio-technical assemblage of 111</td>
</tr>
<tr>
<td>supported tasks 29</td>
</tr>
<tr>
<td>system’s life cycle 11</td>
</tr>
<tr>
<td>technical/cognitive dimensions of 17</td>
</tr>
<tr>
<td>trustworthy development of 16</td>
</tr>
<tr>
<td>user behavior and businesses 2</td>
</tr>
<tr>
<td>use regulations against bias 145–6</td>
</tr>
<tr>
<td>value-centered approach of 2–3</td>
</tr>
<tr>
<td>value creation framework 3–6</td>
</tr>
<tr>
<td>value layers 27–8</td>
</tr>
<tr>
<td>audit, AI 152, 155–6, 158</td>
</tr>
<tr>
<td>augment technology 11–13</td>
</tr>
<tr>
<td>auto-ethnography 114–15</td>
</tr>
<tr>
<td>Automated Guided Vehicles (AGV) 3, 12, 15, 19, 20, 21</td>
</tr>
<tr>
<td>automated interactions 22–3</td>
</tr>
<tr>
<td>automotive industry 26, 172</td>
</tr>
<tr>
<td>autonomous systems 11, 12, 15, 16, 17, 27, 28, 99, 103, 115, 146</td>
</tr>
<tr>
<td>autonomy 27, 38, 102, 104, 107, 111–13</td>
</tr>
<tr>
<td>bandwagons 88–9</td>
</tr>
<tr>
<td>banking 81, 90, 96, 134</td>
</tr>
<tr>
<td>business of 84</td>
</tr>
<tr>
<td>Bayesian learning 137</td>
</tr>
<tr>
<td>bias 105, 117, 143</td>
</tr>
<tr>
<td>in care delivery 166</td>
</tr>
<tr>
<td>in learning algorithms 130–32</td>
</tr>
<tr>
<td>problems in training dataset 128–30</td>
</tr>
<tr>
<td>use regulations against 145–6</td>
</tr>
<tr>
<td>biased learning 77–8</td>
</tr>
<tr>
<td>big data 2, 23, 35, 100, 105, 117, 125</td>
</tr>
<tr>
<td>analysis 102</td>
</tr>
<tr>
<td>bitcoin sales 117</td>
</tr>
<tr>
<td>black-boxed learning 77–8</td>
</tr>
<tr>
<td>black-box process 144</td>
</tr>
<tr>
<td>Booking, com 101</td>
</tr>
<tr>
<td>Building Information Modeling (BIM) 3</td>
</tr>
<tr>
<td>business ecosystem 26</td>
</tr>
<tr>
<td>functions 18</td>
</tr>
<tr>
<td>model 1, 70–71, 90</td>
</tr>
<tr>
<td>needs 18</td>
</tr>
<tr>
<td>operations, internal and external 22</td>
</tr>
<tr>
<td>optimization vs. creativity/strategy 27</td>
</tr>
<tr>
<td>pragmatic reality of 1</td>
</tr>
<tr>
<td>press corpus</td>
</tr>
<tr>
<td>data analysis 95</td>
</tr>
<tr>
<td>data gathering 95</td>
</tr>
<tr>
<td>process 17, 25–6</td>
</tr>
<tr>
<td>products 24</td>
</tr>
<tr>
<td>strategies 26</td>
</tr>
<tr>
<td>business models 59, 72–3, 78–9</td>
</tr>
<tr>
<td>data sources and methods 79–81</td>
</tr>
<tr>
<td>narratives 81–8</td>
</tr>
<tr>
<td>business-to-business markets 24</td>
</tr>
<tr>
<td>business-to-consumer markets 24</td>
</tr>
<tr>
<td>business value 3, 24</td>
</tr>
<tr>
<td>in process design 25</td>
</tr>
<tr>
<td>in product design 24–5</td>
</tr>
<tr>
<td>in supply chain design 25–6</td>
</tr>
<tr>
<td>Cambridge Analytica case in 2018 105</td>
</tr>
<tr>
<td>caring 38–9, 41</td>
</tr>
<tr>
<td>AI agent 42–3</td>
</tr>
<tr>
<td>lights project 42–3</td>
</tr>
<tr>
<td>values of 41–3</td>
</tr>
<tr>
<td>Caring Lights project 42–7</td>
</tr>
<tr>
<td>CAs see conversational agents (CAs)</td>
</tr>
<tr>
<td>causal relations 136</td>
</tr>
<tr>
<td>causation mechanism 124</td>
</tr>
<tr>
<td>CERNA report 112</td>
</tr>
<tr>
<td>certification programs 103</td>
</tr>
<tr>
<td>CES2020 115–16</td>
</tr>
<tr>
<td>5G technology 116–17</td>
</tr>
<tr>
<td>future of work 117</td>
</tr>
<tr>
<td>GAFAM 116</td>
</tr>
<tr>
<td>limits of regulation 116–17</td>
</tr>
<tr>
<td>responsible technologies 117</td>
</tr>
<tr>
<td>changes of state 64</td>
</tr>
<tr>
<td>citizens, town environments for 100–101</td>
</tr>
<tr>
<td>cloud data infrastructures 32</td>
</tr>
<tr>
<td>cloud-stored user profiles 42</td>
</tr>
<tr>
<td>cluster analysis 127</td>
</tr>
<tr>
<td>clusters of words 81</td>
</tr>
<tr>
<td>co-creation sessions 37</td>
</tr>
<tr>
<td>cognitive engagement 19, 21</td>
