Handbook of Research Methods and Applications in Empirical Macroeconomics
Show Less

Handbook of Research Methods and Applications in Empirical Macroeconomics

  • Handbooks of Research Methods and Applications series

Edited by Nigar Hashimzade and Michael A. Thornton

This comprehensive Handbook presents the current state of art in the theory and methodology of macroeconomic data analysis. It is intended as a reference for graduate students and researchers interested in exploring new methodologies, but can also be employed as a graduate text. The Handbook concentrates on the most important issues, models and techniques for research in macroeconomics, and highlights the core methodologies and their empirical application in an accessible manner. Each chapter is largely self-contained, whilst the comprehensive introduction provides an overview of the key statistical concepts and methods. All of the chapters include the essential references for each topic and provide a sound guide for further reading.
Buy Book in Print
Show Summary Details

Chapter 6: Vector autoregressive models

Helmut Lütkepohl

Extract

Multivariate simultaneous equations models were used extensively for macroeconometric analysis when Sims (1980) advocated vector autoregressive (VAR) models as alternatives. At that time longer and more frequently observed macroeconomic time series called for models which described the dynamic structure of the variables. VAR models lend themselves to this purpose. They typically treat all variables as a priori endogenous. Thereby they account for Sims’ critique that the exogeneity assumptions for some of the variables in simultaneous equations models are ad hoc and often not backed by fully developed theories. Restrictions, including exogeneity of some of the variables, may be imposed on VAR models based on statistical procedures. VAR models are natural tools for forecasting. Their set-up is such that current values of a set of variables are partly explained by past values of the variables involved. They can also be used for economic analysis, however, because they describe the joint generation mechanism of the variables involved. Structural VAR analysis attempts to investigate structural economic hypotheses with the help of VAR models. Impulse response analysis, forecast error variance decompositions, historical decompositions and the analysis of forecast scenarios are the tools which have been proposed for disentangling the relations between the variables in a VAR model.

You are not authenticated to view the full text of this chapter or article.

Elgaronline requires a subscription or purchase to access the full text of books or journals. Please login through your library system or with your personal username and password on the homepage.

Non-subscribers can freely search the site, view abstracts/ extracts and download selected front matter and introductory chapters for personal use.

Your library may not have purchased all subject areas. If you are authenticated and think you should have access to this title, please contact your librarian.


Further information

or login to access all content.