<table>
<thead>
<tr>
<th>advocacy of emerging technology 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa 116, 190</td>
</tr>
<tr>
<td>Alberth, S. 18, 270</td>
</tr>
<tr>
<td>Albrecht, J. 111</td>
</tr>
<tr>
<td>Argote, L. 37</td>
</tr>
<tr>
<td>Arrow, K.J. 10, 22</td>
</tr>
<tr>
<td>Asia 80, 190, 216</td>
</tr>
<tr>
<td>Atanasiu, B. 200</td>
</tr>
<tr>
<td>ATHENE model 118</td>
</tr>
<tr>
<td>Australia 161, 162, 194, 203, 217</td>
</tr>
<tr>
<td>Austria 120, 121, 231</td>
</tr>
<tr>
<td>autonomous sub-learning systems</td>
</tr>
<tr>
<td>32–3</td>
</tr>
<tr>
<td>Bahn, O. 52, 54</td>
</tr>
<tr>
<td>Balance of System (BOS) components</td>
</tr>
<tr>
<td>93, 101–102, 103, 113, 276</td>
</tr>
<tr>
<td>Barker, T. 56</td>
</tr>
<tr>
<td>Barreto, L. 52</td>
</tr>
<tr>
<td>Bass, F.M. 196–9, 200, 224</td>
</tr>
<tr>
<td>Belgium 79, 80, 82, 87</td>
</tr>
<tr>
<td>Berger, C. 228, 231</td>
</tr>
<tr>
<td>Berghout, N. 123, 126</td>
</tr>
<tr>
<td>Berglund, C. 59</td>
</tr>
<tr>
<td>Bertoldi, P. 200</td>
</tr>
<tr>
<td>Bevington, P.R. 30</td>
</tr>
<tr>
<td>biodiesel 121, 125</td>
</tr>
<tr>
<td>bioenergy</td>
</tr>
<tr>
<td>carbon capture and sequestration</td>
</tr>
<tr>
<td>(CCS) technologies 170</td>
</tr>
<tr>
<td>components 266</td>
</tr>
<tr>
<td>costs 122–5, 129–33, 134–7</td>
</tr>
<tr>
<td>experience curves 122–9, 130, 131,</td>
</tr>
<tr>
<td>134–8, 257–8, 264, 277–9</td>
</tr>
<tr>
<td>geographical constraints 267</td>
</tr>
<tr>
<td>growth of 119–22</td>
</tr>
<tr>
<td>policy 121–2, 134, 277–9</td>
</tr>
<tr>
<td>pulverized coal-fired (PC) power</td>
</tr>
<tr>
<td>plants 158</td>
</tr>
<tr>
<td>technological innovation systems</td>
</tr>
<tr>
<td>(TIS) 47</td>
</tr>
<tr>
<td>technological learning, drivers of</td>
</tr>
<tr>
<td>277–9</td>
</tr>
<tr>
<td>use of 119–22</td>
</tr>
<tr>
<td>biofuels</td>
</tr>
<tr>
<td>cost reductions 129–33</td>
</tr>
<tr>
<td>energy models 56–7</td>
</tr>
<tr>
<td>progress ratio error 30</td>
</tr>
<tr>
<td>technological innovation systems</td>
</tr>
<tr>
<td>(TIS) 47</td>
</tr>
<tr>
<td>for transportation 121, 122</td>
</tr>
<tr>
<td>biomass</td>
</tr>
<tr>
<td>carbon capture and sequestration</td>
</tr>
<tr>
<td>(CCS) technologies 170</td>
</tr>
<tr>
<td>components 266</td>
</tr>
<tr>
<td>costs 122–5, 129–33, 134–7</td>
</tr>
<tr>
<td>experience curves 122–9, 130, 131,</td>
</tr>
<tr>
<td>134–8, 257–8, 264, 277–9</td>
</tr>
<tr>
<td>geographical constraints 267</td>
</tr>
<tr>
<td>growth of 119–22</td>
</tr>
<tr>
<td>policy 134</td>
</tr>
<tr>
<td>pulverized coal-fired (PC) power</td>
</tr>
<tr>
<td>plants 158</td>
</tr>
<tr>
<td>technological innovation systems</td>
</tr>
<tr>
<td>(TIS) 47</td>
</tr>
<tr>
<td>technological learning, drivers of</td>
</tr>
<tr>
<td>277–9</td>
</tr>
<tr>
<td>use of 119–22</td>
</tr>
<tr>
<td>BioTrans model 52, 53, 56–7</td>
</tr>
<tr>
<td>Blanco, M.I. 76</td>
</tr>
<tr>
<td>Bosetti, V. 56</td>
</tr>
<tr>
<td>Boston Consultancy Group (BCG) 10,</td>
</tr>
<tr>
<td>19, 40, 141–2</td>
</tr>
<tr>
<td>bottom-up models</td>
</tr>
<tr>
<td>and experience curves 48–54, 57–60,</td>
</tr>
<tr>
<td>61, 286</td>
</tr>
<tr>
<td>photovoltaic (PV) technology</td>
</tr>
<tr>
<td>109–10</td>
</tr>
<tr>
<td>boundaries, system 32–3, 266–7, 270,</td>
</tr>
<tr>
<td>284</td>
</tr>
<tr>
<td>Brazil 20, 121, 123, 127, 129, 207,</td>
</tr>
<tr>
<td>277</td>
</tr>
<tr>
<td>Buonanno, P. 56</td>
</tr>
</tbody>
</table>
Technological learning in the energy sector