</tr>
<tr>
<td>cognitive insights 18–19, 21, 24</td>
</tr>
</tbody>
</table>
cognitive interactions 17, 21
collaborative activities 37
collaborative optimization 21, 28
committed investment 41
Compustat 138–9
computer science programs 105, 110
configurational multiplicity 66
configuration theories 63–6
conflict of interest 156
Connected Lighting for Caring Cities project 39, 43
consumption behaviors 109–10
context-sensitive theories 65
contextual observations 35
continuous integration, formal process for 158
continuous learning 73, 112
control theory 13, 21, 172
conventional AI systems 125
conventional learning methods 134, 138
models 138
conventional ML algorithms 132–4
conversational agents (CAs) 49–50
for financial services 52
roles of 49
conversation interfaces 49
coordination vs. surveillance 76–7
coping mechanisms 78
copyright enforcement 58
corporate collapse analysis 136
corporate finance theory 136
corporate social responsibility 6, 118
creative tasks 28
cultural immersion 35
customer relationship management 115
cycle time acceleration 62
data 105, 138–9
analysis 22, 95
anonymization 105–6
bias 15, 105–6
characteristics 138–9
composition 143
ethical issues of 106
failed firm 141–2
gathering 95
governance 113–14
human cognitive biases in 123
process 143
scientists for data 62–3
selection 129, 143
decision bias 124
decision-making 11–13, 73, 117, 124
deep learning 25, 59, 63, 77, 79, 101, 105, 108–9, 113, 126, 128–9, 131, 136
deep network, layout of 127
default–mathematical treatment 136–7
default risk 135–6, 138
democracies, destabilization of 99–100
deontology 103
design
adoption of 34
mindset 34–5
of products and service 37
of technological systems 38
digital domain 56
digital ecodynamics 63–6
digital innovations 118
digitalization 73, 76, 78
digital labor 102, 106
digital medium 55, 59
digital platform ecosystems 55, 62
artificial intelligence (AI) and
real-time management 59–60
challenges of managing 61
communities 58, 61
context of 63
creating shared value 57, 61
cycle time acceleration 62
data scientists for data 62–3
enabling technologies as building blocks 58
environment 63
growth of 56
humanistic interaction designer 62–3
leveraging capabilities of partners 57, 61
need for governance mechanisms 58
network effects 57, 60
rapid learning loops 61–2
systems for digital ecodynamics 63–7
digital platforms 55
business models 59
economic model of 101
micro-work on 106
digital QR code 110
digital services, algorithmic experience of 52
digital socio-technical assemblage 111
digital systems, properties of 112
digital technologies 76–9, 81, 84, 100
 adoption of 84
 deployment of 78
 in financial services 79
digital transformation 1, 24, 101, 105
 historical context of 100–103
discrimination 105, 117, 123–4
diversity 76, 109, 112–13, 153
dominant topics 81, 84, 87
double-effect doctrine 103
dynamic learning method 123–4
eBay 26
eo-ethical behavior 103
e-commerce 55
 channels 56
 platforms 11
 websites 56
economic risk drivers 164
economic value 4, 102, 165
ecosystem 1, 25–6
 of applications and services 57
 business 26
educational attainment 125
efficiency vs. slack 75–6
emerging technology 44
empirical testing, AI 138
 data 138–40
 model performance comparison 143
 results 140–43
employee/employment
 empowerment vs. disengagement 78
 productivity of 76
 structure of 100
endogeneity bias 105
enterprises 26
 interdependent group of 25
entertainment 55–6, 115
esthetic dimensions 104
ethical/ethics 103–4
 challenges 112–15
 check procedures 14
 data bias 105–6
 decision-making 27–8
 dimensions of 103–4
 discrimination 105–7
 encapsulated opinions and decisions 110–11
 filtering bubbles and echo chamber 109–10
