Index

action 19
 uncertainty and 20
adaptation costs 145
additive disutility function 121
agriculture 11, 12
 loss of and value of food 97–8
albedo, Earth’s 17, 94
 enhancement 130
Allen, M.R. 112
animals 39
 greenhouse gases 112–15
Arrow, K. 33
artificial snow 98
assimilation capacity 48–51
asteroid collision with Earth 124, 125–6
Auerswald, P. 31
Ayres, R. 36
Aziz, T. 21
balanced growth 86–7
baseline scenarios 69, 70
Baumol, W. 59
Beck, U. 37
Beckerman, W. 33
benchmark concentration scenarios 71
Bentham, J. 39
Berger, G. 66
Bergson, H. 28
biotechnology 124, 125–6
biotic communities 39
Boulding, K. 34, 36
Brazil 148, 158, 162
budget deficits 14
building codes, enhanced 142
Bush, G.W. 21
business-as-usual scenarios 69, 70
Callicott, J.B. 34
capacities of future generations 59–60
carbon dioxide 7–8
 concentration and global temperature increase 9, 52–3
 heat-induced releases of sequestered 112–15
 ice-core records 109–10
 research into sequestering 15–16
 stock inertia 108
carbon-light economy 85–6
carbon market, dysfunctions in 88
carbon tax 1, 4–5, 47, 129–30, 153–5, 161, 163
carrying capacity 48–51
Carter, T.R. 81, 84
Castoriadis, C. 45
catastrophes 4, 24
environmental 124–6
 impossibility of believing that the worst could happen 27–8
see also extreme climate change certainties 7–9, 19, 94
change, over last 80 years 11–12
China 15, 147, 148, 149–50, 158
Chu, S. 158
clathrates 112
Clean Development Mechanism (CDM) 88
climate change policy 4–5, 57–60
 implications of fat-tailed logic 127–9
 round table discussion 5, 139–64
climate modelling (CM) 71, 73–4, 76, 77–8, 79
climatic sensitivity
 generalized 113–17
 narrowly defined 110–12, 113
 scaling multiplier 117–18
clouds 10
Club of Rome 33, 34
Coase, R. 32
Commissariat au Plan 66
commitment 13–15, 150–51, 158
communities, scenario 71, 73–4
organizing work between 75–7
complexity
of ecosystems 24
self-organization of complex systems
40–47
Conference of the Parties (COP) in Poznan 84, 85, 146–7
constant-elasticity-of-substitution
(CES) utility function 100, 120–21
consumption 99
future 96–7
cooperation, international see international cooperation
coral reefs 98
corruption 88
cost–benefit analysis 3, 4, 21, 102,
106–7, 124
disaggregated 143, 144–5
fat-tailed see fat-tailed logic
global 5, 143
precautionary principle as a form of 21–8
cost-efficiency analysis 59
Costanza, R. 33
Daly, H. 36
damages functions 48–51, 119–21
deforestation 145
Délégation à l’aménagement du territoire et à l’action régionale (DATAR) 66
Descartes, R. 38
Desrosières, A. 2
determinism 137–8
developing countries 5, 12–13, 70, 85,
139
international cooperation 141–2,
145, 158
DICE model 101–2, 135–6, 138
disaggregated cost–benefit analyses 143, 144–5
discount factor 89
discount rate 52, 99, 100, 101
discounting 3–4
fat tails, high-temperature disutilities and 117–22
and relative prices 4, 94–104
round table discussion 135–6, 138–9
disequilibrium 86–7
‘dismal theorem’ 4
DNA 125
domestic labour 96–7
drugs 140–41
dynamic externality 48–52
earth system models 73–4
Earth System Science Partnership 76
earthquakes 140–41
eocentrism 39
eco-development approach 34, 37
ecological economics 3, 33, 35, 36–7
self-organization of complex systems 45, 46–7
economic crisis, global 84–8, 90, 152–3
economic growth 33–4, 95, 96, 102
balanced 86–7
limited 99
low-carbon 162–3
economics 3, 29–65
currents in environmental economics 35–7
landmarks in the history of environmental economic thought 31–4
managing the unsustainable 58–60
neoclassical see neoclassical environmental economics
self-organization of complex systems 40–47
ecosystems 24
future ecosystem scarcities 98
future value of ecosystem services 103–4
El Niño 10
Elliott, D. 52
emissions trading schemes 145, 148,
150, 156–7
‘Energy, the next 20 years’ project 10
energy security 152, 162
enforceability of policy 5, 14
enlightened catastrophism 89
entangled hierarchy 40–47
entropy 34
environmental catastrophes 124–6
environmental ethics 34
environmental Kuznets curve 33, 60
epistemic probability 81
epistemic uncertainty 22–3, 25
epistemology of climate scenarios 77–9