Canada 80, 120, 161, 162
carbon capture and sequestration (CCS) technologies
bioenergy 171–3
components 266
costs 163, 164, 168–74
experience curves 162–8
growth of 147, 149–50, 160–162
integrated gasification combined cycle (IGCC) 163, 166–7, 168, 169–70, 171–3
natural gas combined cycle (NGCC) 163, 166, 168, 169, 171–3
policy 174–5, 279–80
pulverized coal-fired (PC) power plants 158, 163, 165, 168, 169, 171–3
technological innovation systems (TIS) 47
technological learning, drivers of 279–80
Carlson, J.G. 22
Castelnuovo, E. 55, 56
Chabbal, R. 97
chemical industry
costs 244–5, 266
experience curves 235–44, 245–6
growth of 232–5
policy 235, 246, 283
technological learning, drivers of 283
Chicago, University of 179, 180, 182, 187
China
bioenergy 122
chemical industry 244
household appliances 194
lighting technologies 206, 207, 215, 217–18, 281
nuclear power 177, 178, 183–4, 189–90
offshore wind energy 80, 90
onshore wind energy 65, 66
photovoltaic (PV) technology 94, 95, 276
pulverized coal-fired (PC) power plants 156, 158
space heating and cooling 227, 228
Claessen Colpier, U. 22, 141–2, 143, 144–5, 147, 259
Clair, D.R. 236, 237
coal-fired power plants
carbon capture and sequestration (CCS) technologies 158, 163, 165, 168, 169, 171–3
cost reductions 155–8
experience curves 42, 150–155, 251–4, 257, 264
growth of 149–50
policy 159, 279
technological innovation systems (TIS) 47
technological learning, drivers of 279
combined cycle gas turbine (CCGT) plants
cost reductions 143–7
experience curves 141–3, 144–5, 147–8, 251–4
growth of 139–41, 144
policy 279
technological learning, drivers of 279
see also gas turbine combined cycle (GTCC); natural gas combined cycle (NGCC)
compact fluorescent light bulbs (CFLs)
energy consumption 206–209
experience curves 209–14
policy 217–18
price reduction 214–16
technological learning, drivers of 281
Complex Product System (CoPS) 142
components see modular technologies
concentrating solar thermal electricity technology 115–18, 277
continuous processes (technology category) 33–4
cooling technology
cost reductions 227–30
energy consumption 219–20
experience curves 221–7, 282
policy 220–21, 230–31, 282–3
prices 221–30, 282
technological learning, drivers of 282–3
Cooper, D. 121
Cornland, D. 141–2, 143, 144–5, 147
Cory, K.S. 26
Cowan, R. 179, 180
Crank, M. 235, 236, 237, 239, 240
Crassous, R. 56
Cuba 217
cumulative causation 44
Dale, L. 200
Dannemand Andersen, P. 38
data quality 110, 269–70, 285
DEMETER model 54, 56
Denmark bioenergy 121

offshore wind energy 79, 80, 81, 82, 90
onshore wind energy 21, 65, 66, 67, 68, 69, 71, 72, 75, 273
DESERTEC initiative 117
DLR model 118
DNE21+ model 52
downsizing technology 39
Duke, R. 213
Durstewitz, M. 69
Dutton, J.M. 23, 255

