Chapter 1: Introduction: measurement error in economics
Full access

Economists should consider that their data have on balance an implicit minimal measurement error of 5-10 per cent. An optimal strictly positive level of inaccuracy exists; striving for ever-increasing accuracy is counterproductive. Economic inaccuracy for designed, administrative and opportunity statistics could easily be reported transparently without any notable technical or budgetary problems. Reporting measurement error in the underlying data is an important element of the transparency that is part of academic integrity and professional applied research and should be part of the economic curriculum. The mainstream view that data problems are concentrated in the Global South is not helpful. It is true that the statistical capacity of developing countries needs to be strengthened, but the mainstream neglects the fact that very serious measurement errors also plague the statistics of the more advanced economies. Therefore, the statistical discourse needs to be decolonized.

  • Abate, G. T. et al., 2023, ‘Measuring consumption over the phone: Evidence from a survey experiment in urban Ethiopia’, Journal of Development Economics 161: 103026.

  • Abay, K. A. et al., 2023a, ‘Inferential and behavioral implications of measurement error in agricultural data’, Annual Review of Resource Economics 15. doi: 10.1146/annurev-resource-101422-090049.

  • Abay, K. A. et al., 2023b, ‘Nonclassical measurement error and farmers’ response to information treatment’, Journal of Development Economics 164: 103136.

  • Abay, K. A., T. Wossen, and J. Chamberlin, 2023, ‘Mismeasurement and efficiency estimates: Evidence from smallholder survey data in Africa’, Journal of Agricultural Economics 74 (2), pp. 413–34.

  • Abeln, B., and J. P. A. M. Jacobs, 2022, ‘COVID-19 and seasonal adjustment’, Journal of Business Cycle Research 18 (2), pp. 159–69.

  • Abowd, J. M., and I. M. Schmutte, 2019, ‘An economic analysis of privacy protection and statistical accuracy as social choices’, American Economic Review 109 (1), pp. 171–202.

  • Abowd, J. M., and M. H. Stinson, 2013, ‘Estimating measurement error in annual job earnings: A comparison of survey and administrative data’, Review of Economics and Statistics 95 (5), pp. 1451–67.

  • Adam, A., and S. Tsarsitalidou, 2020, ‘Data misreporting during the COVID19 crisis: The role of political institutions’, Economics Letters 213: 110348.

  • African Development Bank, 2013, Situational Analysis of the Reliability of Economic Statistics in Africa: Special Focus on GDP Measurement, African Development Bank: Abidjan.

  • Aguilar, P., C. Ghirelli, M. Pacce, and A. Urtasun, 2021, ‘Can news help measure economic sentiment? An application in COVID-19 times’, Economics Letters 199: 109730.

  • Ahsan, S. M., and S. Q. Ahsan, 2022, The WB Constant Dollar Income Concept: An Interpretation, CESifo Working Paper 9726, CESifo: Munich.

  • Ait Sidhoum, A., and M. Vrachioli, 2023, ‘Agriculture and sustainability’, in R. Brinkmann (ed.), The Palgrave Handbook of Global Sustainability, pp. 631–653, Cham: Springer.

  • Akee, R., and D. Kapur, 2012, Remittances and Rashomon, Working Paper 285, Washington, DC: Center for Global Development.

  • Akritidis, L., 2002, ‘Accuracy assessment of National Accounts statistics’, Economic Trends 589, pp. 38–53.

  • Alenda-Demoutiez, J., and D. Mügge, 2020, ‘The lure of ill-fitting unemployment statistics: How South Africa’s discouraged work seekers disappeared from the unemployment rate’, New Political Economy 25 (4), pp. 590–606.

  • Alix-García, J., and D. E. Millimet, 2023, ‘Remotely incorrect? Accounting for nonclassical measurement error in satellite data on deforestation’, Journal of the Association of Environmental and Resource Economists 10 (5), pp. 1335–67.

  • Almuzara, M. et al., 2022, GDP Solera: The Ideal Vintage Mix, Staff Report, No. 1027, New York: Federal Reserve Bank of New York.

  • Álvarez-Nogal, C. et al., 2020, ‘Economic effects of the Black Death: Spain in European perspective’, Investigaciones de Historia Económica 16 (4), pp. 35–48.