 implications 27
opacity and manipulation 107–9
 principles 111
 and societal implications of 151
 universal values of 104
value 3
ethical maintenance of artificial
 intelligence systems 151–2, 157
 benefits of using 167–8
 economic risk drivers 164
 inaccurate inspection 168
 Intellectual Property (IP) 167–8
 ISO/IEC 14764 standard 161
 motivation 161–2
 need of 165–7
 process model of 162–4
 proposals for algorithmic assessment 155–8
 RCM 164–5
 types of maintenance 158–9
 Z-Inspection® see Z-Inspection®
 Ethical Risk Analysis Chart 157
 Eubanks, V. 100, 111
European Commission 3, 102, 104, 113, 145, 151–3
European Union’s General Data
 Protection Regulation 123
existential intelligence 173–4
experience design 32–4
experiential values 33, 35, 47
explanation 123–4, 157–8
Facebook 59, 101, 109, 116
 algorithm 110
 face recognition system 115, 129
 fair decisions 144–5
 fairness 124
 in machine learning 114
Fast Moving Consumer Goods (FMCG)
 companies 116
FAT2019 conference 107
Federal Communications Commission
 (FCC) 116–17
Federal Trade Commission (FTC) 102
financial distress 136
financial services 70–71, 90
 business models see business models
 creation in 78
digital technologies in 79
 tradeoffs for value creation see value
 creation
 unlocking value from 88–90
 value-creation potential 73–5
financial services sector 70–71
5G network/technology 38, 102, 116–17
FTC see Federal Trade Commission
(FTC)
GAFAM 105, 116
garbage in, garbage out (GIGO) 105
General Data Protection Regulation
(GDPR) 102, 156
geolocalization 100, 114
German Data Ethics Commission 152
GIGO see garbage in, garbage out
(GIGO)
Google 59, 101, 106
 Flu-Trend-Model 130
 Home 108, 115–16
 Search Algorithm 60
 services 107
 Translate 102
governance mechanisms 58
GPS mobile maps 52
healthcare 117–18
inequalities in 112–13
High Level Expert Group (HLEG) 104
HireVue 107
historical lighthouses 39
human capital 84
human-centric AI 9–10, 13–17
 accountability 15
 algorithmic bias 15
 in business processes 17–23
 business value see business value
 collaboration modes in 26–9
 data bias and privacy 15
 definition of 11–13
 description of 9
 human oversight 15
 representation 14
 safety and technical robustness 15
 societal wellbeing 15
 technical functions 9
 values 15
human-centric intelligent computing
 146–7
human–computer interaction (HCI) 33
human experiential values 35
human intelligence 124, 173
humanistic interaction designers 63
human-learning system interaction 112
human–machine collaboration modes
 174
human–machine interactions 22, 26
human reasoning 107
human resource management 17, 122–3
human values 33–4, 47
 realization of 34
 rethinking AI to favor 173–4
human welfare 3, 14
hybrid training programs 174
ImageNet project 130
image processing 25, 174
individual-level learning 124, 142
industrial robots 27, 100, 172
industry 4. 0 117–18
information economy 61
information systems research 56
infrastructure 25
 connected 38–9
 of luminaires 38, 44
innovations 3, 25, 58–9
 management 72
 opportunities for 55
 in technologies 115
Institute for Artificial Intelligence in
 Management 1
insurance, business of 84
integration of algorithms 100
Intellectual Property (IP) 167–8
intelligence 122, 124
 origin of 130
intelligent machines 32
interactions 12–13, 47
internal audits, limitations of 155
international lighting systems 39
Internet corpus 80, 85
 data analysis 97
 data gathering 96–7
 sample of companies 96
Internet of Things (IoT) 2, 99–100, 102
devices 38, 115
interpersonal intelligence 174
intrapersonal intelligence 174
intuitive programming interfaces 172
IoT see Internet of Things (IoT)
justice 104, 106, 111, 122
Index