E3MG model 56
economies of scale 39, 155–6, 227, 280
ECOSTAR study 118
Edenhofer, O. 56
Ellis, M. 195, 200, 204, 211
endogenous learning
 bottom-up models 48–54, 57–60, 61, 109–10, 286
 exogenous parameters 55–8
 model evaluation 60–62
 top-down models 48–50, 54–5, 56, 59–60, 61
energy demand technologies 254–9
see also household appliances;
 lighting technologies; space heating and cooling
energy efficiency
 biomass 137–8
 chemical industry 234–5
 combined cycle gas turbine (CCGT) plants 143–7
 experience curves 259–61, 267–8, 283–8
 household appliances 193–5, 200–202, 203–205, 260
 lighting technologies 206–209
 space heating and cooling 219–20
energy models
 bottom-up models 48–54, 57–60, 61, 109–10, 286
 evaluation of 60–62
 exogenous parameters 55–8
 experience curve applications 15–16
 top-down models 48–50, 54–5, 56, 59–60, 61
energy supply technologies 251–4, 255–9
see also bioenergy; combined cycle gas turbine (CCGT) plants; concentrating solar thermal electricity technology; nuclear power; offshore wind energy; onshore wind energy; photovoltaic (PV) technology; pulverized coal-fired (PC) power plants
energy technologies
experience curves 3–5, 9–10, 12–16, 251–9
progress ratio (PR) 251–2, 254–9, 283–4
technological learning in 1–5
see also names of individual technologies
Enermodal model 117
entrepreneurship 45
Epplle, D. 37
EREC (European Renewable Energy Council) 115
ERIS model 52
ETC-RICE model 56
ethanol 121, 124, 129–32
Europe
bioenergy 121
chemical industry 236
household appliances 194
lighting technologies 207, 281
nuclear power 190
offshore wind energy 275
photovoltaic (PV) technology 94, 95
pulverized coal-fired (PC) power plants 156
space heating and cooling 228
European Union (EU)
bioenergy 121, 122
carbon capture and sequestration (CCS) technologies 160–61, 162
concentrating solar thermal electricity technology 117
data monitoring 110
household appliances 194
lighting technologies 206, 209, 217
nuclear power 178
photovoltaic (PV) technology 99, 113, 276
pulverized coal-fired (PC) power plants 157
space heating and cooling policy 220–21
Excel (software) 29–31
exogenous parameters 55–8
experience curves
applicability 32–4
applications 9–10, 12–16, 48–9
bioenergy 122–9, 130, 131, 134–8, 257–8, 264, 277–9
bottom-up models 48–54, 57–60, 61, 286
carbon capture and sequestration (CCS) technologies 162–8
chemical industry 235–44, 245–6
combined cycle gas turbine (CCGT) plants 141–3, 144–5, 147–8, 251–4
concentrating solar thermal electricity technology 117–18, 277
costs 41–2
critique 40–42
efficiency 259–61, 267–8, 283–8
efficiency 3–5, 9–10, 12–16, 251–9
exogenous parameters 55–8
extrapolation 18, 26–7
formula 10–12
history of 9–10
household appliances 195–202, 204–205, 254–9, 269
indicators, choice of 18–22
and innovation systems theory 44–7, 271
and the learning process 25–7, 36–9
lighting technologies 209–14, 217
meaning of 3
methodological considerations 18–27, 262–9
model evaluation 60–62
national vs. global 113
natural gas combined cycle (NGCC) technology 251–4, 264
nuclear power 179–88, 191–2, 280
offshore wind energy 83–6, 91–2, 251–4, 257, 264
Index