European Union (EU) 14, 75
emissions trading scheme 156
exhaustible resources 32
expectation 82
expected utility (EU) theory 107
exponential-quadratic multiplier 120
externalization of the environment 41–2
externalities 32, 44, 60–61
dynamic 48–52
internalization of 44–5, 47–53, 55
need to revise neoclassical theory 55–6
extreme climate change 4, 106–34
climate change policy 127–9
deep structural uncertainty 109–17
fast geoengineering 108–9, 129–31
fat tails, high-temperature disutilities and discounting 117–22
implications of fat-tailed logic 123–7
Faber, M. 36
Fannie Mae 84
Farvar, T. 33
fast geoengineering 108–9, 129–31
fat-tailed logic 107–8, 131–2
and climate change policy 127–9
fast geoengineering 129–31
fat tails, high-temperature disutilities and discounting 117–22
implications of 123–7
fear, heuristics of 53–4
financial crisis, global 84–8, 90, 152–3
financial market management 87
Fisher, A. 33
food, value of 97–8
foreign aid 141
Forrester, J. 33
Foster, J. 37
Frame, D.J. 112
Framework Convention on Climate Change 53, 69, 147
France 14, 159, 162
Freddie Mac 84
frequentist probability 81
future generations, protection of capacities of 59–60
G2 147
G8 74
G20 144, 147, 152
gasoline taxes 153–4, 161–2
general circulation models 73
generalized precautionary principle 124
genetically modified organisms (GMOs) 125
geoengineering 17–18
fast 108–9, 129–31
Georgescu-Roegen, N. 34, 36
Germany 14
global average surface temperature 2, 70, 94
effects of 10–20°C rise 115
possibility of much higher than expected 16
probabilistic modelling 82
structural uncertainty about extremes 110–17
target emission reductions and 52–3
uncertainty and change in 9–10, 19
global cost–benefit 5, 143
global deal 145–8, 151–3
global emissions trading 145, 148, 150, 156–7
global financial crisis 84–8, 90, 152–3
global risk management approach 68, 89–90, 137
Global Scenarios Group 68
globalization 70
Godard, O. 37, 58, 89
goods, human agents and 37–9
goods interest rate 121
Gordon, H.S. 32
Gore, A. 13
government finances 85
gradualist policy ramp 107, 108, 110
green technologies 54–5
greenhouse gases (GHGs) 7–8, 94
eventual temperature response to increased levels 110–12
exogenous injection of 126–7
global economic crisis and 85
heat-induced releases of sequestered 16, 112–15
ice-core records 109–10
Kyoto Protocol 1, 15, 19, 85
probability of agreeing on limit concentration 14
target reductions in a global deal 145–6
grounded ice 16–17
Guillemot, H. 78

Hansen, J. 53
Harte, J. 113
Harvard 148–9
health 12–13
heat-induced releases of sequestered GHGs 16, 112–15
Henry, C. 33
hetero-referential logic 43, 44–5, 59
high resolution impact modelling 68
high-temperature disutilities 117–22
Hirshleifer, J. 1
Hoel, M. 102
horizons for scenarios 72
Hotelling, H. 32
Hourcade, J.-C. 78, 79, 87
Hu Jintao 147, 149–50
human agents, and goods 37–9
Hussein, S. 21