  • Andriessen, J. E., J. van Sinderen, and P. A. G. van Bergeijk, 1995, ‘Requirements of policy-makers’, in Z. Kenessey (ed.), The Future of Statistics: An International Perspective, Voorburg: ISI Studies and Publishing Center, pp. 237–51.

  • Angel, S. et al., 2019, ‘What did you really earn last year? Explaining measurement error in survey income data’, Journal of the Royal Statistical Society Series A: Statistics in Society 182 (4), pp. 1411–37.

  • Angrist, N., P. K. Goldberg, and D. Jolliffe, 2021, ‘Why is growth in developing countries so hard to measure?’, Journal of Economic Perspectives 35 (3), pp. 215–42.

  • Antolin-Diaz, J., T. Drechsel, and I. Petrella, 2021, ‘Advances in nowcasting economic activity: Secular trends, large shocks and new data’, CEPR Discussion Paper No. DP15926, London: Center for Economic Policy Research.

  • Aragão, R., and L. Linsi, 2020, ‘Many shades of wrong: What governments do when they manipulate statistics’, Review of International Political Economy 29 (1), pp. 88–113.

  • Aruoba, S. B. et al., 2016, ‘Improving GDP measurement: A measurement-error perspective’, Journal of Econometrics 191 (2), pp. 384–97.

  • Asimakopoulos, S. et al., 2023, GDP Revisions Are Not Cool: The Impact of Statistical Agencies’ Trade-Off, ECB Working Paper No. 2857, Frankfurt: ECB.

  • Atherton, P., S. Appleton, and M. Bleaney, 2011, ‘Growth regressions and data revisions in Penn World Tables’, Journal of Economic Studies 38 (3), pp. 301–12.

  • Athey, S., and G. W. Imbens, 2019, ‘Machine learning methods that economists should know about’, Annual Review of Economics 11, pp. 685–725.

  • Atkinson, A. B., 2001, ‘Data matter’, revised version of Alfred Cowles lecture given at the Australasian Meetings of the Econometric Society, Auckland.

  • Atkinson, A. B., and A. Brandolini, 2001, ‘Promise and pitfalls in the use of “secondary” data-sets: Income inequality in OECD countries as a case study’, Journal of Economic Literature 39 (3), pp. 771–99.

  • Atkinson, A. B., and A. Brandolini, 2009, ‘On data: A case study of the evolution of income inequality across time and across countries’, Cambridge Journal of Economics 33 (33), pp. 381–404.

  • Auboin, M., 2009, ‘Restoring trade finance during a period of financial crisis: Stock-taking of recent initiatives’, WTO Staff Working Paper ERSD-2009-16, Geneva: WTO.

  • Backus, M., and A. T. Little, 2020, ‘I don’t know’, American Political Science Review 114 (3), pp. 724–43.

  • Baghwati, J. N., 1974, Illegal Transactions in International Trade: Theory and Measurement, Amsterdam: Elsevier.

  • Bähr, S. et al., 2022, ‘Missing data and other measurement quality issues in mobile geolocation sensor data’, Social Science Computer Review 40 (1), pp. 212–35.

  • Baker, S. R. et al., 2020, ‘How does household spending respond to an epidemic? Consumption during the 2020 COVID-19 pandemic’, NBER Working Paper 26949, Cambridge, MA: National Bureau of Economic Research.

  • Bańbura, M. et al., 2013, ‘Now-casting and the real-time data flow’, in G. Elliott and A. Timmermann (eds.), Handbook of Economic Forecasting (vol. 2), Amsterdam: Elsevier, pp. 195–237.

  • Banerjee, A. et al., 2017, ‘From proof of concept to scalable policies: Challenges and solutions, with an application’, Journal of Economic Perspectives 31 (4), pp. 73–102.

  • Barbaglia, L. et al., 2022, ‘Testing big data in a big crisis: Nowcasting under COVID-19’, International Journal of Forecasting. doi.org/10.1016/j.ijforecast.2022.10.005.