onshore wind energy 67–72, 77–8, 251–4, 257, 273–4
and policy 12–16, 74–5
prices 270
pulverized coal-fired (PC) power plants 42, 150–155, 251–4, 257, 264
recommendations 269–71
space heating and cooling 221–7, 282
technical considerations 27–31
and technological learning 3–5, 9–10, 12–16, 48–9, 283–8
top-down models 48–50, 54–5, 56, 59–60, 61
Extool project 21, 68, 74–5
feed-in tariffs 67, 96
FEEM- RICE model 56
Ferioi, F. 23, 33
fertilizers
 costs 244–5, 266
 experience curves 242–4, 245–6
 policy 235, 246, 283
 production of 232–5
 technological learning, drivers of 283
Finland
 bioenergy 120–121, 127
 nuclear power 177, 181–3, 189
 offshore wind energy 79, 82, 90
 onshore wind energy 67
Fischer-Tropsch liquids 124
France
 nuclear power 177, 180–81, 183, 185, 188, 189
 offshore wind energy 79, 87
fuel cells 40, 47
Garud, R. 38
gas turbine combined cycle (GTCC) 164, 166–8, 169, 172
 see also combined cycle gas turbine (CCGT) plants; natural gas combined cycle (NGCC)
GENIE model 51, 52
geographical constraints 32–3, 266–7, 270, 284
Gerlagh, R. 56
Germany
 bioenergy 120, 121
 carbon capture and sequestration (CCS) technologies 161
 chemical industry 236, 237
 concentrating solar thermal electricity technology 115
 lighting technologies 212
 nuclear power 181, 188, 190
 offshore wind energy 80, 82, 87, 89, 90, 91
 onshore wind energy 21, 65, 66, 67, 68, 69, 70, 75, 267, 273
 photovoltaic (PV) technology 94, 96, 99, 111, 113, 276
 space heating and cooling 222, 228, 231, 282
GET-LFL model 52
global experience curves 113, 263, 285, 286
Goldemberg, J. 126, 128
Goulder, L.H. 55
Green, M.A. 104
Gritsevskyi, A. 52, 59
Grübler, A. 22, 38, 49, 52, 180–81
Hamilton, M.R. 253
Harmon, C. 97
heating technology
 cost reductions 227–30
 energy consumption 219–20
 experience curves 221–7, 282
 policy 220–21, 230–31, 282–3
 prices 221–30, 282
 technological learning, drivers of 282–3
Hedenus, F. 52
Hettinga, W. 127, 128, 259
Holan, P. de 188
Hoppe-Kilpper, M. 69
household appliances
 cost reductions 202–204
 energy efficiency 193–5, 200–202, 203–205, 260
 experience curves 195–202, 204–205, 254–9, 269
 policy 201, 204–205, 280–281
Technological learning in the energy sector

price reduction 202–203

technological learning, drivers of 280–281

HVDC (High Voltage Direct Current) cables 89

hype cycle 41–2

Ibenholt, K. 26

IMACLIM-R model 56

India 66, 140

innovation, and the learning process 37

innovation systems theory 42–7, 271

integrated gasification combined cycle (IGCC) carbon capture and sequestration (CCS) technologies 163, 166–7, 168, 169–70, 171–3

carbon capture and sequestration (CCS) technologies 163, 166–7, 168, 169–70, 171–3