key performance indicators (KPIs) 113
Kraemer, F. 111
Kramer, A. D. I. 108
labeling bias 129
labeling services 130
learning 13, 125
 algorithms 108, 123, 125, 129, 131–2, 144
 function 125–6, 128
 of human decision preferences 131
 mechanism 143
 methods 126, 132
 vs. propagation 77–8
 supervised 127
 techniques 107
light/lighting 41, 43
 design features of 42
 diagram 40
 experiences 44
 pulsation/duration of 39
 roles of 39–42
 secondary research on 41
LinkedIn 123
London firms 80
machine ethics 111
machine learning (ML) 2, 25, 63, 80, 112–13
 algorithms 59, 61–2, 117–18
 engineers 100
 goals for 123
 methods 144
 systems 105, 112–14, 156
managerial value 2
manual labeling 131–2
markets/marketing 22
 domains 28
 strategies 105
Markov chain Monte Carlo (MCMC) algorithms 137
Markov decision process 127
mask-wearing 34
media narratives 71, 88–9
metaethics 104
metaphor-driven design process 51–2
micro-ethics concepts 104
Minsky, M. L. 2
MIT Design Lab 34–5, 38, 49
ML see machine learning (ML)
modest generalization 66
multiple intelligences 173
national/international committees, reports from 112–14
naturalistic intelligence 174
natural language processing 49
non-maleficence 107, 111
normative ethics 103
omitted data bias 105
optimal weight values 126–7
organizational/organization forms 62, 122
 learning 73, 77
 structures 55
 systems research 56
 tradeoffs 71, 74
PageRank algorithm 107
paper mills 78
partners/partnership 26
 capabilities of 57
perception 11–12
Perkmann, M. 72
physical domain 56
pilot technical innovation 118
platform-based business models 56
platform business models 55
 critical feature of 57
 definition of 57
platform ecosystems 56, 58
platform owners 55, 58
policy 151, 154, 157, 162
predictions 1, 22, 59–62, 73, 75, 99, 108, 124
predictive analytics 25
prejudice relationship 129
preventive maintenance 158
privacy 15, 113–14
 regulations on 117
process
 automation 20–21
 design 25
 theories 64
production process 78
products categories 89
design 24–5
features, functions, and performance of 22
granular aspect of 38
usability and user experience of 34
profitability rate 137
programmatic advertising platforms 62
project, unpacking of 39
property rights 58, 61
proposed method 132–4, 139–40
for risk ranking 135–7
smart risk-ranking systems 134–5
public lighting infrastructures 44
QR code see Quick Response (QR) code
Qualitative Comparative Analysis (fsQCA) 65
qualitative research 35
Quick Response (QR) code 25
radio-frequency identification (RFID) 25, 103
rapid learning loops 61–2
RCM see reliability-centered maintenance (RCM)
real-time management 59–60, 62
reasoning 11–13
recommendation systems 109–10
reinforcement learning 127
reliability-centered maintenance (RCM) 159
risk to cost to budget for 164–5
reputation 58
Research Center on Artificial Intelligence in Value Creation 1
research, process of 47
resource allocation 71
responsibility 100, 112–13, 117
responsible digital innovation 118
retailers 56
risk assessment 124, 134–5, 163, 165
risk ranking 135–7
robo-advisory services 89
robot drone 19, 20, 27
robotic arm 27, 28, 172
robotic process automation (RPA) 22
robotics 2
Roomba Vacuum Cleaning Robot in 2002 33
RPA see robotic process automation (RPA)
saliency 81
of individual topics 83, 86
scenario-based design 43–6
Scenario-Based Design approach 38
scenario-based prototyping 46
scenario development 38
scene analysis card 48
Schiff, D. 156–7
Schwartz, S. H. 33
Scoping, Mapping, Artifact Collection, Testing, and Reflection (SMACTR) 155
search engines 105, 108
during political elections 108
systems 107
selection bias 105, 123, 129, 131, 145
self-aware computer programs 17, 27, 29
shared social language 35
shared value 57
shopping recommendation algorithm 11, 13
smart food management 115
smart manufacturing tools 3
smartphone platforms 56
smart risk-ranking systems 134–5, 138
social distancing 34
social interactions 28, 174
social networks 99, 105, 108
diffusion and usage of 109
social prejudice 130
social science research 114–15
social sciences 35, 52, 114, 175
societal changes 3
societal damages 13–14
societal value 2–3
society and civil rights 102
sovereignty 105
spam 126
STAR labs 115
statistical learning 107
storytelling 38, 43–6
Index