  • Barbieri, G. A., 2018, ‘Statistics, reality, truth’, in M. A. Sorto, A. White and L. Guyot (eds.), Looking Back, Looking Forward. Proceedings of the Tenth International Conference on Teaching Statistics, Voorburg: International Statistical Institute.

  • Barnichon, R., and W. Yee, 2020, ‘Adjusting the unemployment thermometer’, FRBSF Economic Letter 2020–27, San Francisco, CA: FRBSF.

  • Basu, A. et al., 2021, Understanding Algorithmic Discrimination in Health Economics Through the Lens of Measurement Errors, NBER Working Paper No. 29413, National Bureau of Economic Research, Cambridge, MA: NBER.

  • Batteux, E. et al., 2023, ‘When do consumers favor overly precise information about investment returns?’, Journal of Experimental Psychology: Applied 29 (2), pp. 302–21.

  • Baumeister, C. et al., 2022, ‘Tracking weekly state-level economic conditions’, Review of Economics and Statistics. doi.org/10.1162/rest_a_01171.

  • Bebbington, J. et al., 2020, ‘Fossil fuel reserves and resources reporting and unburnable carbon: Investigating conflicting accounts’, Critical Perspectives on Accounting 66 (2020): 102083.

  • Beckmann, J., A. Belke, and D. Gros, 2022, ‘Savings–investment and the current account: More measurement error than identity’ Journal of International Money and Finance 121. doi: 10.1016/j.jimonfin.2021.102507.

  • Bee, A., and J. Rothbaum, 2019, ‘The administrative income statistics (AIS) project: Research on the use of administrative records to improve income and resource estimates’, SEHSD Working Paper 2019-36, Washington, DC: US Census Bureau.

  • Bénassy, L. P., 2016, ‘Non clearing markets in general equilibrium’, in M. Vernengo, E. P. Caldentey and B. J. Rosser (eds.), The New Palgrave Dictionary of Economics (living edition). doi: 10.1057/978-1-349-95121-5_2271-1.

  • Benedetti, I., G. Betti, and F. Crescenzi, 2020, ‘Measuring child poverty and its uncertainty: A case study of 33 European countries’, Sustainability 12 (19): 8204.

  • Benita, F. et al., 2016, ‘Mirror trade statistics between China and Latin America’, Journal of Chinese Economic and Foreign Trade Studies 9 (3), pp. 177–89.

  • Bergeijk, P. A. G. van, 1992, ‘Verschil van meting in de (internationale) economie’ (‘Different measurements in (international) economics’, in Dutch), Economisch Statistische Berichten 77 (3881), pp. 1006–8.

  • Bergeijk, P. A. G. van, 1995, ‘The accuracy of international economic observations’, Bulletin of Economic Research 47 (1), pp. 1–20.

  • Bergeijk, P. A. G. van, 1998, ‘Did real world per capita income really grow faster in 1870–1913 than in 1973–1992?’, De Economist 146 (1), pp. 143–59.

  • Bergeijk, P. A. G. van, 2004, ‘De prijs maakt het verschil’ (‘The price makes the difference’, in Dutch), Economisch Statische Berichten 89 (4438), p. 337.

  • Bergeijk, P. A. G. van, 2013a, Earth Economics: An Introduction to Demand Management, Long-Run Growth and Global Economic Governance, Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

  • Bergeijk, P. A. G. van, 2013b, ‘The world trade collapse and international value chains: A cross-country perspective’, International Economic Journal 27 (1), pp. 41–53.

  • Bergeijk, P. A. G. van, 2017, ‘Making data measurement errors transparent: The case of the IMF’, World Economics 18 (3), pp. 133–54.

  • Bergeijk, P. A. G. van, 2019, Deglobalization 2.0. Trade and Openness during the Great Depression and the Great Recession, Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

  • Bergeijk, P. A. G. van, 2021, Pandemic Economics, Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

  • Bergeijk, P. A. G. van, and S. Brakman (eds.), 2010, The Gravity Model in International Trade: Advances and Applications, Cambridge, MA: Cambridge University Press.

  • Bergeijk, P. A. G. van, S. Brakman, and C. van Marrewijk, 2017, ‘Heterogeneous economic resilience and the great recession’s world trade collapse’, Papers in Regional Science 96 (1), pp. 3–12.