ice-core record 109–10
impacts, adaptation and vulnerability (IAV) modelling 71, 76, 77, 81
implausible futures 81
income elasticity effects 103–4
incomes, rising 96–7
India 148, 158
infrared radiation 7
institutions 37
insurance 128–9
Integrated Assessment Modelling Consortium 76
integrated assessment models (IAMs) 66, 106–7
DICE model 101–2, 135–6, 138
relative prices and 101–2
and scenarios 67, 74, 78, 79, 83, 87
IAM community 70, 71, 73, 74, 76, 77, 79
Intergovernmental Panel on Climate Change (IPCC) 9, 20, 29, 67, 71, 76, 156
climate sensitivity 110, 111
Fourth Assessment Report 67–70, 80–81, 83, 84, 98
internalization of externalities 44–5, 47–53, 55
international cooperation 5
problem of mobilizing 13–15
round table discussion 141–15, 143–4, 145, 146–8, 152–3, 158–9, 161
International Energy Agency (IEA) 156
International Geosphere–Biosphere Programme 76
International Institute for Applied Systems Analysis (IIASA) 71, 83
International Scientific Congress on Climate Change, Copenhagen 17–18
International Society for Ecological Economics 36
intertemporal optimization 99
inverse principle of risk evaluation 27
investment 161
personal investment strategy 138–9
Iraqi crisis 21
Jonas, H. 54–5
Jouvenel, B. de 66
Kapp, K. 32, 36
Kaul, I. 5, 141–2, 143–5, 151–3, 161
Kaya identity 69
Keynes, J.M. 22
Kneese, A. 32
Knight, F. 22
Kourelskiy, P. 22
Kyoto Protocol 1, 15, 19, 85
learning 127, 129
Lehman Brothers 84
limited growth 99
Limits to Growth, The 33, 34
low-carbon growth 162–3
luck, moral 25–7
Maastricht Treaty 21
malaria 13
Malaysia 12–13
Malinvaud, E. 29
malnutrition 13
Mandeville, B. de 31
market economy, social costs of 32
markets
inferring discount rates from market data 136–7
political market 144, 152–3
Index

Mars 7
mastery, human 39
Meadows, D.H. 33
measles 13
methane 94
heat-induced releases 16, 112–15
ice-core records 109–10
Mexico 158
Millennium Ecosystem Assessment 68
Milton, J.P. 33
Mishan, E. 32
model risks 88
modelling 66
climate 71, 73–4, 76, 77–8, 79
IAMs see integrated assessment models
IAV 71, 76, 77, 81
see also scenarios
Moebius strip 42, 43
Monte Carlo analysis 128
moral luck 25–7
Moss, R. 69, 71, 75, 76, 77
mountains 8–9
mud 11
multiplicative disutility functions 119–21

Naess, A. 34
Nakicenovic, N. 67, 68
nanotechnology 124
national interest 5, 161
neoclassical environmental economics 35–6
foundations 37–40
internalization of externalities and sustainable development 47–53
heuristics of fear and green technologies 53–5
need for revision of the theory 55–6
rehabilitation of reproduction 56–8
self-organization of complex systems 44–5, 46–7
new global economic order 86
non-governmental organizations (NGOs) 71, 75
non-human beings 39
Nordhaus, W. 52, 101–2, 103, 138
normal distribution 118
North Atlantic Treaty Organization (NATO) 14–15
Northern Rock 84
nuclear power 10, 159, 162, 163
nuclear proliferation 124

Oates, W. 59
Obama, B. 147, 149–50, 157, 158, 159
objective uncertainty 23–5
oceans 9–10
ontic probability 81
operational closure 40
opportunity cost of capital 3–4

pandemics 124
parallel process 72, 73–4, 75, 77, 79
Pascal, B. 82
Passet, R. 33, 36
pattern scaling 79, 91
Pearce, D. 48–52
permafrost 16, 94
Persson, U.M. 102, 103, 120–21
Perthuis, C. de 31
physics-based models 2
Pigou, A. 32
Pinatubo, Mount 17
pivotal view 45–6, 57, 59
Pizer, W.A. 4
plausible futures
with ascribed likelihood 81–2
without ascribed likelihood 81
policy ramp, gradual 107, 108, 110
political market 144, 152–3
population movements 136
potential risks 22
poverty 103–4, 152
Pradier, P.-C. 2
precautionary principle 21, 89
generalized 124
radical critique of 21–8
preferences 97
evolution over time 103–4
probability
scenarios and 80–82
theory 1–2
probability density functions (PDFs) 106–7
fat-tailed 107–8, 117–22, 132
see also fat-tailed logic
Student- t 118
thin-tailed 107, 108, 117, 132
production, economic 12