coal-fired power plants 149–50

combined cycle gas turbine (CCGT) plants 147

policy 279

technological learning, drivers of 279

investment costs 134–6, 163, 164

Ireland 79, 80, 81, 82, 87

Isles, L. 83, 85, 86, 87

Italy 189, 190

Iwafune, Y. 210, 211, 213

Jäger-Waldau, A. 111

Jakob, M. 223, 226, 228, 230, 231

Japan

bioenergy 120

carbon capture and sequestration (CCS) technologies 162

combined cycle gas turbine (CCGT) plants 140

household appliances 194, 203

lighting technologies 207, 209

nuclear power 177, 178, 187

photovoltaic (PV) technology 94, 95, 98, 111, 113, 276

pulverized coal-fired (PC) power plants 156

Jorgensen, U. 40

Joskow, P.L. 150–54

Junginger, M. 68, 70, 83, 84, 87, 89, 90, 123–6, 127, 128, 136, 163, 274

Kammen, D. 213

Kamp, L. 38

Karnoe, P. 40

Kitous, A. 158

Klaassen, G. 52

knowledge 45

Köhler, J. 26

Korea 178, 187

Kouvaritakis, N. 52

Krohn, S. 67

Kypreos, S. 52, 54

Laitner, J.A. 196–9, 200, 202, 210, 213, 223, 224, 226

Lako, P. 83, 84

learning from experience 184–8

investments 14–15

learning curve 9–10

local vs. global 263

process of 36–9

rates 22, 23–4

and research and development (R&D) 37–8, 272

see also technological learning learning-by-doing

bioenergy 130

in bottom-up models 51–3

carbon capture and sequestration (CCS) technologies 174

experience curves 25–7, 38–9

nuclear power 179

technological innovation systems (TIS) 45

in top-down models 55

learning-by-interacting 39

learning-by-searching 38, 45, 53–4, 55

learning-by-using 39, 45, 135–6

light-emitting diodes (LEDs) 206, 207, 216, 217, 281–2

lighting technologies cost reductions 215–16

energy consumption 206–9

experience curves 209–14, 217

Martin Junginger, Wilfried van Sark, and André Faaij - 9781849806848
Downloaded from PubFactory at 09/15/2023 08:01:47AM
via free access
Index