  • Bergeijk, P. A. G. van, and R. C. G. Haffner, 1996, Privatization, Deregulation and the Macroeconomy: Measurement, Modelling and Policy, Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

  • Bergeijk, P. A. G. van, and R. van der Hoeven (eds.), 2017, Sustainable Development Goals and Income Inequality, Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

  • Bergeijk, P. A. G. van, and M. S. H. Siddiquee, 2017, ‘Biased sanctions? Methodological change in economic sanctions reconsidered and its implications’, International Interactions 43 (5), pp. 879–93.

  • Berger, T., J. Morley, and B. Wong, 2023, ‘Nowcasting the output gap’, Journal of Econometrics 232 (1), pp. 18–34.

  • Berkes, S., and E. H. Williamson, 2018, ‘Vintage does matter: The impact and interpretation of post war revisions in the official estimates of GDP for the United Kingdom’, available at www.measuringworth.com/datasets/UKdata/UKGDPs.pdf.

  • Berry, F. et al., 2018, ‘The status of GDP compilation practices in 189 economies and the relevance for policy analysis’, IMF Working Paper WP/18/37, Washington, DC: International Monetary Fund.

  • Bettendorf, L., S. A. van der Geest, and M. Varkevisser, 2003, ‘Price asymmetry in the Dutch retail gasoline market’, Energy Economics 25 (6), pp. 669–89.

  • Biddle, J., and M. Boumans, 2021, ‘Exploring the history of statistical inference in economics: Introduction’, History of Political Economy 53 (S1), pp. 1–24.

  • Bils, M. P., J. Klenow, and C. Ruane, 2017, Misallocation or Mismeasurement?, Working Paper 599, Stanford, CA: Stanford Center for International Development.

  • Biswas, A. K., and S. Marjit, 2005, ‘Mis-invoicing and trade policy’, The Journal of Policy Reform 8 (3), pp. 189–205.

  • Blackwell, M., J. Honaker, and G. King, 2017, ‘A unified approach to measurement error and missing data: Overview and applications’, Sociological Methods & Research 46 (3), pp. 303–41.

  • Bles, A. M. van der et al., 2019, ‘Communicating uncertainty about facts, numbers and science’, Royal Society Open Science 6 (5): 181870.

  • Bloch, D., and F. Fall, 2015, ‘Government debt indicators: Understanding the data’, OECD, Economics Department Working Papers No. 1228, Paris: OECD.

  • Bloch, D., and F. Fall, 2016, ‘Government debt indicators: Understanding the data’, Journal of International Commerce, Economics and Policy 7 (1): 1650002.

  • Bloom, N., 2014, ‘Fluctuations in uncertainty’, Journal of Economic Perspectives 28 (2), pp. 153–76.

  • Bluhm, R., and G. C. McCord, 2022, ‘What can we learn from nighttime lights for small geographies? Measurement errors and heterogeneous elasticities’, Remote Sensing 14 (5): 1190.

  • Bokern, P. et al., 2023, ‘The robustness of preferences during a crisis: The case of COVID-19’, Working Paper 10595, Munich: CesIFO.

  • Bolhuis, M. A., J. N. L. Cramer, and L. H. Summers, 2022, ‘Comparing past and present inflation’, Review of Finance 26 (5), pp. 1073–100.

  • Bolt, J., and J. L. van Zanden, 2020, ‘Maddison style estimates of the evolution of the world economy: A new 2020 update’, Maddison-Project Working Paper WP-15, Groningen: University of Groningen.

  • Bos, F., 1990, ‘Net versus gross national income and product’, NA-038, The Hague: CBS Statistics Netherlands.

  • Bos, F., 2009, The National Accounts as a Tool for Analysis and Policy: In View of History, Economic Theory and Data Compilation Issues, Saarbrücken: Verlag Dr Müller.

  • Boskin, M. J. et al., 1996, Toward a More Accurate Measure of the Cost of Living: Final Report to the Senate Finance Committee, Advisory Commission to Study the Consumer Price Index, United States Congress, Washington, DC.

  • Boumans, M. (ed.), 2007, Measurement in Economics: A Handbook, Amsterdam: Elsevier.