Jean-Philippe Touffut - 9781781953280
Downloaded from PubFactory at 09/18/2023 02:42:48AM
via free access
productive capital 56
property rights 47
public, honesty with the 148–9, 150, 162, 163–4
pure rate of time preference 121–2, 138–9
quadratic-polynomial multiplier 119–20
quotas 4–5, 47–8, 88, 150
difficulty of enforcing 14
tradable 145, 148, 150, 156–7
Ramsey rule, generalized to two sectors 99–101
rate of pure time preference 121–2, 138–9
rational choice 90
reflation 85–6
relative prices 4, 94–105, 155–6
effect and an integrated assessment of climate damage 101–2
value of food 97–8
renewable energy 159, 162
renewable resources 32
representative concentration pathways (RCPs) 73–4, 77, 78, 79
reproduction 56–8
research 128
and development 15
fast geoengineering 131
Ricardo, D. 32
risk
inverse principle of risk evaluation 27
known and potential 22
risk assessment 83, 89
risk aversion 4, 142–3
risk management 68, 89–90, 137
lessons from finance 86–8
scenarios and 80–84
Rostow, W. 33
runaway computer systems 124
Sachs, I. 34, 36
Samuelson, P. 32
Savage, L. 22
scaling parameter 116–17, 117–18
scarce, future ecosystem 98
scenarios 3, 66–93, 127–8
arguments for taking the economic crisis into account 84–8
epistemology of scenarios and models 77–9
SRES 67–70, 80
TNS 71–5, 76–7, 78
tool for organizing work between communities 75–7
from uncertainty to risk management 80–84
Schelling, T. 138–9, 149–51, 160
Schneider, S.H. 82
Scitovsky, T. 32
securitization 87
self-organization of complex systems 40–47
entangled hierarchy 40–44
three economic currents 44–7
self-referential logic 43, 44–5, 59
Sen, A. 59
September 11 terrorist attacks 27–8
sequestered GHGs, heat-induced releases of 112–15
sequestration of carbon dioxide 15–16
Shaefer, M.B. 32
Singapore 12–13
snow 8, 98
socio-economics 3, 35, 37, 57
self-organization of complex systems 45–6, 46–7
solar PV 159
Solow, R. 34
round table discussion 135, 139–40, 141, 143, 149, 153, 154, 155, 159, 163
Soviet Union 13–14
Special Report on Emissions Scenarios (SRES) 67–70, 80
St Petersburg paradox 141
statistics 1–2
Stern, N. 85–6, 87–8
round table discussion 5, 135–7, 140–41, 145–8, 155–6, 156–9, 159–60, 160, 162–3
Stern Review 29, 52–3, 89, 101–2, 103
uncertainty in 94–5
Sterner, T. 102–3, 120–21
round table discussion 137, 142–3, 153–4, 155, 161–2
Index

stock pollutant models 51–2
story lines 77
strangelets 124
Strong, M. 34
Student-ι PDFs 118
subjective probabilities 22–3, 81
subjective uncertainty 122
sulphur 17
Suntech 159
supranational institutions 75
sustainable development 61, 70
internalization of externalities at odds with 47–53
managing the unsustainable 58–60
Sylvan, R. 34
system–environment pair 40–47
distribution of three currents of economic thought 44–6
entangled hierarchy 40–44
target reductions 52–3, 74–5
round table discussion 145–6, 147, 150, 153, 157
taxes
carbon 1, 4–5, 47, 129–30, 153–5, 161, 163
gasoline 153–4, 161–2
technical systems 24
technology 145
green technologies 54–5
temporality, metaphysics of 27–8
terminator genes 125
terrorism 27–8
thermal inertia 10
thin-tailed PDFs 107, 108, 117, 132
 tipping points 19, 24
Torn, M. 113
Towards New Scenarios (TNS) 71–5, 76–7, 78
tradable quotas 145, 148, 150, 156–7
TRIPS 152
uncertainty 19
and action 20
bundle of uncertainties 2–3, 7–18
in climate and in the Stern Report 94–5
critique of precautionary principle 21–8
deep structural uncertainty about extremes 109–17
radical 21
round table discussion 135–9
scenarios and transition from uncertainty to risk management 80–4
structural uncertainty and fat tails 117–19
subjective 122
United Kingdom (UK) 13–14, 157
United Nations Framework Convention on Climate Change 53, 69, 147
United States of America (US) 13–14, 14–15, 147, 157–8, 159
National Academy of Sciences 9
utility discount rate (rate of pure time preference) 121–2, 138–9
utility function 99, 100, 119–22
constant elasticity of substitution (CES) 100, 120–21
variability 82–3
vector-borne diseases 12–13
Venus 7
Viney, G. 22
vision, sense of 25
water 7, 98
weather forecasting 2
Weisbrod, B. 32
Weitzman, M. 4, 5, 52–3
round table discussion 137–8, 148–9, 160–61, 163–4
welfare economics 33
welfare sensitivity 116–17
West Antarctica Ice Sheet 16–17, 19
Williams, B. 26
win–win solutions 5, 142
wind energy 159
World Climate Research Programme 76
World War I 28
World War II 13–14
Yarrow, G. 52