policy 217–18, 281–2
price reduction 214–16
technological learning, drivers of 281–2
Lipman, T.E. 210, 212
Londo, M. 52
Lund, P.D. 69
MacGregor, P.R. 143, 144
Mackay, R.M. 69
macroeconomic analysis 48–50, 54–5, 56, 59–60, 61
Maddler, R. 223, 226, 228, 230, 231
Maltepe, M. 76, 77, 112
Manne, A.S. 52, 53
MARKAL model 15, 16, 52, 60, 266
market prices see prices
markets 39, 45, 46–7, 103–4
Martinus, G.H. 222, 225
Mathai, K. 55
Mattsson, N. 15, 17, 51, 52, 99
Maycock, P.D. 30, 96
McDonald, A. 12, 22, 23, 28, 97, 224, 255
MERGE model 52, 53
MERGE-ETL model 52, 54
MESSAGE model 51, 52
MESSAGE-MACRO model 52
Messner, S. 51, 52, 58
methanol 124
Mexico 140
Miketa, A. 52
Milborrow, D. 69
MIND model 56
model evaluation 60–62
modular technologies 33–4, 93–4, 264–5, 266, 270, 284
see also photovoltaic (PV) technology; wind energy monitoring energy technology markets 14
Morthorst, P.E. 75
Nakicenovic, N. 52, 59
National Aeronautics and Space Administration (NASA) 10
national experience curves 113, 263, 285, 286
natural gas combined cycle (NGCC)
carbon capture and sequestration (CCS) technologies 163, 166, 168, 169, 171–3
experience curves 251–4, 264
properties 33
see also combined cycle gas turbine (CCGT) plants; gas turbine combined cycle (GTCC)
NEED (National Energy Education Development) project 12, 109
Neij, L. 18, 33, 68, 69, 70, 71, 77, 118, 232, 257, 264
Nemet, G.F. 23, 31, 68, 70, 77, 78, 96, 97, 98, 104, 107–8
Netherlands carbon capture and sequestration (CCS) technologies 161
household appliances 195, 196–9, 201
lighting technologies 212, 214, 215
offshore wind energy 79, 80, 81, 82, 90, 91
onshore wind energy 65, 66, 67
photovoltaic (PV) technology 99
pulverized coal-fired (PC) power plants 156
space heating and cooling 222, 225, 226, 230, 282
Newell, R. 223, 224
Nielsen, E.K. 89
Normark, B. 89
Norway 162
nuclear fusion 40
nuclear power costs 183, 184–90, 280
experience curves 179–88, 191–2, 280
policy 190–91, 280
prevalence of 176–8
technological learning, drivers of 280
offshore wind energy components 266
costs 87–90, 91–2, 266, 275
experience curves 83–6, 91–2, 251–4, 257, 264
geographical constraints 267
growth of 79–82
policy 90–92, 274–5
technological learning, drivers of 274–5
oil prices 234, 239–42, 246, 266
oligopoly 76
one factor experience curve (OFEC) 12, 19, 24–7, 51
onshore wind energy costs 73–4, 75–7, 266
experience curves 67–72, 77–8, 251–4, 257, 273–4
geographical constraints 267
growth of 65–7
policy 66–7, 74–5, 272–3
prices 21, 273–4
production costs vs. market prices 75–7
technological learning, drivers of 273–4
organizational forgetting 188–9
Ostwald, P.F. 143, 144, 150, 151, 179, 182
oxyfuel combustion 170
Pan, H. 26
Parente, V. 30, 98
Peeters, A.N.M. 169
performance indicators 18–22, 269, 284
Photex study 100–101, 102–104, 109
photovoltaic (PV) technology components 266
construction of 93–4
costs 41, 102–108, 111–13, 265–6
experience curve extension 26–7
growth of 94–6
learning rate stability 23–4
policy 94–6, 109–11, 275–6
prices 21, 111–13
progress ratio error 30
quality 28
research, development and demonstration (RD&D) 94–5, 113, 276
system boundaries 32–3
technological innovation systems (TIS) 43, 44
technological learning, drivers of 275–6
plants (technology category) 33–4
plastics costs 244–5, 266
experience curves 235–42, 245–6
policy 235, 246, 283
production of 232–5
technological learning, drivers of 283
POLES model 52
policy
bioenergy 121–2, 134, 277–9
carbon capture and sequestration (CCS) technologies 174–5, 279–80
chemical industry 235, 246, 283
combined cycle gas turbine (CCGT) plants 279
concentrating solar thermal electricity technology 117, 277
and experience curves 12–16, 74–5
household appliances 201, 204–205, 280–281
integrated gasification combined cycle (IGCC) 279
lighting technologies 217–18, 281–2
model evaluation 60–62
nuclear power 190–91, 280
offshore wind energy 90–92, 274–5
onshore wind energy 66–7, 74–5, 272–3
photovoltaic (PV) technology 94–6, 109–11, 275–6
pulverized coal-fired (PC) power plants 159, 279
research and development (R&D) 1, 3
space heating and cooling 220–221, 230–231, 282–3
and technological learning 272–3, 283–8
prices vs. costs 19–22, 75–7, 111–13, 262–3, 269
experience curves 270
household appliances 202–203
lighting technologies 214–16
onshore wind energy 21, 75–7, 273–4
as performance indicators 19–22, 284
photovoltaic (PV) technology 21, 111–13
space heating and cooling 221–30, 282
subsidies, effect of 20–21
Probert, S.D. 69
production costs 19–22, 27–8, 75–7, 111–13, 136–7, 269
progress ratio (PR)
accuracy 27–31, 263, 270–271
bioenergy 125–9, 130, 131, 136, 257–8, 264, 278
calculation of 11
carbon capture and sequestration (CCS) technologies 162–8
chemical industry 235–44, 246, 283
combined cycle gas turbine (CCGT) plants 142, 143, 144–5, 251–2
concentrating solar thermal electricity technology 118, 277
constancy of 19, 22–4, 263–4
development stages 40
in energy models 53, 61
energy technologies 251–2, 254–9, 283–4
experience curve extension 24–7
household appliances 195–202, 204, 254–5, 281
lighting technologies 210–14, 217, 281
natural gas combined cycle (NGCC) technology 251–2, 264
nuclear power 179–88
offshore wind energy 83, 251–2, 257, 264, 275
onshore wind energy 30, 68, 69, 70, 71, 77–8, 251–2, 257, 274
photovoltaic (PV) technology 30, 96–102, 105–6, 109, 251–2, 257, 264, 276
pulverized coal-fired (PC) power plants 150–155, 251–2, 257, 264, 279
space heating and cooling 221–7
and technology type 264–5
pulverized coal-fired (PC) power plants
carbon capture and sequestration (CCS) technologies 158, 163, 165, 168, 169, 171–3
cost reductions 155–8
experience curves 42, 150–55, 251–4, 257, 264
growth of 149–50
policy 159, 279
technological innovation systems (TIS) 47
technological learning, drivers of 279
quality of technology 28, 268–9
Ramírez, C.A. 238, 242–3, 245, 246, 259, 283
RAND Corporation 10
Rao, S. 52
raw materials costs 265–6, 270, 284
REFUEL project 132–3, 138, 267, 278
Reisdorf, J.B. 143, 144, 150, 151, 179, 182
research and development (R&D)
bioenergy 130, 277, 278
carbon capture and sequestration (CCS) technologies 160–161, 175
in energy models 15–16, 53–4, 55, 59–60
experience curve extension 25–7
innovation systems theory 45
and the learning process 37–8, 272
and market support 103
nuclear power 178
one factor experience curves (OFEC) 12
policy 1, 3
pulverized coal-fired (PC) power plants 150, 159
research, development and demonstration (RD&D)
experience curve extension 25–7
learning-by-searching 38
learning investment costs 15
onshore wind energy 66, 75, 273
photovoltaic (PV) technology 94–5, 113, 276
resource mobilization 46
Riahi, K. 170, 175
RICE model 55, 56
Richels, R. 52, 53
Rodot, M. 97
Rogol, M. 105
Technological learning in the energy sector