  • Boumans, M., 2012, ‘Observations in a hostile environment: Morgenstern on the accuracy of economic observations’, History of Political Economy 44 (suppl. 1), pp. 114–36.

  • Bound, J., C. Brown, and N. Mathiowetz, 2001, ‘Measurement error in survey data’, in J. Heckman and E. Leamer (eds.), Handbook of Econometrics (vol. 5), Amsterdam: Elsevier, pp. 3705–843.

  • Bound, J., and A. B. Krueger, 1991, ‘The extent of measurement error in longitudinal earnings data: Do two wrongs make a right?’, Journal of Labor Economics 9 (1), pp. 1–24.

  • Bowman, R. T., 1964, ‘Comments on “Qui numerare incipit errare incipit” by Okskar Morgenstern’, The American Statistician 18 (3), pp. 10–20.

  • Boyd, D., and K. Crawford, 2012, ‘Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon’, Information, Communication & Society 15 (5), pp. 662–79.

  • Bradley, V. C. et al., 2021, ‘Unrepresentative big surveys significantly overestimated US vaccine uptake’, Nature 600 (7890), pp. 695–700.

  • Brancato, K., 2005, ‘Three essays on error in macroeconomic data’, PhD thesis, Fairfax, VA: George Mason University.

  • Breton, T. R., 2012, ‘Penn World Table 7.0: Are the data flawed?’, Economics Letters 117 (1), pp. 208–10.

  • British Petroleum, 2022, BP Statistical Review of World Energy 2022, London: British Petroleum.

  • Brum, M., and M. De Rosa, 2021, ‘Too little but not too late: Nowcasting poverty and cash transfers’ incidence during COVID-19’s crisis’, World Development 140: 105227.

  • Buehn, A. S., and S. Eichler, 2011, ‘Trade mis-invoicing: The dark side of world trade’, World Economy 34 (8), pp. 1263–87.

  • Buongiorno, J., 2018, ‘On the accuracy of international forest product statistics’, Forestry 91, pp. 541–51.

  • Burke, M. et al., 2021, ‘Using satellite imagery to understand and promote sustainable development’, Science 371 (6535): eabe8628.

  • Butter, F. A. G. den, 2007, ‘National accounts and indicators’, in M. Boumans (ed.), Measurement in Economics: A Handbook, Amsterdam: Elsevier, pp. 189–229.

  • Cabral, A. C. G., N. Gemmell, and N. Alinaghi, 2011, ‘Are survey-based self-employment income underreporting estimates biased? New evidence from matched register and survey data’, International Tax and Public Finance 28, pp. 284–322.

  • Cabrera-Álvarez, P., 2022, ‘Survey research in times of big data’, Empiria. Revista de Metodología de las Ciencias Sociales 53, pp. 31–51.

  • Cajner, T. et al., 2019, ‘Improving the accuracy of economic measurement with multiple data sources: The case of payroll employment data’, NBER Working Paper No. 26033, Cambridge, MA: National Bureau of Economic Research.

  • Camfield, L., and R. Palmer-Jones, 2013, ‘Three “Rs” of econometrics: Repetition, reproduction and replication’, Journal of Development Studies 49 (12), pp. 1607–14.

  • Carletto, C., 2021, ‘Better data, higher impact: Improving agricultural data systems for societal change’, European Review of Agricultural Economics 48 (4), pp. 719–40.

  • Carletto, C., A. Dillon, and A. Zezza, 2021, ‘Agricultural data collection to minimize measurement error and maximize coverage’, in C. B. Barrett and D. R. Just (eds.), Handbook of Agricultural Economics (vol. 5), Amsterdam: Elsevier, pp. 4407–80.

  • Carletto, C., and S. Gourlay, 2019, ‘A thing of the past? Household surveys in a rapidly evolving (agricultural) landscape: Insights from LSMS-ISA’, Agricultural Economics 50 (S1), pp. 51–62.

  • Carletto, C., S. Savastano, and A. Zezza, 2013, ‘Fact or artifact: The impact of measurement errors on the farm size–productivity relationship’, Journal of Development Economics 103, pp. 254–61.