strategic systems research 56
strategic tradeoffs 71, 74
such as development toolkits (SDKs) 58
supervised ethical checks 16
supervised learning 127, 140
supervisory signal 126
suppliers, chain of 57
supply chain 25–6, 172
sustainable change 175
system-learning capacities 112
systems, granular aspect of 38

technology 1, 17, 72, 115–16, 122, 126
benefits of 43–4
development 52
ecological impact of 118
ethical challenge of 103
impact of 3
innovation in 115
ventures 81
visions 46
theoretical multiplicity 66
The Third Industrial Revolution (Rifkin) 100
total cost of ownership (TCO) of
software systems 158
tradeoffs 71, 74, 88
traditional reductionism problem 64
traditional rule-based systems 156
training dataset 129
transparency 58, 113
transportation 55, 102
TripAdvisor 101
trustworthy 16, 113

Uber 102
universal human values 33
unsupervised ethical checks 17
user bandwagons 89
user behaviors 61–2

Vallor, S. 34
value-centered design 3, 37–8

value creation 1, 59, 70, 75, 84
coordination vs. surveillance 76–7
dimension of 3
efficiency vs. slack 75–6
employee empowerment vs.
disengagement 78
in financial sector 70–71
framework 4
learning vs. propagation 77–8
opportunities for 55
value-driven design 32–3
caring agent 42–3
design as method 34–8
designing for values 52
development of 38
human values 33–4
metaphor-driven design for 51–2
scenario-based design and
storytelling of 43–6
strategic road-mapping of design
visions 47–51
understanding user values 38–42
value-driven experiences 37
value-focused product 41–2
values 15, 57
of caring 43
designing for 52
experiences 37
range of 34
value-sensitive design 37–8
variance theories 64
visual direction 39
vocal assistants 110
vocal personal assistants 115–16
vocal services 105
voting preferences 108

Wall Street Journal Index (WSJD) 138
waste optimization 100–101
workplace 26, 173, 175

Z-Inspection® 153–4
assessment process 153–5
domain-specific assessment 166
reference model 159–60
social assessment 166
technology-specific assessment 166
Z-score model 134–5, 138, 140
We would like to thank the readers of *Artificial Intelligence for Sustainable Value Creation* as thanks to this purchase you are contributing to the funding of the Association Laurette Fugain to which we will devolve 50% of the royalties of this book.

Association Laurette Fugain is a charity fighting against leukemias, committed on a daily basis to the following three aims:

SUPPORT pediatric and adult medical research into leukemias

Laurette Fugain is one of the largest associations supporting the fight against leukemia, through strong financial contributions to 189 (December 2020) world-class medical research projects, resulting in a large number of scientific publications and two annual Awards for promising young hematology researchers.

RECRUIT life-giving donors (blood, plasma, platelets, bone marrow), through mass media campaigns, presentations in companies and educational institutions, hundreds of local events and key projects carried out with public authorities.

“It is hardly acceptable to see a human being die because others did not know they could save him/her”

–Stéphanie Fugain

HELP patients and their families, both in and out of the hospital: supplying equipment, funding state-of-the-art workshops, bringing innovation through national programs (sport, robots against social isolation…), housing assistance, legal aid, etc.

Ethics, transparency, effectiveness and cheerfulness are at the heart of our commitment.

www.laurettefugain.org