Rose, N.L. 150–54
Rothwell, G.S. 179, 186, 187
Rubin, E.S. 150, 152, 154–5, 163, 174, 175
Russia 177, 178, 192
Rust, J. 187

Sallenave, J.-P . 242
Sano, F . 52
Sanstad, A.H. 196–9, 200, 202, 210, 213, 223, 224, 226
Schaeff er, G.J. 98, 99, 100–101, 102–104, 113
Schiellerup, P . 200
Schrattenholzer, L. 12, 22, 23, 28, 52, 97, 224, 255
Seebregts, A.J. 52, 58, 69
Shum, K.L. 101, 113
silicon 104, 112
Simon, T. 236, 237, 238, 239, 240, 242, 244, 246
Smekens, K. 15, 16
Söderholm, P. 26, 59
solar power see concentrating solar thermal electricity technology;
solar PV (photovoltaic) modules
solar PV (photovoltaic) modules
components 266
construction of 93–4
costs 41, 102–108, 111–13, 265–6
experience curve extension 26–7
growth of 94–6
learning rate stability 23–4
policy 94–6, 109–11, 275–6
prices 21, 111–13
progress ratio error 30
quality 28
research, development and
demonstration (RD&D) 94–5, 113, 276
system boundaries 32–3
technological innovation systems (TIS) 43, 44
technological learning, drivers of 275–6
South Africa 189

space heating and cooling

cost reductions 227–30
ergy consumption 219–20
experience curves 221–7, 282
policy 220–221, 230–231, 282–3
prices 221–30, 282
technological learning, drivers of 282–3

Spain
concentrating solar thermal
electricity technology 115, 116
offshore wind energy 79, 90
onshore wind energy 66, 67, 68, 72
photovoltaic (PV) technology 94
Sperling, D. 210, 212
Staffhorst, M. 99
Strategies Unlimited 96
sub-learning systems 32–3
subsidies 20–21, 67, 95
Sundqvist, T. 26
super-critical coal-fired power plants 156
Swanson, R.M. 98
Sweden
bioenergy 120, 127, 131, 277
nuclear power 190
offshore wind energy 79, 80, 81, 82, 253
onshore wind energy 66, 67, 72, 75, 273
space heating and cooling 229, 232
Switzerland 222, 223, 226, 228, 229, 231, 282
system boundaries 32–3, 266–7, 270, 284
Taiwan 177
tax credits 67
Taylor, M. 68, 70, 71
technological development 36–9, 42–7
technological innovation systems (TIS) 43–7
technological learning
bioenergy 277–9
bottom-up models 48–54, 57–60, 61, 286
carbon capture and sequestration
(CCS) technologies 279–80
chemical industry 283