  • Carpenter, C. W., A. van Sandt, and S. Loveridge, 2022, ‘Measurement error in US regional economic data’, Journal of Regional Science 62 (1), pp. 57–80.

  • Carson, C. S., and L. Laliberté, 2002, ‘Assessing accuracy and reliability: A note based on approaches used in national accounts and balance of payments statistics’, IMF Working Paper No. WP/02/24, Washington, DC: IMF.

  • Carton, C., and S. Slim, 2018, ‘Trade misinvoicing in OECD countries: What can we learn from bilateral trade intensity indices?’, MPRA Paper 87965, Munich: Personal RePec Archive.

  • Castle, J. L., N. W. P. Fawcett, and D. F. Hendry, 2009, ‘Nowcasting is not just contemporaneous forecasting’, National Institute Economic Review 210, pp. 71–89.

  • Cavallo, A., 2020, ‘Inflation with Covid consumption baskets’, NBER Working Paper No. 27352, Cambridge, MA: National Bureau of Economic Research.

  • Cebrián, E., and J. Domenech, 2023, ‘Is Google Trends a quality data source?’, Applied Economics Letters 30 (6), pp. 811–15.

  • Centraal Bureau voor de Statistiek, 1953, Nationale jaarrekeningen 1948–1950, Voorburg: CBS.

  • Chambers, D. R. et al., 2010, ‘How dangerous are measurement errors to homeland security?’, Thunderbird International Business Review 52 (6), pp. 553–69.

  • Chang, A. C., and P. Li, 2018, ‘Measurement error in macroeconomic data and economics research: Data revisions, gross domestic product, and gross domestic income’, Economic Inquiry 56 (3), pp. 1846–69.

  • Cheung, Y.-W., S. Steinkamp, and F. Westermann, 2020, ‘Capital flight to Germany: Two alternative measures’, Journal of International Money and Finance 102: 102095.

  • Chowdhury, A., and H. D. Dixon, 2023, ‘Measuring inflation during the pandemic with the benefit of hindsight’, Working Paper No. E2023/17, Cardiff: Cardiff Business School.

  • Cicala, S., 2020, ‘Early economic impacts of COVID-19 in Europe: A view from the grid’, mimeo, Chicago, IL: University of Chicago.

  • Clark, I., 2010, ‘Statistics or geostatistics? Sampling error or nugget effect?’, Journal of the Southern African Institute of Mining and Metallurgy 110 (6), pp. 307–12.

  • Clemens, M. A. 2017, ‘The meaning of failed replications: A review and proposal’, Journal of Economic Surveys 31 (1), pp. 326–42.

  • Cobham, A., and P. Janský, 2020, Estimating Illicit Financial Flows: A Critical Guide to the Data, Methodologies, and Findings, Oxford: Oxford University Press.

  • Collander, D., 2003, The Lost Art of Economics: Essays on Economics and the Economics Profession, Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.

  • Comim, F., 2001, ‘Richard Stone and measurement criteria for national accounts’, History of Political Economy 33 (5), pp. 213–34.

  • Congressional Budget Office, 1994, ‘Is the growth of the CPI a biased measure of changes in the cost of living?’, CBO Papers, Washington, DC: Congress of the United States.

  • Copeland, M. A., 1955, ‘Statistics and objective economics’, Journal of the American Statistical Association 50 (271), pp. 639–59.

  • Coppedge, M. et al., 2015, ‘Measuring high level democratic principles using the V-Dem data’, International Political Science Review 37 (5), pp. 580–93.

  • Coyle, D., 2017, ‘The future of the national accounts: Statistics and the democratic conversation’, Review of Income and Wealth 63 (Supplement 2), pp. S223–37.

  • Croushore, D., 2011, ‘Frontiers of real-time data analysis’, Journal of Economic Literature 49 (1), pp. 72–100.

  • Croushore, D., and T. Stark, 2003, ‘A real-time data set for macroeconomists: Does the data vintage matter?’, Review of Economics and Statistics 85 (3), pp. 605–17.

  • Culot, G. et al., 2023, ‘Using supply chain databases in academic research: A methodological critique’, Journal of Supply Chain Management 59 (1), pp. 3–25.

  • Dang, H.-A. H. et al., 2023, ‘Statistical performance indicators and index: A new tool to measure country statistical capacity’, Scientific Data 10 (1): 146.

  • Đào, K. T., 2024, ‘The Holy Triad? Religion, globalization, and sustainable development’, PhD thesis, Rotterdam: Erasmus University.

  • Davillas, A., and A. M. Jones, 2021, ‘The implications of self-reported body weight and height for measurement error in BMI’, Economics Letters 209: 110101.

  • Davis, C. M., and W. Charemza, 2012, Models of Disequilibrium and Shortage in Centrally Planned Economies, New York: Springer Science & Business Media.

  • Delgado, L., M. Schuster, and M. Torero, 2021, ‘Quantity and quality food losses across the value chain: A comparative analysis’, Food Policy 98: 101958.

  • Demena, B. A. et al., 2021, ‘Trade, productivity and competitiveness’, REPOA Brief 18/2021, REPOA: Dar-es-Salaam.

  • Desrosières, A., 2001, ‘How real are statistics? Four possible attitudes’, Social Research 68 (2), pp. 339–55.

  • Devarajan, S., 2013, ‘Africa’s statistical tragedy’, Review of Income and Wealth 59, pp. 9–15.

  • Dewald, W. G., J. G. Thursby, and R. G. Anderson, 1986, ‘Replication in empirical economics: The journal of money, credit and banking project’, American Economic Review 76 (4), pp. 587–603.

  • Dezhbakhsh, H., 2005, ‘The political economy of statistical evidence: Economic data problems in developing countries and their impact on empirical research’, in M. Ayogu and D. Ross (eds.), Development Dilemmas: The Methods and Political Ethics of Growth Policy (vol. 41), London: Routledge, pp. 80–102.

  • Dhami, M. K., and D. R. Mandel, 2022, ‘Communicating uncertainty using words and numbers’, Trends in Cognitive Sciences 26 (6), pp. 514–26.

  • Diaz-Bone, R., K. Horvath, and V. Cappel, 2020, ‘Social research in times of big data: The challenges of new data worlds and the need for a sociology of social research’, Historical Social Research/Historische Sozialforschung 45 (3), pp. 314–41.

  • Diewert, W. E., 2005, ‘Issues in the measurement of capital services, depreciation, asset price changes, and interest rate’, in C. Corrado, J. Haltiwanger and D. Sichel (eds.), Measuring Capital in the New Economy, Chicago, IL: University of Chicago Press, pp. 479–556.

  • Diewert, W. E., and K. J. Fox, 1999, ‘Can measurement error explain the productivity paradox?’, Canadian Journal of Economics/Revue canadienne d’Economique 32 (2), pp. 251–80.

  • Diewert, W. E., and K. J. Fox, 2020, ‘Measuring real consumption and CPI bias under lockdown conditions’, NBER Working Paper 27144, Cambridge, MA: National Bureau of Economic Research.

  • Dillon, A. et al., 2019, ‘Land measurement bias and its empirical implications: Evidence from a validation exercise’, Economic Development and Cultural Change 67 (3), pp. 595–624.

  • Dillon, A., and L. N. Rao, 2021, ‘Land measurement bias: Comparisons from global positioning system, self-reports, and remote sensing data’, Global Poverty Research Lab Working Paper Series Working Paper no. 21-102, Evanston, IL: Northwestern.

  • Dominitz, J., and C. F. Manski, 2017, ‘More data or better data? A statistical decision problem’, The Review of Economic Studies 84 (4), pp. 1583–1605.

  • Dominitz, J., and C. F. Manski, 2018, ‘More data or better data? Using statistical decision theory to guide data collection’, LSE Business Review, https://eprints.lse.ac.uk/88316/1/businessreview-2018-01-22-more-data-or-better-data-using-statistical.pdf.

  • Dowrick, S., 2005, ‘Errors in the Penn World Table demographic data’, Economics Letters 87 (2), pp. 243–8.

  • Dubovik, A. et al., 2022, ‘Forecasting world trade in crises using machine learning techniques’, CPB Discussion Paper (updated version November 2022), The Hague: CPB.