Martin Junginger, Wilfried van Sark, and André Faaij - 9781849806848
Downloaded from PubFactory at 09/15/2023 08:01:47AM via free access
combined cycle gas turbine (CCGT) plants 279
concentrating solar thermal electricity technology 277
energy technologies 1–5
exogenous parameters 55–8
experience curves, use of 3–5, 9–10, 12–16, 48–9, 283–8
household appliances 280–81
integrated gasification combined cycle (IGCC) 279
lighting technologies 281–2
mechanisms 36–9
model evaluation 60–62
nuclear power 280
offshore wind energy 274–5
onshore wind energy 273–4
photovoltaic (PV) technology 275–6
and policy 272–3, 283–8
pulverized coal-fired (PC) power plants 279
space heating and cooling 282–3
top-down models 48–50, 54–5, 56, 59–60, 61
see also learning
technology, properties of 28, 33–4, 264–5, 268–9
Teller, A. 181
Terzian, G. 97
Thomas, A. 23, 255
Thornley, P. 121
time horizons 286
top-down models 48–50, 54–5, 56, 59–60, 61
Trancik, J.E 179, 180, 188
transformation bias 29–31
Travecedo, C.G. 75
Tsuchiya, H. 98
two-factor experience curve (TFEC) 25–7, 37, 51
umbrella phase 20, 76, 105, 284–5, 287
United Kingdom (UK)
carbon capture and sequestration (CCS) technologies 161, 162
combined cycle gas turbine (CCGT) plants 140
household appliances 203
lighting technologies 207
nuclear power 189
offshore wind energy 79, 80, 81, 82, 87, 89, 91
onshore wind energy 66, 68, 72
United States of America (USA)
bioenergy 120, 121, 122, 125, 127, 130
carbon capture and sequestration (CCS) technologies 161, 162
chemical industry 236, 237
combined cycle gas turbine (CCGT) plants 140, 144
concentrating solar thermal electricity technology 115, 116
household appliances 193, 194, 195, 196–9, 203
lighting technologies 207, 209, 211, 213, 217, 281
natural gas combined cycle (NGCC) technology 253
nuclear power 178, 179–80, 181, 182, 189
offshore wind energy 79, 80, 90
onshore wind energy 65, 66, 67, 68, 69, 71, 253
photovoltaic (PV) technology 94, 95, 97, 111, 113, 276
pulverized coal-fired (PC) power plants 150, 151, 152, 153, 253
space heating and cooling 223
University of Chicago 179, 180, 182, 187
upsizing technology 39, 77–8
Ürge-Vorsatz, D. 220
Utterback, J.M. 38
Van Bentheim, A. 101–102
Van den Broek, M. 141, 145, 147, 150, 153, 155, 158, 163, 171
Van den Wall Bake, J.D. 126, 127, 128
Van der Zwaan, B.C.C. 54, 56
Van Sark, W.G.J.H.M. 30, 98, 100, 271
Venezuela 217
Watanabe, C. 101, 113
Weiss, M. 196–9, 200, 202, 204, 210, 212, 221, 222, 225–6, 227, 229, 230, 259
Wene, C.-O. 15, 17, 23, 34, 52, 99, 123, 126, 264
Williams, R.H. 97, 181
Technological learning in the energy sector

wind energy
components 266
costs 73–4, 75–7, 87–90, 91–2, 266, 275
development stages 40
experience curves 12, 33, 67–72, 77–8, 83–6, 91–2, 251–4, 257, 264
geographical constraints 267
growth of 65–7, 79–82
learning rate stability 23–4
prices 21, 75–7, 273–4
progress ratio error 30
system boundaries 32
technological innovation systems
(TIS) 47
technological learning, drivers of 273–5
wind turbines 32, 72
Wolf, M. 97
Worrell, E. 238, 242–3, 245, 246, 259, 283
Wright, T.P. 9
Yeh, S. 150, 152, 154–5, 174, 175
Yu, C.F. 26–7
Zaleski, C.P. 181
Zimmerman, M.B. 179–80, 182, 187