  • Dujava, D., and M. Siranova, 2022, ‘Is it me or you? A deeper insight into profile of misreporting economies’, Quarterly Review of Economics and Finance 83 (1), pp. 10–25.

  • Duncan, G. J., and D. H. Hill, 1985, ‘An investigation of the extent and consequences of measurement error in labor-economic survey data’, Journal of Labor Economics 3 (4), pp. 508–32.

  • Dunnewijk, T., and S. Hultén, 2007, ‘A brief history of mobile communication in Europe’, Telematics and Informatics 24 (3), pp. 164–79.

  • Edvinsson, R., 2016, ‘National accounts in world history: Methodological problems and possible solutions’, in A. Jarrick, J. Myrdal and M. Wallenberg Bondesson (eds.), Methods in World History: A Critical Approach, Lund: Nordic Academic Press, pp. 227–50.

  • Eichenbaum, M., N. Jaimovich, S. Rebelo, and J. Smith, 2014, ‘How frequent are small price changes?’, American Economic Journal: Macroeconomics 6 (2), pp. 137–55.

  • Eicher, T. T. S., and Y. G. Rollinson, 2023, ‘The accuracy of IMF crises nowcasts’, International Journal of Forecasting 39 (1), pp. 431–49.

  • Einav, L., E. Leibtag, and A. Nevo, 2008, ‘Not-so-classical measurement errors: A validation study of Homescan’, NBER Working Paper No. 14436, Cambridge, MA: National Bureau of Economic Research.

  • Einav, L., and J. Levin, 2014, ‘The data revolution and economic analysis’, Innovation Policy and the Economy 14 (1), pp. 1–24.

  • Ellison, G. T. H., 2020, ‘COVID-19 and the epistemology of epidemiological models at the dawn of AI’, Annals of Human Biology 47 (6), pp. 506–13.

  • Elvidge, C. D. et al., 2012, ‘The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data’, Social Geography 7 (1), pp. 23–35.

  • Endres, A. M., 1982, ‘The economics of social measurement processes: Some questions of public policy indicator design’, International Journal of Social Economics 9 (1), pp. 3–39.

  • Engstrom, R., J. S. Hersh, and D. L. Newhouse, 2017, ‘Poverty from space: Using high-resolution satellite imagery for estimating economic well-being’, WPR Working Paper 8284, Washington, DC: World Bank.

  • Es, F. van, 2015, ‘Beleidsvarianten met Saffier-II’, CPB achtergrond document, The Hague: CPB.

  • Eurostat, 2003, The Future of the European Statistical System, Luxembourg: Eurostat.

  • Eurostat, 2018, Building the System of National Accounts: Non-Observed Sector, Luxembourg: Eurostat.

  • Eurostat, 2022, Quality Report on National and Regional Accounts, Luxembourg: Publications Office of the European Union.

  • Ezran, I. et al., 2023, ‘Measuring global economic activity using air pollution’, PRWP 10445, Washington, DC: World Bank.

  • Farhad, M. et al., 2023, ‘The mystery of misreported trade: A novel method to identify distorted trade figures’, World Economy. doi: 10.1111/twec.13451.

  • Fariss, C. J. et al., 2022, ‘New estimates of over 500 years of historic GDP and population data’, Journal of Conflict Resolution 66 (3), pp. 553–91.

  • Feenstra, R. C. et al., 2009, ‘Estimating real production and expenditures across nations: A proposal for improving the Penn World Tables’, Review of Economics and Statistics 91 (1), pp. 201–12.

  • Feenstra, R. C., R. Inklaar, and M. P. Timmer, 2015, ‘The next generation of the Penn World Table’, American Economic Review 105 (10), pp. 3150–82.

  • Feinstein, C. H., and M. Thomas, 2002, ‘A plea for errors’, Historical Methods: A Journal of Quantitative and Interdisciplinary History 35 (4), pp. 155–65.

  • Feldstein, M., 2017, ‘Underestimating the real growth of GDP, personal income, and productivity’, Journal of Economic Perspectives 31 (2), pp. 145–64.

  • Ferrara, L., and X. S. Sheng, 2022, ‘Guest editorial: Economic forecasting in times of COVID-19’, International Journal of Forecasting 38 (2), pp. 527–28.